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Abstract:  In many research contexts it is necessary to group experimental subjects into 
behavioral “types.”  Usually, this is done by pre-specifying a set of candidate decision-
making heuristics and then assigning each subject to the heuristic that best describes 
his/her behavior.  Such approaches might not perform well when used to explain the 
behavior of subjects with prefrontal cortex damage.  The reason is that introspection is 
typically used to generate the candidate heuristic set, but this procedure is likely to fail 
when applied to the decision-making strategies of subjects with brain damage. We 
suggest that the Houser, Keane and McCabe (HKM) (2004) robust behavioral 
classification algorithm can be a useful tool in these cases. An important advantage of 
this classification approach is that it does not require one to specify either the nature or 
number of subjects’ heuristics in advance.  Rather, both the number and nature of the 
heuristics are discerned directly from the data.  To illustrate the HKM approach, we draw 
inferences about heuristics used by subjects in the well-known gambling experiment 
(Bechara, Damasio, Damasio and Anderson, 1994).   
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Introduction 
 
The unhappy circumstances of Phineas Gage are by now well known.  Briefly, as related 

by Antonio Damsio in his Descartes’ Error (1995), Gage was working as the foreman for 

a railroad construction team in Vermont in 1848, when an explosion blew an iron bar 

through his left cheek, skull and the front of his brain.  The bar exited the top of his head 

at high speed, and Gage managed to survive the blast.  Although his post-accident IQ 

remained high according to standard measures, he nevertheless underwent radical 

personality changes and, perhaps more interestingly, seemed to lose the ability to make 

good decisions.  In particular, he systematically made decisions that were, by any 

objective measure, not in his long-run best interest.  He eventually lost his job and family, 

and spent much of the rest of his life working as a sideshow attraction for a circus. 

We now know that Gage suffered damage to the ventromedial (VM) area of his 

prefrontal cortex (see, e.g., Damasio, Grabowski, Frank, Glalburda and Damasio, 1994).  

People with damage in this area typically maintain good memory and score well across a 

wide range of personality and intelligence tests.  However, they tend to have difficulty in 

making “good” decisions.  That is, they often make decisions that seem clearly contrary 

to their best interest, even when they claim that they know this is the case. 

Investigating the natures of the differences between VM and normal decision- 

making has proved challenging, because VM patients perform as well as normal patients 

on many standard diagnostic tests. However, Bechara et. al. (1994) describe one 

laboratory experiment in which VM patients perform remarkably differently than control 

subjects.  This experiment has been dubbed the “gambling task,” because it involves 

turning over cards sequentially and earning and losing money, according to the markings 
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on each card.  Bechara et. al. (1994) report that VM patients choose cards from “bad 

decks” systematically more often than people without such brain damage.  In their 

experiment, a bad deck is one that yields high immediate rewards but higher future 

losses, so that on average a person playing a bad deck will lose money. A good deck, on 

the other hand, provides lower immediate rewards but even lower future costs, so that on 

average a person drawing from the good deck will earn money. The main result reported 

by Bechara et. al. (1994) is that about 60% of VM patients draws are from bad decks, 

while this is true for only about one-third of their control subjects. 

Bechara, Tranel and Damasio (2000) investigate three reasons, not mutually 

exclusive, for differences in behavior in the gambling task. These are that VM patients 

might be relatively (i) hypersensitive to reward; (ii) insensitive to punishment; or (iii) 

insensitive to future consequences. To discriminate these hypotheses they designed a new 

experiment, a variant of the gambling task, such that the bad decks yield low immediate 

punishment and even lower future earnings, while the good decks yield high immediate 

punishment and even higher future reward. Analysis of this experiment’s data allows 

them to conclude that neither (i) nor (ii) is supported by the experimental data, and that 

(iii) is a simple hypothesis consistent with the evidence. 

In this paper we discuss an alternative procedure for drawing inferences about the 

heuristics used by VM and control patients when playing the original gambling task. Our 

approach is to analyze data from the original environment using the statistical 

classification algorithm suggested by Houser, Keane and McCabe (2004).  The goal of 

our analysis is not to provide new results about the behavior of people with VM damage.  

