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Abstract 

Using data from the NLSY79, we structurally estimate a dynamic model of the life cycle
decisions of young women. The women make sequential joint decisions about school attendance,
work, marriage, fertility and welfare participation. We use the model to perform counterfactual
simulations designed to shed light on three questions: (1) How much of observed minority-
majority differences in behavior can be attributed to differences in labor market opportunities,
marriage market opportunities, and preference heterogeneity? (2) How does the welfare system
interact with these factors to augment those differences? (3) How can new cohorts that grow up
under the new welfare system (TANF) be expected to behave compared to older cohorts?
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 Deductions for child care expenses and work expenses, as well as various other income disregards that
1

existed under the AFDC program, were also factored into these calculations. EITC was also factored in, but this was

quite trivial prior to the expansion in the 1993-94 period.  

 The approximation given by (5) fits the monthly benefit data quite well, with R-squared statistics for the
2

first line segment mostly above .99 and for the second, mostly about .95. These regressions are available on request.
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Appendix SA: Welfare Benefit Rules

In order to estimate the benefit schedules given by equation (5) in the main text, and the

evolutionary rules governing changes in benefit parameters given by equation (6), we collected

information on the rules governing AFDC and Food Stamp eligibility and benefits in each of the

50 states for the period 1967-1990. We then simulated a large data set of hypothetical women,

with different numbers of children, and different levels of labor and non-labor income, and

calculated their welfare benefits according to the exact rules in each State and year.  We1

calculated the sum of monthly benefits from AFDC and Food Stamps, and expressed these

monthly benefit amounts in 1987 New York equivalent dollars. The resulting simulated data was

used to estimate the approximate benefit schedule given by (5) separately for each State and year.

Thus, for each state, s, we obtain an estimate of the benefit rule parameters, , for

each year t.  Given the estimates of the benefit rule parameters, we then estimated (6), the2

evolutionary rule (ER).

Table A.1 reports summary statistics of the benefit rule parameters  by

State. We report the mean of each parameter over the 1967-1990 sample period, as well as the

standard deviation and the minimum and maximum. Table A.2 reports our estimates of the

evolutionary rule (i.e., the VAR for the 5 parameters) for each of the 5 States.       



 Note that, despite this factor structure, the likelihood is not “degenerate” (i.e., meaning that no feasible
3

choice has zero probability). This is because each of the five discrete choices (work, school, fertility, marriage

welfare participation) has an associated error term whose distribution (i.e., Normal) covers the real line. Thus, there

always exists a configuration of the errors that can rationalize any 5-element vector of choices that might be observed

in the data. 

2

Appendix SB:  Estimation Method

The numerical solution to the agents’ maximization problem provides (approximations

to) the Emax functions that appear on the right hand side of (8). The alternative-specific value

functions,  for j=1,..,J , which are sums of current payoffs and the discounted Emax functions,

are known to the agents in the model. But the econometrician does not observe all the factors that

enter the current payoff expressions . In general, the econometrician does not observe the

random preference shocks, the part- and full-time wage offer shocks, the earnings shock of the

husband and the income shock of her parents. Whether particular alternatives are available

depends on the implicit shocks governing whether a part- and/or full-time job offer is received,

whether a marriage offer is received and whether a parental co-residence offer is received.

Thus, conditional on the deterministic part of the state space, the probability that an agent

is observed to choose option k takes the form of an integral over the region of the several-

dimensional error space such that k is the preferred option. The error space over which the

econometrician must integrate depends on which option k the agent is observed to chose. For

example, if the work option is chosen, then the wage offer is observed by us, and the wage shock

is not in the subset over which we must integrate. In that case, the likelihood contribution for the

observation also includes the density of the wage error. If the woman is married, then we observe

the husband’s income, we do not integrate over the husband’s income shock, and the likelihood

contribution includes the husband’s income density. 

As noted, the choice set contains as many as 36 elements, but our model imposes a factor

structure where a much smaller number of errors (i.e., the wage shocks and the 5-element vector

of preference shocks over leisure, school, marriage, fertility and welfare) determines choices.  It3

is well known that evaluation of choice probabilities is computationally burdensome when the

number of alternatives is large. Recently, highly efficient smooth unbiased probability

simulators, such as the GHK method (see, e.g., Keane (1993, 1994)), have been developed for

these situations. Unfortunately, the GHK method, as well as other smooth unbiased simulators,

rely on a structure in which each of the J-1 mutually exclusive alternatives have a value that is a



 One of us has written incorrectly elsewhere (see, e.g., Keane and Moffitt (1998)) that the GHK algorithm
4

is only applicable when each alternative has a single error that is additive and the error covariance matrix is at least

of rank J-1. A prime example is the multinomial probit model. But, additivity is in fact a much stronger condition

than is required. Strict monotonicity is sufficient.  
 Kernel smoothed frequency simulators are, of course, biased for positive values of the smoothing

5

parameter, and consistency requires letting the smoothing parameter approach zero as sample size increases.

