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It has been long recognized that different people may use different strategies, or decision rules, 

when playing games or dealing with other complex decision problems. We provide a new 

Bayesian procedure for drawing inferences about the nature and number of decision rules that are 

present in a population of agents. We apply our procedure to analyze the actual behavior of 

subjects who are confronted with a difficult dynamic stochastic decision problem in a laboratory 

setting. Subjects were allowed to practice as much as they liked before playing the game for 

money, and our analysis of decision rules is based on the money round data. Using these data, 

our procedure classifies the subjects into three types, who we label as “Near Rational,” 

“Fatalist,” and “Confused” based on analysis of their decision rules. Lack of effort does not seem 

to explain the poor performance of the “Confused” subjects, since they devoted the most time to 

practice before playing the game for money. There is clear evidence of continuity in subject’s 

behavior between the practice and money rounds, as those types who performed best in practice 

also tended to perform best when playing for money. However, the agreement between practice 

and money play is far from perfect. The divergences appear to be well explained by a 

combination of type switching (due to learning and/or increased effort in money play) and errors 

in our probabilistic type assignments. 
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1.  Introduction 

How do people actually behave in contexts where optimal decision-making requires the solution 

of complex optimization problems? This question is of fundamental importance to economic 

analysis.  Predictions of individual and market behavior can differ dramatically between models 

where: (1) people are able to solve complex optimization problems, (2) people are “boundedly 

rational” and adopt “rule-of-thumb” behaviors, or (3) people are “confused” or “irrational” and 

adopt blatantly sub-optimal decision rules.2 Recognizing the importance of this issue, there have 

been a large number of experimental studies that analyze the behavior of people confronted with 

complex decision problems in laboratory settings. Early work in this literature tended to adopt an 

“either/or” approach, asking whether subjects make optimal decisions or not, or asking what 

fraction of subjects behave optimally.3 

More recently, a new literature has emerged in which investigators adopt a more 

exploratory approach. The goal is to discover what types of decision rules people actually use, 

rather than simply asking whether or not they adopt the optimal rule. Thus, behavioral 

heterogeneity becomes a key issue. The experimental literature has long recognized that different 

people may use different strategies, or decision rules, when playing games or dealing with other 

complex decision problems. Nevertheless, statistical procedures to determine the number and 

nature of strategies operative in a population have only recently emerged. The important paper 

by El-Gamal and Grether (1995) was an early contribution to this literature.  

Our work represents both a substantive and a methodological contribution to this 

emerging literature on “typing” experimental subjects. Methodologically, we provide a new 

Bayesian procedure for drawing inferences about both the nature and number of decision rules 

that are present in a population of subjects, where each subject is confronted with a dynamic 

decision problem. Our main identifying assumption is that the analyst must specify a priori the 

set of state variables that may enter agents’ decision rules. But, conditional on the set of 

admissible state variables, our procedure is quite flexible in terms of letting the data determine 

both the number and form of the rules (i.e., they are modeled as flexible polynomial functions).  

                                                 
2 There is an extensive theory literature that examines the effects of various “heuristic” decision rules on equilibrium 
outcomes (see, e.g., Cyert and Degroot (1974), Radner (1975), Akerlof and Yellen (1985), Haltiwanger and 
Waldman (1985), Ellison and Fudenberg (1993), Krusell and Smith (1995) and Lettau and Uhlig (1999)). 
3 For example, there is an extensive experimental literature on stopping behavior in search models (e.g., Braunstein 
and Schotter (1982), Cox and Oaxaca (1992), Harrison and Morgan (1990), Hey (1987)). A typical finding is that 
only a proper subset of subjects behaves optimally, but little effort is made to characterize suboptimal behavior.    
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In contrast to our procedure, the El-Gamal and Grether (1995) approach requires the 

investigator to specify a priori both the maximal number of decision rules that may be present in 

the population, and the exact form of each rule (including parameter values). They present a 

statistical procedure that chooses a “best” subset of rules from the superset of all candidate 

rules.4 In the experiment they analyze, the set of plausible rules is fairly obvious. But in many 

contexts the requirement that the investigator be able to intuit the exact form of all potential rules 

a priori is obviously quite strong. Our assumption that the analyst can pre-specify the set of 

candidate state variables is somewhat weaker, because the exact form of the rules is left flexible.5 

A number of other authors have also proposed methods for analysis of behavioral 

heterogeneity. These include McKelvey and Palfrey (1992), Stahl and Wilson (1995), El-Gamal 

and Palfrey (1995) and Camerer and Ho (1999). Like El-Gamal and Grether (1995), these 

approaches have in common that the set of possible subject behaviors must be pre-specified by 

researcher. Recently, Duffy and Engle-Warnick (2001) and Engle-Warnick (forthcoming), 

proposed a procedure which models decision rules as sequences of nested if- then conditions. 

This procedure is, in principle, more flexible. But it suffers from a curse of dimensionality that, 

as a practical matter, places severe restrictions on the number of decision rules that can be 

investigated. Engle-Warnick and Ruffle (2002) show that, after suitably constraining the space of 

possible decision rules, a statistical method patterned after El-Gamal and Grether (1995) can be 

adopted to draw inferences in this environment.  

Again, our approach is less restrictive regarding the possible nature of subject 

heterogeneity, since we only need to specify a priori the possible state variables subjects might 

consider, and not the exact forms of possible decision rules. However, our approach would 

become impractical in problems where the set of state variables is sufficiently large that the curse 

of dimensionality in polynomial approximation becomes a problem.  

In addition to the literature on subject “typing,” another recent literature also attempts to 

advance beyond the “either/or” quality of earlier experimental work by specifying and estimating 

                                                 
4 See Schachat and Walker (1997) and Houser and Winter (2002) for recent applications of this approach.  
5 Of course, the added flexibility our procedure comes at a cost: the loss of efficiency that comes from having to 
estimate the rule parameters rather than fixing them a priori. Thus, in many contexts it may be particularly 
efficacious to use our procedure and the El-Gamal and Grether procedure in concert. For instance, a preliminary 
application of our approach could determine the number and form of the candidate rules, and subsequent application 
of the El-Gamal and Grether approach might then provide a more efficient assignment among these candidate rules.  
Also, merging of the two approaches may be useful in contexts where certain rules are of particular interest (e.g., the 
optimal rule) and the investigator wants to test these against alternatives that are not specified a priori.   
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econometric models that may provide a better positive description of subjects’ behavior. Much of 

this work is based on the McKelvey and Palfrey (1995) “quantal response equilibrium” model, in 

which subjects’ best response functions or decision rules are subject to noise that can be 

interpreted as optimization error. Once subjects’ choice behavior is assumed to be subject to 

noise, a natural next step is to estimate subjects’ decision rules econometrically, including in the 

specification parameters that can capture various types of departure from “optimal” behavior (as      

defined by a particular normative model of play).6 This work is similar in spirit to ours. But our 

approach is different in its emphasis on subject heterogeneity (i.e., to our knowledge the work 

based on McKelvey and Palfrey (1995) has assumed homogenous subjects) and in that we place 

less a priori structure on the potential departures from “optimality.”   