Indeed, experimentation over the last decade by Bechara and others has expanded the 
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knowledge of VM behavior far beyond what one can expect to gain by a statistical 

analysis of a relatively old data set.  Rather, in this paper we demonstrate that the Houser, 

Keane and McCabe (HKM) classification procedure can be used to discern behavioral 

patterns that were not originally teased out of this data set, and that those patterns line-up 

well with what subsequent experimentation has already discovered. In particular, we 

show that hypothesis (ii) above, that VM patients might be relatively insensitive to losses, 

can be informed through an HKM analysis of the original gambling-task data. 

There are several reasons that behavioral researchers in all fields, including 

economics, psychology and neuroscience, might be interested in the HKM statistical 

approach. One is that HKM does not require the researcher to pre-specify the nature or 

number of the heuristics used by subjects.  This is in marked contrast to many approaches 

to type-classification that require the investigator to pre-specify the universe of possible 

decision rules (e.g., the popular strategy suggested by El-Gamal and Grether, 1995).  

Especially when analyzing the behavior of people with brain damage, it seems likely that 

the usual introspective process that generates this universe may fare quite badly.1  In 

addition, HKM does not require that all subjects with a particular brain condition (in the 

present case, VM and control subjects) use the same heuristic.  As discussed below, the 

idea behind the procedure is to group subjects according to similarities in their decision-

making behavior, regardless of any known physical abnormalities they might possess.2 

                                                 
1 This is not to say that introspection necessarily works well when trying to explain the behavior of 
“normal” subjects: even in very simple environments can be extremely difficult to write down a model that 
explains or predicts individual decision making well. Also, while quite common, introspection is not the 
only procedure available to determine a universe of possible heuristics. Objective evidence from 
neuroeconomic studies of decision making might provide useful insights into the cognitive strategies used 
by both brain damaged and normal subjects (see, e.g., McCabe, et. al., 2001). 
2 It is possible, of course, to incorporate this information into the HKM classification procedure. 
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The data set analyzed in this paper is small and unbalanced.  It consists of 17 VM 

patients, and eight lesion control subjects who have brain damage in an area outside of 

the ventromedial prefrontal cortex (in particular, to the left-somatosensory cortex.) 

Nevertheless, we demonstrate that a simple analysis can be conducted that groups 

subjects according to similarities in their decision-making strategies (or heuristics), and 

that allows inference with respect to whether these heuristics differ in terms of their 

sensitivity to losses.  

We allow for two types of heuristics in our population.  Our results indicate that 

15 VM patients and two controls use one type of heuristic, while two VM patients and six 

controls use the other.  The two heuristics do not differ with regard to the way they 

respond to losses, which lines up well with the results of subsequent experimentation 

reported by Bechara et. al. (2000). 

 

2. Statistical Methodology 

The statistical procedure used in this paper is developed in detail in Houser, Keane and 

McCabe (2004), and will be only briefly described here.  Papers that discuss closely 

related procedures for inference in multinomial choice frameworks include Geweke and 

Keane (1999a), Geweke, Houser and Keane (2001) and Houser (2003).  The HKM 

approach is useful whenever an investigator is interested in drawing inferences about the 

nature of behavioral heterogeneity in a population, but does not feel comfortable taking a 

strong stand with respect to the nature of that heterogeneity. In particular, under relatively 

weak assumptions, the HKM algorithm draws inferences about both the nature and 
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number of heuristics (or, equivalently, decision rules) used by subjects in a given 

population.  

A decision rule is a map from information to action.  For example, if people 

sitting in a theatre are given the information that the theatre is burning, many will likely 

decide to act by leaving the building. Behavioral heterogeneity might exist even here: a 

few might decide to stay. Intuitively, the HKM approach allows one to draw inferences 

about both the nature and number of relationships that exist between the information 

people have and the actions they take, at least within a given context. 

While many interesting types of decisions are easily observed, it is usually the 

case that the information that resulted in a particular action is not.  This is less the case in 

laboratory experiments.  There, much (even most) of the information that is relevant to 

subjects’ laboratory decisions is under the control of, and therefore known to, the 

researcher.  We exploit this control to specify the form of the heuristics that we 

investigate below. 