3

strictly monotonic function of a single stochastic term, and that the (J-1)C(J-1) variance-

covariance matrix of the error terms have full rank. This is not true here, because the alternatives

have values that cannot be written as a strictly monotonic function of a single error.  4

  Furthermore, as discussed in Keane and Moffitt (1998), in estimation problems where the

number of choices exceeds the number of error terms, the boundaries of the region of integration

needed to evaluate a particular choice probability are generally intractably complex. Thus, given

our model, the most practical method to simulate the probabilities of the observed choice set

would be to use a kernel smoothed frequency simulator. These were proposed in McFadden

(1989), and have been successfully applied to models with large choice sets in Keane and Moffitt

(1998), Erdem (1996), Keane and Wolpin (1997) and Eckstein and Wolpin (1999).5

However, in the present context, this approach is not feasible because of severe problems

created by unobserved state variables. As noted, we do not always have complete histories of

employment, schooling or welfare receipt for most of the cohorts back to age 14. Hence, the state

variables of work experience, completed schooling and lagged welfare participation cannot

always be constructed. In addition, parental co-residence and marital status are observed only

once a year (every other period).

Further complicating the estimation problem, as we noted earlier, is that the youth’s

initial schooling level at age 14 is observed only for one of the 16 birth cohorts. It is well known 

that unobserved initial conditions, and unobserved state variables more generally, pose

formidable problems for the estimation of dynamic discrete choice models (Heckman (1981)). If

some or all elements of the state space are unobserved, then to construct conditional choice

probabilities one must integrate over the distribution of the unobserved elements. Even in much

simpler dynamic models than ours, such distributions are typically intractably complex.  

In a previous paper (Keane and Wolpin (2001)), we developed a simulation algorithm

that deals in a practical way with the problem of unobserved state variables. The algorithm is

based on simulation of complete (age 14 to the terminal age) outcome histories for a set of

artificial agents. An outcome history consists of the initial schooling level of the youth, ,



 We do not draw from the “correct” joint distribution. Instead, we draw from an incorrect “source”
6

distribution and adjust the draws so obtained using importance sampling weights. The virtue of this procedure,

similar to Keane (1993, 1994), will become apparent below. The key support condition for importance sampling is

that the source distribution put positive mass on each possible type/initial school/parent’s school combination, which

is easy to verify in this case.    

4

parental schooling, , along with simulated values in all subsequent periods for all of the

outcome variables in the model (school attendance, part- or full-time work, marriage, pregnancy,

welfare participation, the woman’s wage offer, the husband’s earnings, both permanent and

transitory components, parental co-residence and income). The construction of an outcome

history can be described compactly as follows:

At the current trial parameter value, we simulate histories as follows:  

1) Draw the youth’s “type,” which includes both her skill endowment and 5-element

vector of preference parameters, as well as her initial schooling and parent’s schooling, from a

joint distribution;6

2) Draw the relevant set of random shocks necessary to compute the alternative-specific

value functions at age a=1;

3) Choose the alternative with the highest alternative-specific value function;

4) Update the state variables based on the choice in (3);

5) Repeat steps (2) – (4) for a=2, ... , A;

We repeat steps (1) - (5) N times to obtain simulated outcome histories for N artificial

persons.  Denote by  the simulated outcome history for the n  such person, soth

, for n = 1,..., N.

In order to motivate the estimation algorithm, it is useful to ignore for now the

complication that some of the outcomes are continuous variables and that there are observed

initial conditions and unobserved types. Let  denote the observed outcome history for person

i, which may include missing elements. Then, an unbiased frequency simulator of the probability

of the observed outcome history for person i, , is just the fraction of the N simulated

histories that are consistent with . In this construction, missing elements of  are counted as

consistent with any entry in the corresponding element of . Note that the construction of this

simulator relies only on unconditional simulations. It does not require evaluation of choice

probabilities conditional on state variables. Thus, unobserved state variables do not create a

problem for this procedure.



 At a point in time, married women also differ in terms of the permanent unobservable component of their
7

husband’s human capital, ì  in (4), which is fixed for the duration of a marriage. But this is not part of a woman’sm

initial condition. 