Our substantive contribution is to apply our type classification algorithm to data on a 

sample of subjects who we confront with a particular dynamic stochastic optimization problem. 

Subjects chose between two discrete alternatives in each of 15 time periods. In each period, 

stochastic payoffs are generated for each alternative according to rules that are explained to the 

subjects prior to the experiment. The problem is inherently dynamic, because current choices 

affect the distributions of future payoffs, and the optimal choice between the two options 

changes over time in a complex way as new information is revealed. By design, the problem is 

difficult in the sense that the optimal decision rule can only be obtained numerically via dynamic 

programming. But subjects were allowed to practice the game before playing for money. 

We ran the experiment on 139 subjects, and our classification procedure produces a clear 

assignment of the population into only three distinct types. Statistical tests overwhelmingly reject 

the hypothesis that there are more, or that there are fewer. Furthermore, the subjects’ posterior 

type probabilities usually assign a high probability to just one type, so our algorithm’s prediction 

about a subject’s type is typically unambiguous.7 

Despite the difficulty of the game, more than one-third of the subjects adopted a decision 

rule that is very close to optimal. Payoff losses for subjects following this “near rational” rule 

(relative to what they could have earned by following the exactly optimal rule) averaged only 

about 2%. The other two types followed more clearly sub-optimal rules. By studying their fitted 

                                                 
6 For instance, Goeree, Holt and Palfrey (2000a) adopt this framework to analyze “overbidding” in private value 
auctions relative to Nash predictions, while Goeree, Holt and Palfrey (2000b) analyze departures from Nash 
equilibrium behavior in matching pennies games . 
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decision rules, we are able to provide fairly simple characterizations of the play of each type.   

The outline of this paper is as follows: In section 2 we describe the Bayesian algorithm 

for classifying decision rules in general terms. In section 3 we present our experimental design.  

In section 4 we show how decision rules in this particular experiment can be modeled using the  

general approach outlined in section 2. Section 5 presents results and section 6 concludes. 

 
2.  The Bayesian Classification Procedure  

Our Bayesian approach to type classification enables us to draw inferences about the 

number and nature of decision rules present in a population of subjects, as well as the probability 

with which each subject uses each rule. Conditional on an assumed set of relevant state variables, 

each decision rule is modeled as a flexible parametric function. The number of decision rules 

operative in the population is determined using Bayesian decision theory (see Geweke (1997) for 

a recent exposition), which requires calculation of the marginal likelihood. For ease of exposition 

we will restrict attention to the class of discrete choice Markov decision processes (in discrete 

time), although in principle our approach has more general application. 8 Rust (1994) provides an 

excellent survey on structural approaches to inference for Markov decision processes.   

We start by considering the optimal decision rule in a dynamic stochastic discrete choice 

problem. Applying Bellman’s (1957) principle, the value to subject n of choosing alternative j 

from the discrete set {1, …, J} in round t of a T period game can be written: 

 
(1) Vnjt(Int) = wnjt  +  EV(In,t+1 | Int , j)  t=1, …,T 
 
where In, t+1 = H(Int , j). Here wnjt is the current period payoff, meaning the monetary reward won 

by the subject in round t of the game, given choice j. Int is the state of the subject in round t (i.e., 

the subject’s information set). This might include, for example, the subject’s choice and payoff 

history. EV(In,t+1 | Int , j) is the “future component” of the value function which captures the 

expected value of the subject’s state next round given his/her current state and choice,9 and H(⋅) 

is the (possibly stochastic) Markovian law of motion for the state variables. 

                                                                                                                                                             
7 This should not be confused with a statement that our type assignments are usually correct. In section 5.4 we 
present an extensive evaluation of the accuracy of our type assignments.       
8 For instance, Houser (2002) applies this approach to a model with mixed discrete/continuous choice variables.  
9 Notice we do not include a discount factor. In most experimental settings all payoffs are received at the same time 
(at the end of the game), so there is no discounting, or the time between rounds is trivial, so discounting is irrelevant. 



 5 

 If subjects form expectations rationally, and know H(⋅), then E in equation (1) is the 

mathematical expectation operator, and the EV(In,t+1 | Int , j) at all state points can be solved for 

(possibly numerically) via dynamic programming.  The optimal decision rule is: 

 
Chose alternative j iff Vnjt(Int) > Vnkt(Int) for all k ≠ j. 
 

We assume payoffs are drawn from an absolutely continuous distribution to rule out ties.  

We wish to generalize this framework by allowing for the possibility that subjects do not 

use the optimal decision rule, and for the possibility that there is heterogeneity in the decision 

rules that exist in a population of subjects.     

Thus, rather than assume E is the mathematical expectation operator, we model the future 

component of each alternative’s value as a flexible parametric function (i.e., polynomial) in the 

elements of the subject’s information set Int and choice j. This follows the suggestion of Geweke 

and Keane (1999a, 2001). We also allow for the parameters of this function to differ across 

subjects of different type, denoted by k. And finally, we allow for the possibility of optimization 

error. Then, we can write the future component for type k as: 

 
(2)  EV(In,t+1 | Int , j) = F(Int, j | πk) + ςnjt   k=1, …, K. 
 
Here F(⋅) denotes the future component polynomial, and πk denotes a finite vector of type 

specific parameters. The random variable ςnjt accounts for idiosyncratic errors made when 

attempting to implement decision rule k. 

We allow the distribution of the idiosyncratic errors to vary by type, so that optimization 

error may be more important for some types than others. Let σk denote the standard deviation of 

the optimization error for type k. The assumption that optimization error may be present when 

implementing decision rules underlies much of the recent work in experimental economics that 

attempts to develop positive models of subject behavior (see, e.g., Goeree and Holt (1999)).    