2.1. The HKM Classification Procedure3 

We provide additional detail about the HKM algorithm within the context of an 

experiment where subjects solve a T period dynamic decision problem. The “gambling 

task” analyzed below is an instance of this environment, although the discussion in this 

section is more general. Suppose that each period subjects choose either alternative “A” 

or “B,” each of which results in a finite monetary reward.  Payoffs can be stochastic, but 

the realizations of the random variables in period t occur before the decision at t is made, 

while the realizations of period t+1’s random variables occur after the decision at t. Each 

                                                 
3 This section follows Houser (2003) closely. 
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subject’s total payoff is the sum of the rewards earned over the T periods.  Subjects have 

complete information regarding the stochastic link between their current choices and 

future payoffs, but the link is complicated and it is difficult to determine the decision rule 

that maximises expected total payoffs.  

The goal is to learn about the dynamic decision rules that subjects actually use 

when solving this difficult problem.  To do this, Houser, Keane and McCabe (2004) 

(henceforth, HKM) begin by assuming that subjects are rational in a weak sense.  In 

particular, a subject will choose alternative “A” in period t if and only if, in period t, the 

value that they place on choosing “A” is greater than the value they place on choosing 

“B.” Because the problem is dynamic, the value that subjects place on “A” and “B” 

depend both on the immediate reward to each choice and on the way subjects believe that 

choice will impact their future payoffs.   

The idea that choices, in general, have both immediate and future costs and 

benefits, and that even when people have the same information they might use it 

differently and, consequently, draw different inferences about the immediate and future 

consequences of their decisions, is the fundamental intuition that guides the HKM 

algorithm. To implement the HKM type classification procedure one posits that 

individual alternative valuations are additively separable into a contemporaneous 

component that captures the immediate net benefit of a choice (e.g., the alternative’s 

immediate monetary payoff) and a “future component” that depends on a subject’s 

information and accounts for the subjective way information is used to value alternatives. 

We use the term “future component” because it is natural for economists to think that this 

function might map a subject’s information to his or her expected net future benefits from 
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taking a particular action. However, this need not be the case. For example, if a subject is 

“myopic” in the sense that they are focused only on immediate rewards, then the future 

component would be identically zero. A key advantage of the HKM algorithm is that it 

does not require one to take a strong stand on the nature of the future component. 

In the laboratory it is often reasonable to assume that the contemporaneous payoff 

structure is known (and is equal to the cash value of a choice), so that differences in 

choice behaviour between subjects who face otherwise identical contemporaneous returns 

can be traced to differences between the subjects’ future components.  The idea put forth 

by HKM (2004) is to cluster subjects into groups that seem to have similar future 

components, while simultaneously drawing inferences about the future components’ 

forms.  In this way, HKM avoid taking a strong a-priori stand on the nature of the 

decision rules used by the subjects. 

HKM (2004) model the unobserved future component of each alternative’s value 

as a parametric stochastic function of the subject’s information set .ntI  The information 

set can include anything the researcher believes is relevant to subjects when making their 

decisions, such as choice and payoff histories.  Then, the value that subject n assigns to 

alternative { },j A B∈  in period t , ( )njt ntV I , given that they use decision rule ,k  can be 

written 

, 1

, 1

( | ) ( | , , , )

( , ).
njt nt njt n t nt k njtk

n t nt

V I k w F I I j

I H I j

π ς+

+
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=
 

Here, njtw  is the known immediate payoff associated with alternative j.  ( )F ⋅  represents 

the future component.  It depends on the alternative j and information set ,ntI  and is 
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characterised by a finite vector of parameters kπ , whose values determine the nature of 

decision rule k,  and a random variable njtkς  that accounts for idiosyncratic errors subjects 

make when attempting to implement decision rule k.  (The researcher must specify the 

distribution of the idiosyncratic errors.)  The function ( )H ⋅  is the information set’s 

stochastic law of motion.  It provides the dynamic link between current information and 

actions and future information, and it is exogenous with respect to the decision rule. 

We denote the choice in period t of subject n following decision rule k with 

information ntI  by:  

"A" if ( | ) 0
( )

"B" otherwise
nt nt

k nt

Z I k
d I

>
= 


 k K∀ ∈  

where ( | ) ( | ) ( | ).nt nt nAt nt nBt ntZ I k V I k V I k= −  

The goal is to draw inferences about the parameters ( ),k k Kπ ∀ ∈  and about the 

probability with which each subject uses each decision rule.  To do this HKM construct 

the likelihood function associated with this framework.  This requires knowing the 

probability, conditional on a subject’s information set, that they will choose “A” or “B.”  