5

Unfortunately, this algorithm is not practical. Because the number of possible outcome

histories is huge, consistency of a simulated history with an actual history is an extremely low

probability event. Hence, simulated probabilities will typically be 0, as will be the simulated

likelihood, unless an impractically large simulation size is used (see Lerman and Manski 1981).

In addition, the method breaks down completely if any outcome is continuous (e.g., the woman’s

wage offer), regardless of simulation size, because agreement of observed with simulated wages

is a measure zero event.

We solve this problem by assuming, as seems apt, that all observed quantities are

measured with error. With measurement error there is a nonzero probability that any observed

outcome history might be generated by any simulated outcome history. Denote by  the

probability that observed outcome history  is generated by simulated outcome history . 

Then  is the product of classification error rates on discrete outcomes (and

measurement error densities for the continuous variables) that are needed to make  and 

consistent. Observe that  for any , given suitable choice of error processes. The

specific measurement error processes that we assume are described below. The key point here is

that  does not depend on the state variables at any age a, but only depends on the

outcomes.

Using N simulated outcome histories we obtain the unbiased simulator:

 (B1)  .

Note that this simulator is analogous to a kernel-smoothed frequency simulator, in that

 is replaced with an object that is strictly positive, but that is greater if  is “closer”

to  . However, the simulator in (B1) is unbiased because the measurement error is assumed to

be present in the true statistical model. 

It is straightforward to extend the estimation method to allow for unobserved

heterogeneity. Assume that there are K types of women who differ in their permanent preferences

for leisure, school, marriage, becoming pregnant and receiving welfare, as well as in their human

capital “endowment” at age 14.  In addition, women also differ in terms of their initial schooling7



 Parental schooling and initial schooling are assumed to be exogenous conditional on type. 
8

 As discussed in McFadden (1989) and Keane (1994), smoothness allows construction of derivatives,
9

which both speeds the search for an optimum and permits calculation of numerical standard errors. It also typically

leads to more efficient simulators, and avoids problems created by zero simulated probabilities (see Lerman and

Manski (1981)).

 Keane and Wolpin (1997, 2001) adopted the same approach to handling latent types. 
10

6

(taking on 4 values) and parental schooling (taking on14 values); initial schooling, as we have

noted, is often unobserved. Thus, there are a total of 56qK possible initial conditions in

simulation step (1) of the algorithm to generate histories. Let k = 1,..., 56qK index these initial

conditions, and define as the probability a person has initial condition k given the joint

distribution of unobserved type, initial schooling and parental schooling assumed in the model.8

Also, define  as the proportion of agents with initial condition k simulated in step 1, and let

k(n) denote the initial condition that was drawn in step 1 when simulating history n. Finally, let

 denote that the n  outcome history, which is simulated under the assumption the agent hasth

initial condition k. Then, we can form the unbiased simulator:

(B2)  .

Observe that in (B2), the conditional probabilities are weighted by the ratio of the

probability of agents with initial condition k according to the model, , to the probability of

agents with initial condition k in the simulation, . As we discuss in Appendix A, we construct

the joint distribution of latent type, initial schooling, and parental schooling using (i) a

multinomial logit (MNL) for initial schooling conditional on parents’ schooling, in conjunction

with (ii) a MNL for type conditional on parent and initial schooling. Together, these logits

generate the .    

It is important for probability simulators to be smooth functions of model parameters for

several reasons.  The simulator in (B2) is a smooth function of the MNL parameters that9

determine the type proportions , and this is a key virtue of using importance sampling in Step

1 of the algorithm for constructing histories.  Unfortunately, (B2) is not a smooth function of the10

structural parameters that determine choice probabilities conditional on initial conditions. This is

because  will “jump” at points where a change in a model parameter causes the

simulated outcome history  to change discretely. However, this simulator can be made smooth

in these parameters by applying a second importance sampling procedure. The idea is to hold the



 Despite the smoothness of the simulated likelihood function, estimation of the model proved difficult, as
11

it was common for the search algorithm to become “hung up” on local maxima. We thus alternated between BHHH,

the simplex algorithm, and simply moving sets of parameters by hand, switching methods whenever it appeared that

one method had gotten “hung up.” This laborious process ended when were no longer able to find any further

improvement in the likelihood using any method. At this point the in-sample fit of the model also appeared to be

quite reasonable, in the sense of capturing well many key features of the data. Our companion paper Keane and

Wolpin (forthcoming) provides much more detail on model fit.  