From (1) and (2), the value that subject n, who is type k, assigns to choice j in round t , is: 

 
(3) Vnjt(Int | k) = wnjt  +  F(Int, j | πk) + ςnjt      
 
Denoting the deterministic part of the valuation function by ( | ) ( , | )njt nt njt nt kV I k w F I j π≡ + , we 

have that the probability that option j is chosen is increasing in njtV . Letting optimization error 
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take the form of noise appended to the njtV function is attractive, because it implies that the 

probability of a “mistake” in implementing the decision rule is small in situations where one 

alternative is clearly dominant in terms of its njtV . This seems intuitive.10 

Specification (3) is quite flexible and can nest or approximately nest (i.e., via the 

Weierstrass approximation theorem) many special cases of interest.  For example, if F is 

sufficiently flexible, and the πk are chosen so that F(Int, j | πk) ≈ EV(In,t+1  | Int , j), and we set σk ≈ 

0, we can obtain a good approximation to the “optimal” value function. In fact, many authors 

have found that value functions in problems of interest to economists can be approximated very 

accurately using low order polynomials (see, e.g., Keane and Wolpin (1994), Krusell and Smith 

(1995), Geweke and Keane (1999a, 2001)). This is a key motivation for our approach.  

Some other leading cases are also worth noting: Equation (3) nests myopic behavior if the 

πk are set equal to zero and σk = 0. And it generates purely random behavior, in which each 

option is chosen with equal probability, if the πk are set equal to zero and σk is sent to infinity. 

Specification (3) does not require that subjects understand what state variables are 

relevant in forecasting the value of future states. We have not made this explicit to conserve on 

notation, but we could easily allow for the possibility that the subjects consider superfluous 

information when making decisions, and denote the expanded information set by I+
nt. Also, (3) 

may appear to impose additive separability, but this can be relaxed by including current and past 

payoffs and choices, and interactions between them and other state variables, as elements of Int or 

I+
nt. And non-stationarity can be accommodated if the index for round t is an element of Int. 

Now consider the problem of statistical inference in this framework. Let dnt∈{1, …, J} 

denote the choice made by subject n in round t. Assume the investigator observes the set of 

choices and payoffs for each of the N subjects, {{{ dnt , {wnjt}j=1, …, J}t=1, …, T}n=1, …, N}. The goal 

to draw inferences about: (1) the order of the F polynomial and the set of state variables that 

enter the polynomial, (2) the number of decision rule types K that are present in the population of 

subjects, (3) the vector of parameters πk, σk for each type k=1,…, K, (4) the population 

                                                 
10  One must allow for optimization error in a model where K is less than the number of subjects, and payoffs are 
fully observed. Otherwise, the likelihood will equal zero for any subject whose behavior is not exactly explained by 
one of the K rules, leading to a degenerate model. El-Gamal and Grether (1995) dealt with this problem by 
introducing a fixed probability that a subject makes the “wrong” choice, given his/her decision rule. This has the 
implication that “wrong” choices are equally likely when “true” values of alternatives are close or far apart.             
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proportions of each type, which we denote by θk, and (5) the posterior probability ( )np k  that 

each subject is each type, conditional on his/her observed history of decisions and payoffs. 

 Consider first the simpler problem of drawing inferences about the parameters {πk, σk, θk} 

for k=1,…, K, given a particular choice for K, the order of F, and the set of state variables that 

determine F, as well as a distributional assumption on the optimization errors ςnjt. Even this 

represents a fairly difficult inferential problem because we have a discrete choice model in which 

the type of each subject is a latent variable. However, recently developed simulation methods 

have made such models quite tractable (see, e.g., Geweke and Keane (2001) for a discussion). In 

section IV.D we describe a Gibbs sampling algorithm for Bayesian inference in this model. 

 Now consider the problem of drawing inferences about the number of types K and the 

order of the F polynomial, which we denote P. Given that we can implement a model with given 

(K, P), the standard approach of Bayesian decision theory is to implement a range of models with 

different K and P, and use the marginal likelihood to choose among them. Intuitively, a marginal 

likelihood is a likelihood-based measure of model fit that penalizes models for proliferation of 

parameters. In any discrete choice problem, calculation of the marginal likelihood represents a 

very high dimensional integration problem, and this problem is compounded by the presence of 

latent types. Again, recently developed simulation methods make this problem tractable. We 

describe our algorithm for calculating marginal likelihoods in Appendix A. 11 

 It is straightforward to use marginal likelihood comparisons to choose the number of 

types K and the order P of the F polynomial. Simply increase K and/or P until the marginal 

likelihood begins to deteriorate, and stop there. But the use of the marginal likelihood to 

determine the set of state variables that agents consider when making decisions is not so 

mechanical. We can, of course, construct marginal likelihoods for models with and without 

certain extraneous state variables that agents might consider. But, ultimately, we can never know 

if we have failed to try some extraneous state variable that agents do in fact use. Of course, it is 

impossible to learn anything without some identifying assumptions. We would argue that any 

attempt to learn about decision rules will require some a priori narrowing of the set of potential 

state variables that subjects might consider.  

                                                 
11 In contrast to our approach of using the marginal likelihood to choose among competing models, El-Gamal and 
Grether put a proper prior on the number of types, and then choose the number of types to maximize the posterior 
density of the model. Their prior explicitly favors models with fewer types.      
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 Our approach also requires the investigator to make a distributional assumption on the 

optimization errors ςnjt. However, in principle it would be straightforward to generalize normality 

by considering mixture-of-normals probit models, as in Geweke and Keane (1999b, 2001). Then, 

marginal likelihood comparisons could be used to choose the order of the mixture. This approach 

can parsimoniously capture a wide range of departures from normality. 

 In the next section we describe the specific experiment that we analyze, and in section 4 

we detail how the general framework described here can be applied to that specific problem.  

 
3.  Experimental Design 

 We wished to design a dynamic decision problem with the following features:   

1) It should be difficult to solve. The main point of our analysis is to examine how people 

behave when facing a decision problem that is too difficult for anyone to solve exactly.   

2) We nevertheless wanted a problem whose structure was easy to explain to the subjects. 