The probability that subject n using decision rule k  chooses alternative “A” at 

period t, given that they have information Int is given by  

( ( ) ) ( ( ) ( )) ( ( | ) 0)k nt nAt nt nBt nt nAt nBt nt kP d I A P V I V I P w w f I π= = > = − + >  

where ( )f ⋅  is a stochastic function that represents the differenced future components 

, 1 , 1( | , , , ) ( | , , , ).n t nt k nAtk n t nt k nBtkF I I A F I I Bπ ς π ς+ +−   The conditional probability that “B” is 

chosen is one minus the conditional probability that “A” is chosen.   
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With conditional choice probabilities in hand it is straightforward to construct the 

likelihood function needed to draw inferences about the different decision rules at use in 

the population, and the probability with which each subject uses each rule.  Under the 

distributional assumptions made by HKM, the likelihood function corresponds to a 

mixture of normals probit model.  Unfortunately, this likelihood can be computationally 

burdensome to maximize, and numerical procedures such as Gibbs Sampling are 

typically required. Interested researchers should consult Houser, Keane and McCabe 

(2004) for discussion on this point.   

 

3. The Gambling Task 

Bechara’s gambling task (Bechara et. al, 1994) is a sequence of static decision problems 

under ambiguity.  The experimenter begins by giving a subject $2,000 in play money.   

The experimenter places four decks of cards in front of the subject, and tells him/her that 

they can earn more play money by turning over cards, and that his/her goal is to earn as 

much play money as possible.  The subject is told that every card they choose will result 

in them earning some amount of money, and that there will be occasional cards that 

impose costs on them.  The subject is told nothing else.  The subject then begins turning 

over cards, one-by-one, until they are told to stop by the experimenter.  The stopping 

point is after 100 cards have been selected, although the subject does not know this in 

advance. 

The subject is told nothing about the payoff or cost distributions within any of the 

decks of cards.  In fact, the decks have been constructed in a very particular way.  The 

first two decks, call them A and B, provide a positive payment of $100 for each card.  
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However, they also have occasional very high costs.  On average, turning over 10 cards 

in the A or B decks will have a net cost of $250. The C and D decks have lower rewards 

per card, $50, but also have lower occasional costs.  On average, turning over 10 cards in 

the C or D decks yields a positive return of $250.  For this reason, we will refer to decks 

A and B as the “bad” decks, and C and D as the “good” decks.  

The main result reported by Bechara et. al. (1994) is that VM patients choose 

from the bad decks statistically significantly more often than normal subjects.  On 

average, around 60% of all VM patients’ draws are from the bad decks, while this is true 

of only about one-third of the normal patients’ draws.  This led to much speculation about 

the source of the behavioral difference.  One question was whether VM patients were 

relatively insensitive to losses, and if this insensitivity could explain the difference.  

Subsequent research by Bechara et. al. (2000), which used a new experiment designed to 

address this question, suggested that differences in loss aversion-behavior were not likely 

the source of the different choices.  The results we report below provide convergent 

evidence for this conclusion.  

 

4. A Simple Model 

The Houser, Keane and McCabe (2004) approach to type classification requires that 

subjects’ relevant information sets, and the link between information and action, be 

specified.  We assume that each subject has a subjective value associated with draws 

from each deck of cards, and that they draw a card from the deck on which they place the 

highest value. The way that values are formed can be modeled in any way that the 

researcher chooses, subject only to identification issues. In this paper, because our intent 
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is only illustrative, we use a simple model that nevertheless allows us to address whether 

VM subjects respond to losses differently than lesion controls.  We noted in the 

introduction that this was one of the primary hypotheses advanced to explain the 

behavioral patterns observed in the original gambling task data. We also noted that this 

hypothesis was not supported by results from subsequent experiments.  