 To ensure that the measurement error is unbiased, the probability that the reported value is the true value
12

must be a linear function of the predicted sample proportion (see Appendix A for details). Obviously, measurement

error cannot be distinguished from the other model parameters in a non-parametric setting.  As in the model without

measurement error, identification relies on a combination of functional form and distributional assumptions, and

exclusionary restrictions. Keane and Sauer (2005) have applied this algorithm successfully with more general

classification error processes

7

simulated outcome histories fixed as the model parameters are varied, but to reweight them in an

appropriate way. 

Given an initial parameter vector  and an updated vector , the appropriate weight to

apply to sequence   is the ratio of the likelihood of simulated history n under  to that under

. Such weights have the form of importance sampling weights (i.e., the ratios of densities

under the target and source distributions), and are smooth functions of the model parameters.

Further, it is straightforward to simulate the likelihood of an artificial history  using

conventional methods because the state vector is fully observed at all points along the history.

The choice probabilities along a path  are simulated using a kernel smoothed frequence

simulator. As this construction renders  a smooth function of the model parameters,

standard errors can be obtained using the BHHH algorithm.   11

Lastly, it is necessary to describe our specific assumptions for the measurement error

processes. First, we assume that discrete outcomes are subject to classification error. The

structure we adopt is simply that there is some probability that the reported response category is

the truth and some probability that it is not.  Second, we assume that the continuous variables12

are also subject to normally distributed measurement error. In particular, we assume that these

errors are additive in the woman’s log wage offer equation and in the husband’s log income

equation, while we assume that the parental income error is additive in levels. All

measurement/classification errors are assumed to be serially independent and independent of

each other. More details are given in Appendix A of the main text.

Finally, we discuss one subtle issue that arises in forming the simulated likelihood

function using our algorithm. First, suppose that, according to simulated choice history , a

person’s true choice at age a was not working, or not married, or not living with parents. Yet, in



8

the data,  we observed that the person is working, or is married, or is living with parents. Our

method reconciles the two via classification error, and, for the discrete outcomes, the appropriate

likelihood contribution is trivial: it is simply the probability the person is observed to work, be

married or be living with parents, when in truth they are not. This probability is simply a function

of  the classification error rates constructed above. 

But a more subtle problem arises in a case where the simulated history says a person was

not working, or not married, or not living with parents, and, in the data, we not only observe a

different discrete outcome, but also observe a wage, or husband earnings or parent’s income.

What is the density of an observed wage conditional on the person not actually working? Here,

we make the simple assumption that such “falsely reported” continuous outcomes are drawn

from the same distribution as that which governs the “true” continuous outcomes, except for a

mean shift parameter that we estimate. We denote these mean shift parameters ê-w, ê-m, and ê-z

for the woman’s offer wage function, husband earnings function and parent’s income function

respectively. During estimation, ê-w never departed to any significant extent from zero, so we

eventually pegged it at zero and report only ê-m, and ê-z in Appendix Table A of the main text.
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Table A.1 

 Summary Statistics of Parameters of Benefits Rules by State: 1967-1990 (a,b) 
 

 b0 b1 b2 b3 b4
CA      

μ 454 134 503 .64 166 
σ   53     9   47 .15   12 

Min 332 108 393 .24 143 
Max 517 148 579 .89 286 

MI      
μ 498 155 553 .63 193 
σ   78   16 118 .11  19 

Min 389 130 391 .53 146 
Max 649 181 744 .92 221 

NY      
μ 430 144 472 .63 179 
σ  38  24  65 .13   32 

Min 374 117 384 .48 142 
Max 522 182 590 .92 234 

NC      
μ 393   86 423 .52 110 
σ   42  18   83 .11   20 

Min 332  48 295 .41  84 
Max 462 111 545 .82 148 

OH      
μ  371 118 415 .58 143 
σ   26   12   71 .10   23 

Min 337 100 308 .47            114 
Max 415 143 539 .88 183 

      
      

 
a. 1987 NY dollars 
b. Based on Monthly AFDC plus Food Stamp Benefits 



 
 

Table A.2 
 Evolutionary Rules for Benefit Parametersa 

 
 CA  MI 

 
 b b0t b1t b2t b3t b4t  0t b1t b2t b3t b4t 

 
 

b0,t-1 .834 
(.104) 

.051 
(.032) 

- 
 

-.00039 
(.0006) 

- 
 

 -.120 
(.280) 

-.086 
(.050) 

-.547 
(.286) 

- - 
 
 

 

b1,t-1 .840 
(.590) 

.227 
(.185) 

- 
 

-.00047 
(.0034) 

- 
 

 .446 
(.903) 

.774 
(.164) 

-.524 
(.924) 