3) We felt it was desirable to have a problem whose structure was in fundamental ways 

similar to dynamic decision problems that people actually confront in real world 

situations, particularly situations that economists are actually interested in.    

4) We wanted to design a problem where there was some noticeable advantage to playing 

near-optimally, so that sub-optimal behavior would be easy to detect statistically. 

5) We needed a game that could be played quickly, so that subjects would be willing to 

participate, so that we could collect a reasonably large amount of data, and so that 

subjects would be able to practice. This also prevents subjects from getting bored.  

We settled on a stochastic sequential discrete choice problem with features similar to a human 

capital investment or occupational choice problem. Each subject makes 15 sequential decisions. 

The problem is dynamic because early decisions influence the distributions of payoffs for later 

decisions. Period payoffs are stochastic, and the optimal decision rule, which can only be 

constructed numerically, is a function of the payoff draws. We set up the problem so that 

alternative “1” can be thought of as similar to “school” or “white collar” work, in that this option 

tends to have low initial payoffs that increase later if the subject builds up sufficient experience 

in “1.” Option “2” has a higher mean payoff, but does not have any such “investment” 

component. It is important to stress however, that no such interpretation was provided to the 

subjects, who were simply told the mathematical form of the payoff function in each alternative. 
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  A transcript of the written instructions given to subjects is provided in Appendix B. A 

precise description of the game is as follows: At the start of each of the 15 rounds, the subjects 

receive a draw for the payoffs in alternatives “1” and “2.” The stochastic payoff to “2” is 4000 

points plus the realization of a uniform random variable on the interval [-5000, 5000], subject to 

the restriction that the payoff be non-negative. The payoff draws for round t are seen before the 

decision at t is made, but the payoff draws for period t+1 are realized only after the decision at t.  

 The payoff to alternative “1” was 3000 points plus the realization of a uniform random 

variable on the interval [-5000, 5000], plus a “bonus” and a “cost” whose values depended on the 

history of the subject’s choices. The bonus was 7500 points, and was added if the subject had 

chosen alternative “1” at least six, and no more than nine, previous times (not necessarily in 

succession). A “switching” cost of 5000 points was subtracted from the alternative “1” payoff if 

the subject had chosen “2” on the previous round. The subject’s total payoff for the decision 

problem was the sum of the rewards they earned over the 15 rounds. 

 This game has, at least to some degree, all five desiderata listed above. First, it is a 

sophisticated dynamic investment problem that is nevertheless straightforward to describe. It is 

quite difficult to solve for the expected wealth maximizing strategy, which requires solving a 

dynamic programming problem numerically. The design also generates a non-negligible 

incentive for forward- looking behavior. The optimal solution earns about 25% more, on average, 

than the myopic strategy that simply chooses the highest payoff each period. Finally, the game 

only takes about 45 seconds to a minute to play, allowing ample opportunity for practice.    

This game was coded in Visual Basic and subjects made decisions independently at a 

private computer terminal. Each subject’s screen provides information on the current payoffs to 

both alternatives, the current round, the history of the subject’s prior choices and payoffs, the 

subject’s current aggregate earnings, and a summary of the decision problem’s payoff structure.   

We report on results obtained from 139 subjects who participated in this experiment, 

which was conducted at the Economic Science Laboratory (ESL) at the University of Arizona. 

Subjects were recruited from the general student population using ESL’s standard procedures. In 

an effort to ensure subjects were familiar with the task when they played for money, subjects 

were recruited for two laboratory sessions. On arrival for the first session they were provided 

with the written instructions in Appendix B and seated privately at a computer terminal. They 

were allowed to practice as many times as they liked, but did not play for money.     



 10 

The second lab session was held two days after the first. Upon arrival, subjects were 

again provided with the written instructions and told that they could again practice for as long as 

they liked. When they were ready, subjects solved the decision problem one time for money.  

During money play, we imposed a 15 second forced delay between moves, in order to discourage 

thoughtless play. In hindsight, since the typical subject voluntarily devoted a large amount of 

time to practice (i.e., the median number of practice rounds was 66), this concern seems to have 

been largely unwarranted. Subjects earned $8.23 on average. Subjects also received two five-

dollar show-up fees, and spent about 75 minutes on average in the lab (in total). 

 

4.  Empirical Specification 

In this section we first describe how we apply the general procedure outlined in section II to 

model the decision rules used by the subjects in our experiment. We describe the likelihood 

function, priors, and posterior distribution of the model parameters on which our inferences are 

based, and describe the Gibbs sampling algorithm that we use to sample from the posterior. 

 
4.1.  The Functional Forms for the Decision Rules   

In our experiment, the current payoffs wnjt are simply the known immediate rewards that 

subject n draws for alternatives j ∈ {1, 2} in round t. The rewards are drawn from a distribution 

that depends on the subject’s state. The relevant state variables for forecasting values of future 

states are the number of times a person has chosen each alternative, which we denote by 1n tX  and 

2n tX  for alternatives “1” and “2,” respectively, the time remaining until the last period (since it is 

a finite horizon problem), and an indicator for whether the current choice is “1” or “2.” The 

current choice matters for future payoffs because of the cost of a transition from “2” to “1.” The 

prior “experience” in “1” and “2,” as well as the time left in the game, matter because of that fact 

that the mean payoff in “1” jumps substantially when one reaches 6 periods of experience in “1.”  

This “bonus phase” only lasts until the person chooses “1” four additional times, and optimal 

play implies trying to get through this bonus phase before the end of the game. 

Current payoffs are also elements of the information set Int, but they are not useful for 

forecasting future payoffs, since the stochastic components of payoffs are iid over time in our 

experiment. Thus, the “rational expectations” (RE) future component EV(In,t+1 | Int , j) does not 

vary over state points (Int , j) that only differ in terms of the realizations of the wnjt. A polynomial 
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approximation to RE future component would not depend on current and/or lagged wnjt. 

Nevertheless, it is interesting to examine whether “superfluous” state variables like these help to 

explain subject behavior. We tried including current/lagged payoffs and interactions of current 

with lagged choices in the future component polynomial to investigate whether some subjects 

might use this information erroneously. But this did not lead to significant improvements in 

model fit. Thus, we will only report on specifications in which the future component is a 

polynomial in state variables that are relevant for forecasting future payoffs. 