Denote the deck by j (with total number of decks J), the subject by n and the 

current draw by t.  Assume that subjects assign values to draws in H different ways (that 

is, there are H valuation heuristics used in the population.)  With this notation, we model 

the subjective value that subject n assigns to drawing a card from deck j at round t, 

assuming they use heuristic h, as: 

Vn(j,t;h) = b1jh  

+ b2jhI(Last Draw was from deck j & t>50)*Loss(t-1) 

+ b3jhI(Last draw was from deck j & t>50)*Reward(t-1) 

+ en(j,t;h), 

where e is an identically and independently distributed Gaussian random variable that 

represents idiosyncratic noise, which arises due to failures to implement the heuristic 

perfectly.  Because this is a situation of ambiguity, the model assumes that the subject 

uses the first 50 draws to gain experience in each deck. Inferences with respect to loss 

and reward effects are based on the final 50 draws experienced by each subject. Finally, 

the function “I()” represents an indicator function that takes value one if the condition 

inside the brackets is true, and is otherwise zero. This model simply posits that the value 

a subject places on drawing from deck j depends on a constant, noise, and his/her most 

immediate previous experience with that deck. 
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It is possible to use the HKM algorithm to draw inferences about the number H of 

heuristics in the population, the nature of each heuristic h in H (that is, the coefficient 

values), and to determine the probability with which each subject uses each heuristic.  A 

specific way to do this is detailed in Houser, Keane and McCabe (2004), and involves a 

Bayesian analysis of a mixture of probits model (for more on mixtures of probits see, 

e.g., Geweke and Keane, 1999b).  

For this paper’s purposes, however, we assume that there are exactly two 

heuristics at use in the population. There are two reasons for this decision. First, the 

results of substantial previous research with this population suggest that there are in fact 

two types of behavioral heuristics in this population, and using these previous results to 

inform our current model is reasonable. At the same time, note that there is no necessary 

reason to expect that all VM patients will follow the same heuristic, or that all normal 

controls will follow the same heuristic. For example, some VM patients might follow a 

strategy that looks very similar to the control subjects. The HKM procedure allows for 

this and other possibilities. 

A second reason to assume that there are two types of decision rules in this 

population is that, as a practical matter, it would be difficult to interpret the finding that 

there are three or more heuristics in the population. The reason is that our sample size is 

rather small (8 controls and 17 VM patients), and evidence of more than two heuristics 

might not be robust to a larger sample, or the nature of the heuristics that we estimate 

might be a quite biased reflection of the true heuristics at use in the population, given the 

relatively small number of subjects that would be assigned to each. 
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This highlights an important feature of the HKM approach to type classification. 

Because it is a robust approach, in the sense that both the nature and number of heuristics 

are determined endogenously, it can be less efficient than procedures that take a stand on 

the heuristics subjects use. Of course, if such a stand is wrong, and the model 

consequently misspecified, then the efficiency gain might come at the cost of 

specification error bias.  

 

4.b.  Implementation and Identification 

Although there are two “good” decks, and two “bad” decks in the actual experiment, in 

this chapter we report results based on a model that treats each pair as one.  Equivalently, 

we model the individual as making a choice between choosing a deck with $100 payoffs 

or $50 payoffs, and then randomizing across the two decks within that choice.  Hence, we 

set J=2, which turns out to mean that there are three identified coefficients, along with 

one variance term with a pegged value, that characterize each heuristic.   

Note that the value function described above requires both location and scale 

normalization for identification.  Location normalization is achieved by differencing: 

Vn(1,t;h) - Vn(2,t;h) = b11h - b12h  

+ b21hI(Last Draw was from deck 1 & t>50)*Loss(t-1) 

- b22hI(Last Draw was from deck 2 & t>50)*Loss(t-1) 

+ b31hI(Last draw was from deck 1 & t>50)*Reward(t-1) 

- b32hI(Last draw was from deck 2 & t>50)*Reward(t-1) 

+ en(1,t;h) - en(2,t;h). 
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The differenced constants are not separately identified, but are estimated as a single 

constant. Similarly, the differenced error component is treated as a single noise term. 

Also, because the nature of the experiment induces little variation in rewards, the 

coefficients on lagged rewards are only weakly identified. Consequently, we choose to 

drop them for the remainder of our analysis. Finally, scale normalization is achieved by 

pegging the variance of the error at a fixed value. 