- - 
 
 

 

b2,t-1 -.322 
(.130) 

.041 
(.040) 

.640 
(.128) 

-.00040 
(.0007) 

- 
 

 .514 
(.203) 

.078 
(.036) 

1.04 
(.207) 

- - 
 
 

 

b3,t-1 59.4 
(19.4) 

9.52 
(6.12) 

- 
 

.673 
(.114) 

- 
 

 166.9 
(67.6) 

27.4 
(12.3) 

60.5 
(69.1) 

.614 
(.117) 

- 
 
 

 

b4,t-1 .496 
(.404) 

-.236 
(.133) 

- 
 

.00601 
(.002) 

.469 
(.152) 

 .468 
(.870) 

-.070 
(.163) 

1.71 
(.896) 

- .800 
(.101) 

 

 

Constant 83.3 
(55.3) 

105.5 
(18.4) 

178.7 
(64.8) 

-.749 
(.317) 

87.6 
25.4) 

 216.2 
(124.8) 

65.6 
(23.9) 

28.6 
(129.3) 

-.233 
(.075) 

38.1 
(19.6) 

 

 

R2 .88 .53 .48 .60 .23  .89 .84 .94 .50 .74  

P. Value 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.01 0.00  

Mean 454 134 503 .64 166  498 155 553 .63 193  

RMSE 17.1 5.9 33.5 .087 10.3  25.9 6.2 28.5 .065 10.0  

 
 
 



 
                                                                                                    Table A.2, continued 

 
                                   NY  NC 

 
 

 b0t b1t b2t b3t b4t  b0t b1t b2t b3t b4t 

 

 

 

 b0,t-1 .851 
(.065) 

- - - -  1.72 
(.134) 

.236 
(.064) 

2.18 
(.328) 

-.00249 
(.0007) 

.533 
(.137) 

 

 

b1,t-1 - .891 
(.031) 

- - -  -2.59 
(.449) 

.267 
(.216) 

-5.85 
(1.10) 

.00230 
(.0026) 

-.829 
(.462) 

 

 

b2,t-1 - - .856 
(.072) 

- -  -.446 
(.090) 

-.079 
(.043) 

-.619 
(.221) 

.00090 
(.0005) 

 

-.203 
(.092) 

 

b3,t-1 - - - .665 
(.105) 

-  201.0 
(25.6) 

77.3 
(12.3) 

144.1 
(62.9) 

.360 
(.149) 

86.7 
(26.4) 

 

 

b4,t-1 - - - - .860 
(.041) 

 1.38 
(.381) 

.287 
(.183) 

3.27 
(.934) 

-.00055 
(.002) 

1.07 
(.392) 

 

 

      Constant 64.7 
(28.6) 

13.1 
(4.70) 

63.3 
(35.2) 

-.202 
(.068) 

22.1 
(7.75) 

 77.1 
(27.1) 

14.1 
(13.1) 

37.1 
66.6) 

.141 
(.158) 

-14.3 
(27.9) 

 

 

                R2 .61 .92 .73 .54 .91  .97 .95 .95 .75 .86  

     P. Value 0.00 0.00 0.00 0.01 0.00  0.00 0.00 0.00 0.00 0.00  

Mean 430 144 472 .63 179  393 86 423 .52 110  

 RMSE 22.9 6.4 33.3 .074 8.7  7.3 3.5 17.8 .042 7.5  

 
 
 



                                                                                                  Table A.2, continued 
 

OH   
 b0t b1t b2t b3t B4t 

 

       

b0,t-1 -.623 
(.218) 

.019 
(.069) 

-.045 
(.312) 

- - 
 
 

       

b1,t-1 -.242 
(.805) 

.539 
(.256) 

-2.79 
(1.15) 

- - 
 
 

       

b2,t-1 -.022 
(.168) 

-.027 
(.053) 

.126 
(.241) 

- - 
 
 

       

b3,t-1 5.02 
(32.3) 

23.5 
(10.3) 

-144.6 
(46.2) 

.552 
(.116) 

- 
 

 

       

b4,t-1 1.19 
(.560) 

.230 
(.181) 

2.93 
(.801) 

- .904 
(.082) 

 

       

Constant 261.8 
(49.7) 

38.9 
(16.6) 

195.6 
(71.0) 

-.243 
(.069) 

12.5 
(12.0) 

 

       

R2 .79 .75 .94 .48 .84        

P. Value 0.00 0.00 0.00 0.00 0.00        

Mean 371 118 415 .58 143        

RMSE 11.4 5.7 16.0 .056   9.0        
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