To anticipate our results, our Bayesian model selection procedure selects a third order 

polynomial in the state variables as the preferred specification for the future component. Then,  

since the law of motion for the state variables is H(X1, X2, j) = (X1+1(j=1), X2+1(j=2),  j), the  

future component F for subjects of type k takes the form (suppressing the subscript k on the πk): 
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Note that the round t is linearly dependent on Xn1t and Xn2t, so we omit it from the polynomial.   

Since choices depend only on the relative values of “1” and “2,” the future component is not  

identified in levels. Thus, our analysis is based on the differenced future component:  
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where the *
iπ are linear functions of the iπ . The polynomials used here are a subset of those that 

appear in the differenced future component, but this set spans the same space.   
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 The decision rule for subject n of type k in round t can be written: 

 
 Choose “1” iff   Znt(Int|k) ≡ Vn1t(Int|k) - Vn2t(Int|k) 
 

               = wn1t – wn2t + f (Xn1t , Xn2t | πk
* ) + ηnt > 0 

 
It is therefore intuitive to think of  f(Xn1t , Xn2t | πk

* ) as a reservation payoff differential.  This is 

the amount by which 2n tw  must exceed 1n tw  in order for the subject to chose “2” over “1” 

(subject to the added noise induced by the mean zero optimization error ηnt ≡ ςn1t - ςn2t). 

In our game, the optimal value of the reservation payoff differential varies in a complex 

way with the state variables Xn1t and Xn2t, making it difficult to play the game optimally. Our 

algorithm will allow us to infer the reservation payoff differential function used by each type k. 

We can then compare these to the optimal f in order to characterize the manner in which play of 

each type of subject deviates from optimality.  

 
4.2.  The Likelihood Function, Priors, and Joint Posterior Distribution of Parameters 

Recall that dnt denotes the round t choice of subject n. Let τn∈{1, …, K} indicate subject 

n’s type. If subject n uses decision rule k  (i.e., τn = k) and has information ntI , then ntd  satisfies:  

"1" if ( | ) 0
"2" otherwise

nt nt
nt

Z I k
d

>
= 


  

The investigator observes a sequence of current payoff realizations wnjt for j=1,2, t=1, …, T and 

choices dnt for t=1, …, T for each subject n. Choices depend on the value function differences 

Znt, and the inferential problem is complicated by the fact that these, as well as the subject types 

τn, are unobserved. We assume 2~ (0, )nt kIIDNη σ  for type k. Thus, our model is formally a 

mixture of probit models, in which an additive part of the latent index, w1nt – w2nt, is observed.  

This sets the scale for the πk and σk parameters, so both are identified.   

The probability that subject n of type k  chooses alternative one in round t is:   
 

*
1 2 1 2 1 2( 1 | ) ( ( | ) ( | )) ( ( , | ) 0)nt n t nt n t nt n t n t n t n t k ntd k V I k V I k w w f X X π η= = > = − + + >P P P  

 
We define P  (dnt|k) = I(dnt=1|k)⋅ P  (dnt=1|k) + I(dnt=2|k)⋅ [1-P  (dnt=1|k)].  Then, if all  

subjects’ types were known, the likelihood function for the observed data would be simply: 
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1( = )* 2
1, 1,[{{ } } | ( , ) ] ( | ) .n k

nt t T n N k k k K nt
n k t

d d k τπ σ −
= = ∈ = ∏∏∏L P  

 
However, since we do not know subjects’ types, we must form a likelihood function based on 

unconditional choice probabilities P  (dnt) = ∑k θk P  (dnt|k), where kθ  is the probability that a 

person chosen at random from the population follows decision rule .k  This gives: 

 

* 2
1, 1,[{{ } } | ( , , ) ] ( | )nt t T n N k k k k K k nt

kn t

d d kπ σ θ θ−
= = ∈

  
=   

  
∑∏ ∏L P  

 
Maximum likelihood (ML) estimation is problematic for two reasons. First, ML estimation of 

mixture models is notoriously difficult due to problems with local maxima of the likelihood 

function. Second, testing for the number of types is quite difficult in a classical framework. 

Thus, we use a Bayesian Markov Chain–Monte Carlo (MCMC) algorithm to generate 

inferences about the model parameters {θk, πk
*, σk

-2}k=1,K. The particular MCMC algorithm we 

employ is the Gibbs sampler. This provides draws from the joint posterior distribution of the 

model parameters conditional on the data. Since these draws are obtained without the need to 

maximize the likelihood function, the Gibbs sampler is much less sensitive to problems created 

by ill behaved likelihood surfaces (e.g., local maxima) than is ML (see Geweke, Houser and 

Keane (2001) for a Monte-Carlo experiment that illustrates this point).      

Inference via the Gibbs sampler starts with the specification of the complete data 

likelihood function, which is the hypothetical likelihood one could form if the latent indices Znt  

and the latent types τn were observed. In our model, given a particular K and P, this is: 
 

(4) 

* 2
1,... , 1, 1,
1,...,

' * 2
1 2

2
1, : 1,

({ } ,{ } |{ , , } )

( ( ))1
exp ( , ) .

2
n

nt n N n n N k k k k K
t T

nt n t n t nt k
k nt nt

k K n k t T k k

Z

Z w w Y
I Z d

τ

τ θ π σ

π
θ

σ σ

−
= = =
=

= = =

∝

  − − +
−  

  
∏ ∏ ∏

L

 

where '
ntY denotes the vector of state variables conformable with *

kπ , given P.  The indicator 

function ( , )nt ntI Z d =1 if ntZ >0 and 1,ntd =  or if 0 and 2,nt ntZ d< =  but is zero otherwise. 

The model is closed by specification of prior distributions for the model’s parameters.  

We assume proper priors of a standard conjugate form for all parameters.  These are as follows: 
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(5) 

2

2 2

2 2 2 2 2
1 2

|| ||

~ (0, ), where  is a 6 x 6 diagonal matrix with entries (1,1) 20,000 ,

(2,2) (3,3) 1,000 , (4,4) (5,5) 100  and (6,6) 100,000.

~ (1),

{ } ~ ({2.0} ).

k

k K

k k K K

N

Di

π

σ χ σ σ σ

θ

−

∈

Σ Σ Σ =

Σ = Σ = Σ = Σ = Σ =

> > ⋅ ⋅ ⋅ >
 

 
where Di is the Dirichlet distribution, or multivariate Beta.  