To implement the Bayesian version of HKM as described in Houser, Keane and 

McCabe (2004) one must specify priors on the coefficients “b” that appear in the value 

expression above, along with the fraction of each type that exists in the population.  We 

follow Houser, Keane and McCabe (2004) and use Gaussian priors with means of zero 

and standard deviations of one for the intercepts, and 0.1 for the coefficients on losses. 

We use a diffuse Dirichlet prior centered at ½ for the fraction of each type in the 

population. 

 

5. Data and Results 

Our data set consists of 25 subjects who played the gambling task one time.  17 of our 

subjects are VM patients, and 8 are lesion controls with damage to the left somatosensory 

cortex.  The data were collected by Antoine Bechara and colleagues at the University of 

Iowa, and represent a subset of data that has been previously published in various books 

and journals.  Figure 1 compares the frequency with which the two types of patients drew 

from the “bad” decks (the $100 decks.)  As has been previously reported, VM patients 

draw from the bad decks statistically significantly more often than the normal patients.  

Moreover, as seen in Figure 2, the rate at which VM patients draw from the bad deck 
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seems roughly constant over the entire experiment.  The rate at which LC’s draw from 

the bad deck is similar to the VM rate over the first 10 or so draws, but then declines 

substantially, but stays roughly constant over the last 80 or so draws.  

 

5.b. Results 

Our results are derived through the use of a Gibbs sampling algorithm. Details about the 

Gibbs sampler, and the way in which it can be implemented to draw inferences in the 

present environment, are presented in Houser, Keane and McCabe (2004) and will not be 

repeated here. Briefly, the Gibbs sampler is a recently developed numerical procedure for 

drawing inferences within the context of statistical models like ours. The Gibbs sampler 

is attractive because it provides accurate inferences under weak regularity conditions, and 

those conditions are satisfied by our model. Our results are based on a Gibbs sampling 

algorithm that we coded in FORTRAN 77 and that makes extensive use of IMSL 

subroutines.  We ran the sampler for a total of 500 cycles.  The results reported below are 

based on the last 250 cycles.4  

Consider first the way in which we type-classify subjects.  We based our subject 

classification on the posterior mean probability that they were each type.  If the posterior 

probability of being the VM type is greater than or equal to 0.50,5 then they are classified 

as that type.  Otherwise, they are classified as the lesion control type.  The posterior type 

probabilities favored one type over another by only a few percentage points for most of 

                                                 
4 Visual inspection of the draw sequences suggested that convergence had been achieved by cycle 250.  
Complete draw sequences are available from the authors on request. 
5 Three subjects had a posterior probability of 0.496 of being the ventromedial type, and in each case we 
assigned then to the ventromedial type.  Two of these three are actually VM, so reversing the classification 
for these three reduces the number of total VM types by 3 (from 17 to 14), and induces one additional type 
classification error (from 4 to 5).  
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our subjects.  The highest posterior mean probability across all subjects of being the VM 

type was about 66%, and the smallest was about 36%.    

Table 1 provides the results of our typing procedure.  We call one of the two 

estimated heuristics the “VM” heuristic, simply because most of the subjects assigned to 

it are VM patients.  We denote the other heuristic as the “LC” heuristic for the same 

reason.  It turns out that 17 subjects are classified as VM types, which is identical to their 

frequency in the data.  However, two subjects classified as VM are in fact lesion controls.  

Thus, four subjects are “mislabeled,” in the sense that their actual brain condition is not 

reflected by the label of the heuristic that they use.   

Table 2 describes the marginal posterior distributions for the coefficients of each 

heuristic. Recall that the variance of the error term is pegged at one.6  Notice first that the 

marginal posterior distributions of the coefficients for the amount lost in the previous 

period have the majority of their mass to one side of zero for both the LC and VM 

heuristics.  Moreover, the values of these coefficients are very similar.  This suggests 

immediately that, as reported by Bechara et. al. (2000) based on a different experimental 

design, both VM and lesion control patients respond to losses incurred in the previous 

period, and that these responses are similar.  On the other hand, the posterior means of 

the constant terms for the two heuristics differs by about 0.1, and the posterior means lie 

on different sides of zero.  Given the small sample size, this provides some evidence that 

the baseline rate at which VM’s and LC’s choose from the bad deck differs.7 In 

particular, the coefficient estimates imply that VM’s choose from the bad deck at a 

                                                 
6 This variable in fact exhibited slight variation but without drift.     
7 Note that the standard deviations of the intercepts are large relative to their means: zero lies in a high 
marginal posterior density region for each. 
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baseline rate of about 55%, while lesion controls choose from the bad deck at about a 

45% baseline rate.      