By Bayes theorem, the joint posterior of the model parameters, the latent indices Znt and 

the latent indicators τn is simply proportional to the complete data likelihood times the prior 

densities p(πk
*

 ), p(σk
-2), and p(θk). Since we have proper priors and a bounded likelihood 

function, the joint posterior exists. This is a necessary condition for convergence in distribution 

of the Gibbs sampler draw sequence to the appropriate joint posterior.    

 A number of aspects of the prior specification are worth commenting upon. First, note 

that setting the prior mean for the πk
* vector at zero means that our prior is centered on myopia.  

When πk
* = 0 subjects only consider current payoffs. The issues involved in choosing Σ  

illustrate why it is not possible to have “uninformative” priors. If the priors on the πk
* were very 

flat (i.e., if the elements of Σ  were very large), it would imply little prior mass in the vicinity of 

πk
* = 0. Thus, although the prior would be centered on myopia, it would say there is little prior 

mass on the myopic decision rule. Thus, the choice of Σ  must be considered rather carefully. 

Regarding the choice of Σ (1,1), note that πk0
* is the f(Xn1t , Xn2t | πk ) function intercept, 

and is therefore the reservation payoff differential in round 1. Under the optimal decision rule, 

this is 3733 points (i.e., 37 cents). We specify a prior mean of 0 and a prior standard deviation of 

20,000 for πk0
*. Thus, our prior is rather diffuse, but still leaves non-negligible mass in the 

vicinity of the interesting special cases of myopic and optimal play.  

 Second, we have a strong prior that higher order polynomial coefficients should be 

relatively smaller in magnitude, simply due to scale (i.e., they multiply variables that tend to be 

larger in magnitude). A prior with equal diagonal elements for Σ  would place most prior mass 

on models where the higher order terms in the state variables dominate decisions, which is not 

plausible. For this reason, we put successively tighter priors on the higher order terms (e.g., prior 

standard deviations of 1000 on the linear X terms, 100 on the X2 terms, etc.). 

In our empirical results below, we find that the posterior mean for each of the πk
* 

parameters is within one prior standard deviation of our prior mean. We also find that in every 
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instance the posterior standard deviation is about 8 to 200 times smaller than our prior standard 

deviation. Together, these results suggest that the data is very informative about all the πk
* 

parameters, and that in no instance was the prior “too tight” to “let the data speak.” We also 

report below on the sensitivity of our inferences to both reducing and increasing the prior 

standard deviations on all the πk
* parameters by 50%, and find little effect. 

Third, consider the prior on the optimization error variance, σk
2. The ordering restriction 

on the type specific variances is simply an identifying restriction that prevents interchanging the 

components of the mixture. There are several such restrictions that can work fo r this purpose (see 

Geweke and Keane (2001) for a discussion).   

The prior mean and standard deviation for σk
2 are undefined under the 1/χ2(1) prior. But 

we can consider quantiles of the σk
2 distribution. Our prior puts 95% of the mass on models 

where the optimization error standard deviation is less than roughly 16 experimental points. This 

is quite small relative to the magnitudes of payoffs. We did this to favor models where the state 

variables largely explain behavior, as opposed to letting behavior be largely random. But the 

prior density has a very fat right tail, so models with large optimization errors are still given non-

negligible prior mass. The prior is also quite weak. As we’ll see in section IV.C., it has an impact 

on inference equivalent to adding a single observation with a squared error term equal to one. 

We also report below on the sensitivity of our inferences to scaling up the σk
2 prior to 

20,000/χ2(1), which increases the 95th percentile point to roughly 2250 experimental points.  

This corresponds to roughly the highest level of optimization error we found in any of the type 

specific decision rules. We find little effect of this change in prior on our inferences.     

 Fourth, the Dirichlet prior is centered on equal type proportions (i.e., 1/K each) but it is 

sufficiently diffuse that models with very unequal proportions will have substantial prior mass. 

For example, with three types, the prior standard deviation on the type proportions is 18 percent. 

 
4.3.  The Gibbs Sampling Algorithm  

We now describe the Gibbs sampling algorithm that we use to approximate the marginal 

posteriors of the model’s parameters.12 The product of the complete data likelihood (4) and the 

set of prior densities implied by the prior structure in (5) define the joint posterior used to 

construct the Gibbs sampler. The sampler includes the following five steps: 
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1) Draw latent utility values .ntZ  

2) Draw decision rule coefficients *
kπ  for all 1, .k K=  

3) Draw variance of optimization error 2 , 1, .k k Kσ =  

4) Draw population type probabilities , 1, .k k Kθ =  

5) Draw individual types , 1, .n n Nτ =  

These draws are implemented as follows: 

1)  Znt Step: Conditional on everything else being known, (4) implies that ntZ  is a truncated 

N[ ' *
1 2( )n t n t nt kw w Y π− + , 2

kσ ], with truncation from below at zero if 1,ntd =  and from 

above at zero otherwise. We draw from this distribution using an inverse CDF procedure. 

2) πk
* Step: Conditional on everything else being known, the *

kπ  vectors can be drawn using 

rejection methods. Based on (4), the source distribution is N[ ' 1 '( )k k k kY Y Y W− , 1'2 )( −
kkk YYσ ]. 

Here, Yk denotes the stacked array of Ynt vectors for the type k subjects, and Wk is created 

by stacking the quantities Znt – wn1t + wn2t conformably. Take a candidate draw for *
kπ  

form this source distribution. Evaluate the kerne l of the normal prior density for *
kπ  at 

this draw, and call this u. Note that u∈(0,1). Obtain a draw U from a uniform [0,1] 

distribution. If U<u the draw for *
kπ  is accepted. Otherwise it is rejected. 

3) σk
2 Step: Conditional on everything else being known, equations(4) and (5) imply that: 

' * 2
1, 1 2
1, 2

2

1 ( ( )) ( )
~ ( 1),

t T nt n t n t nt k n
n N

k
k

Z w w Y I k
N T

π τ
χ

σ

=
=

+ − − + =
+

∑
 

where kN is the number subjects who are type .k  We draw from this distribution using 

standard software, and reject any draw that does not satisfy the ordering 2 2
1 ... .Kσ σ> >  

4) θk Step: The prior for θk is ({2} ),KDi  so the conditional posterior is 1,({2 } ).k k KDi N =+  We 

draw from this Dirichlet distribution using standard procedures. 

5) τn Step: Let ( )k nL  denote the likelihood contribution for subject n  given that he/she uses 

decision rule k and with everything else is known. Then, the distribution of nτ  is 

                                                                                                                                                             
12 Our FORTRAN 77 code, which makes extensive use of IMSL subroutines, is available on request. 
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'

1,

( )
Pr( ') .

( )
k

n
k

k K

n
k

n
τ

=

= =
∑
L

L
 

 
It is easy to draw from this distribution using standard software. 
 
Finally, we consider the choice of the number of types K and the polynomial order P.  

We consider models with several different va lues of K and P, and then use Bayesian decision 

theory to choose among the models. This requires construction of the marginal likelihood for  

each model. The procedure for constructing marginal likelihoods is described in Appendix A. 

      

5.  Empirical Results 

5.1.  A Basic Description of the Data  

We begin by simply comparing the average behavior of our 139 subjects to “optimal” 

behavior in the experiment. To do this, we construct choice histories for 139 hypothetical agents 

who face the exact same realizations for the random components of payoffs as did the human 

subjects.13 But our hypothetical agents play the exactly optimal decision rule - which we call the 

“rational expectations” (RE) decision rule.14 We will refer to these as “RE subjects.”  

  Figure 1 compares the fraction of actual and RE subjects who choose alternative “1” in 

each round of the game. In round 1, the median payoff for “2” is 1000 points higher than for “1.”  

Yet, quite interestingly, over 75% of actual subjects chose “1.” This implies that most subjects 

understand the investment component of option “1,” and realize that they should choose “1” 

unless “2” offers a substantial payoff premium. The fraction of RE subjects who choose “1” in 

round 1 is 79%, which is very close to the fraction of experimental subjects who chose “1.”      

Figure 1 also reveals an interesting non-stationarity in choice behavior in this game. The 

fraction choosing “1” if subjects play optimally should drop after round one, fall to a trough in 

round 3, rise (non-monotonically) to a peak in round 11, and then drop off rather sharply at the 

                                                 
13 Period payoffs depend on both the random draws and the past history of choices. So, of course, even though  
actual subjects and their RE counterparts face the same random draws, their alternative specific payoffs in a 
particular round may differ because they have different choice histories.   
14 To be precise, we construct the decision rule that would be used by rational, expected wealth maximizing agents. 
We ignore the possibility of risk aversion when constructing the optimal decision rule, because the payoffs at stake 
in the game are rather small. Note, however, that our inferential procedure does not impose risk neutrality on the 
estimated decision rules of the experimental subjects. Departures from risk neutrality would be captured by the π’s. 
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end.15 The aggregate choice frequencies of subjects in the experiment match this complex pattern 

implied by the optimal rule quite closely over the first six rounds. But from rounds seven to nine, 

actual subjects chose alternative “1” slightly more frequently than their RE counterparts.  And 

from round 11 onward, the choice frequencies diverge substantially. The actual subjects chose 

option “1” much less frequently than the RE subjects during the later rounds of the game.   

On average, RE subjects choose “1” 10.7 times during the game, compared to only 10.0 

times for actual subjects. While 94% of RE subjects complete the “bonus phase,” only 64% of 

actual subjects do so. The actual subjects earn 10.0% less than the RE subjects on average.       

But averages reveal little about the play of individual subjects, because there is 

substantial variation in play around the averages. For instance, while on average our subjects 

chose “1” less often than the RE subjects, 38 subjects chose “1” more often, and 44 chose “1” 

exactly as often. This is consistent with the notion of decision rule heterogeneity. 

   
5.2.  Model Selection and Evaluation of Fit 

Next, we use the Bayesian type classification procedure described in Section IV to learn 

about the nature and number of decision rules operative in the population. We implemented the 

our Gibbs sampling algorithm on models where the number of decision rule types K ranged from 

one through four, and in which the order P of the future component polynomial F ranged from 3 

through 5. Thus, the order of the differenced future component ranged from quadratic through 

quartic. Table 1 contains marginal likelihood comparisons among the 12 candidate models. The 

model with 3 types and a quadratic for the differenced future component is clearly preferred. 

In the bottom panel of Table 1 we check the sensitivity of our model selection to the 

choice of prior. We report marginal likelihood values under alternative priors in which: (1) the 

posterior standard deviations of the future component polynomial parameters πk
* are reduced or 

increased by 50%, and (2) the scale of the optimization errors is increased by a factor of 141 = 

(20000)1/2. The three-type model with a quadratic differenced future component is strongly 

preferred regardless of the prior specification. 

For the preferred model, our inferences are based on the final 5,000 cycles of an 8,000 

cycle Gibbs sampler run. Inspection of the draw sequence, as well as the split-sequence 

                                                 
15 The intuition for this pattern is as follows: Early in the game, when there is plenty of time left to accumulate the 
six choices of “1” needed to reach the bonus phase, the “urgency” for choosing “1” is not great.  But as the game 
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diagnostic suggested by Gelman (1996), convinced us that the Markov chain had converged by 

the 3,000th cycle. The draws from the last 5,000 cycles are used to estimate the posterior means 

and standard deviations of the model parameters. These are reported in Table 2. 

Table 2 reports on the parameters of each of the three decision rules, as well as the 

population type proportions. The table also reports our prior mean and standard deviation for 

each parameter. The posterior standard deviations are quite small relative to the prior standard 

deviations, indicating that the data is very informative about the parameters. Also the posterior 

means are all within a fraction of a prior standard deviation of the prior means. This suggests 

that the prior did not strongly influence the posterior for any parameter.   

 Of course, as is usually the case, the polynomial coefficients in the decision rules are 

difficult to interpret. Thus, we will leave the coefficients largely uncommented, and instead turn 

to simulations of behavior under the each of the three rules in order to understand their 

behavioral implications. But the intercept is an exception, since it has a clear interpretation as the 

reservation payoff differential in round 1 (when all state variables equal zero), and it is 3733 

under the “optimal” rule. In Table 2, the posterior mean for *
0kπ  is rather close to 3733 for all 

three types. Thus, it appears that all three types play nearly optimally in round 1. They all 

understand that there is an “investment” value to choosing “1” in the first round. 

           In order to characterize the behavior of each type, and to better assess the fit of the three- 

type model to the data, we assigned each subject to a type based on his/her highest posterior type 

probability. Recall that step 5 in the Gibbs sampling algorithm in Section IV.C is to draw a 

subject’s latent type. The fraction of draws in which a subject is assigned to a particular type is a 

simulation consistent estimator of the posterior probability that the subject is that type. 