In addition to the baseline rates, our estimates imply that both types of subjects 

are more likely to choose from the same type of deck after experiencing a loss in that 

deck, than they would be otherwise.8  For example, a subject who turns over a card in the 

“bad” deck and receives a cost of $1,250 will choose from one of the bad decks again 

with probability 0.82 if they are using the VM heuristic, and with probability 0.77 under 

the LC heuristic.  Experiencing a cost of $250 from the “good” decks generates 

probabilities of bad deck choices of 16% and 15% for the VM and LC heuristics, 

respectively.  Overall then, these findings suggest that VM patients choose cards from the 

bad decks at a higher baseline rate than the LC subjects. Consequently, they experience 

large losses more frequently, and these losses lead to yet more frequent choices from the 

bad decks.  The interaction of higher baseline choice rates and the effect of experiencing 

losses lead to the substantially higher bad deck choice frequencies by VM subjects. 

Our analysis leaves unanswered the question of why VM patients would tend to 

choose from the $100 decks at a higher baseline rate than the lesion controls.  Further 

experimentation by Bechara et. al. (2000) suggests that the reason may be that VM 

damage leaves one unable to assess the future negative consequences of one’s actions 

accurately. This is consistent with the patterns observed in Figure 2, which suggests LC 

patients reduce their baseline choice rates in the bad deck after the first 20 draws or so, 

while this reduction is not apparent in the VM subjects’ data.  

                                                 
8 This might be counterintuitive. One possible explanation for this behavior is that subjects come to expect 
that it is unlikely to experience two losses in a row in a given deck. Alternatively, this result might reflect 
an aggregation effect embedded in our statistical model. In particular, it is possible that subjects are in fact 
switching decks after a loss, but not switching reward amounts. 
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6. Concluding comments 

Uncovering the nature and number of behavioral heuristics that people use, even in very 

narrow contexts, presents one of the most important current challenges to the behavioral 

sciences (see Houser, 2003 for an elaboration of this point.)  A standard approach to this 

involves somehow determining a universe of possible ways that people might act, and 

then determining which one among this universe fits each person’s behavior best (see, 

e.g., El-Gamal and Grether, 1995).  While this approach has been shown to work well in 

some circumstances (see, e.g., Houser and Winter, 2004), there are some environments in 

which its success is less likely.  The study of brain damaged people is one such 

environment, because it does not seem likely that introspection by a person with a 

normally functioning brain could provide accurate guidance on the heuristics that might 

be used by someone with a brain abnormality.  The HKM classification procedure is a 

robust alternative. We have demonstrated in this paper that the results obtained by 

application of the HKM statistical procedure to data from the original gambling-task 

design line-up well with results from subsequent new experiments with VM patients. 

Although this paper focused on a behavioral study, it is important to point out that 

the HKM algorithm has broad applicability that extends beyond the analysis of 

behavioral data.  In particular, it would be straightforward to apply the algorithm to data 

that include behavioral decisions and neuronal firing information, say as might be 

collected during an fMRI imaging experiment. Analyzing such a data set holds the 

promise of identifying jointly both the behaviors that neuroeconomists should seek to 

explain, along with the neural structures that support those behaviors.  
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Actual Brain Condition

VM LC Total
VM 15 2 17

Classification LC 2 6 8
Total 17 8

Table 1. Number of subjects of each classified type by actual 
brain condition.
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Note. These coefficients correspond to the differenced value function described in section 

4.b, where the bad deck is deck “1” and the good deck is deck “2.”  Hence, the constant is 

b11-b12, Loss Bad Deck is b21, and Loss Good Deck is –b22. 

 

 

 

 

 

 

 

 

 

 

 

Table 2
Marginal Posterior Distributions

LC Heuristic VM Heuristic
Mean SD Mean SD

Constant -0.05362 0.09747 0.04513 0.08600
Loss Bad Deck 0.00062 0.00028 0.00066 0.00033

Loss Good Deck -0.00381 0.00138 -0.00400 0.00125
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Figure 1. 
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