The vast majority of subjects can be assigned to one type very clearly, because the 

highest posterior type probability is at least 90% for 86.3% of the subjects. This means that a 

subject’s choices in our experiment are usually highly informative about his/her type. In 

hindsight, this is not surprising. For example, if a subject consistently received good payoff 

draws for option “1,” it would be easy for him/her to make optimal choices, and his/her history 

would not be very revealing. But, since draws are iid and each subject must make 15 decisions, 

such a scenario is highly unlikely. Most subjects have to make at least a few “tough” choices 

                                                                                                                                                             
progresses, the urgency to choose option “1” t ends to increase, and the reservation payoff differential between “1” 
and “2” should grow, holding the number of times one has chosen “1” constant.   
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during the course of the game, so there is usually plenty of opportunity to reveal one’s type.   

Figure 2 assesses the fit of the three estimated decision rules to the actual play of the 

subjects who we classify as following each rule. To do this, we simulated the hypothetical 

decisions that each subject would have made under his/her assigned decision rule, given the 

realizations of the payoff draws that he/she actually experienced in each round. Figure 2 reports 

the fraction of actual and hypothetical subjects of each type who choose “1” in each round. The 

main features of each type’s play are well matched by the simulated choices. For example, type 

one subjects are extremely likely to choose option “1” in rounds 9 through 11 (over a 95% 

chance), while type 2 subjects only choose “1” about 80% of the time in those rounds. Our fitted 

decision rules capture this difference in behavior rather well. The type three subjects choose 

option “1” much less often during rounds 9 to 11 (i.e., about 70% in round 9 and only about 50% 

in rounds 10 to 11). The model captures this basic pattern, although it somewhat understates the 

degree of the difference (i.e., it predicts that types 3s would choose “1” about 60% of the time in 

rounds 10-11).  In general, the fit for type three is not quite as good as that for types one and two.       

The gray line in Figure 1 shows the fit of the three-type model to the aggregate choice 

frequencies. It shows the fraction of hypothetical subjects who choose alternative “1” in each 

round. The fit is reasonably good in all rounds, with the broad features of actual decisions, such 

as the peak that occurs in the ninth round, well matched by the model. The model captures the 

departure of actual play from RE play that occurs beginning in round 11 quite well.     

 
5.3.  Characterization of the Decision Rules  

In this section, we attempt to characterize the nature of decision rule used by each of the 

three types. Table 3 compares the play of the subjects we assign to each type along a number of 

dimensions. There is a clear ranking of the types in terms of how well they play the game. The 

subjects who we classify as type one do best. On average, they earn 87983 experimental points, 

or about $8.80. We simulate that hypothetical RE subjects, facing the exact same random draws, 

would earn about nine dollars on average. Thus, on average, type one subjects only lose about 21 

cents, or 2.3%, of what they could have earned by playing exactly optimally. In contrast, type 

two subjects lose 11.7% and type three subjects lose 18.6%. 

Next, to get a better sense of the behavior implied by each decision rule, we simulated the 

play of hypothetical subjects under each rule. In the first simulation all subjects use the first 
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decision rule, in the second simulation all subjects use the second decision rule, and so on. In 

each simulation we construct 139 hypothetical choice histories, setting the realizations of the 

random variables to the values that the subjects in the experiment actually experienced. In this 

way, each decision rule is confronted with a common set of draw sequences, so differences in 

choice behavior are due only to the differences in the rules. For comparison purposes, we also 

conducted a fourth simulation in which the hypothetical subjects use the RE rule, and a fifth in 

which the subjects are myopic (i.e., they chose the highest payoff alternative in each period).  

Figure 3 describes the results of this simulation exercise. It reports the fraction of 

hypothetical subjects of each type who choose “1” in each round. Note that rule one tracks the 

optimal RE rule quite closely. These two rules imply nearly identical behavior through the first 

eight rounds. In rounds 9 through 11 rule one generates a slightly higher probability of choosing 

“1” than does the RE rule, and in rounds 13 through 15 it generates a slightly lower probability, 

but these differences are fairly minor. 

 Rule two also tracks the RE rule quite closely through the first several rounds. But 

beginning at round nine it starts to generate a lower frequency of option “1.” This divergence 

becomes greater as the game progresses, and becomes quite dramatic in rounds 12 to 15. Over 

the last four rounds rule two generates a 20 to 35% lower frequency of option “1” than does the 

RE rule. It is interesting that both rules one and two capture the complex non-stationary pattern 

in choice behavior that is implied by the optimal rule, whereby the choice frequency for option 

“1” drops to a trough in round 3, and gradual rises to a peak later in the game. Rule one gets the 

timing of the peak exactly right (round 11), while rule two misses the peak slightly.      

 Rule three diverges in much more obvious ways from the RE rule. Interestingly, it does 

track the RE rule quite closely for the first three rounds. It generates a similar high frequency for 

option “1” in round one, and the sharp drop off to a trough in round 3. However, under rule 

three, the fraction choosing “1” does not recover later in the game. By the sixth round rule three 

finds only half of the subjects in alternative “1,” while the other rules lead about 75% of the 

subjects to make this choice. 

A critical point is that myopic play differs substantially from all three rules. Under the 

myopic rule, only 40% of subjects would choose option “1” in the first round, since it has a 

lower median payoff. But, as we’ve noted, all three types choose option “1” at close to the 

optimal frequency of 79% in the first round. Thus, all three types recognize that there is an 
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investment component to the choice of option “1.”  

The myopic rule generates a drop in choice frequency for option “1” over the first three 

rounds, just like the RE rule.16 But, unlike the RE rule, it does not generate the subsequent rise in 

the fraction choosing “1.” It is interesting that the type three rule also fails to generate this 

increase in the frequency of “1” after round three. Thus, it seems that type three subjects play 

close to optimally at the start of the game, but behave more myopically as the game progresses.17 

 A good way to gain greater insight into the behavioral implications of the different 

decision rules is to compare the features of the estimated future components graphically. An 

important aspect of our procedure is that, by providing estimates of the future component for 

each type, it allows the investigator to perform such a graphical comparison. 

Figure 4A graphs the reservation payoff differentials for each type at selected state 

points. Values are plotted for round one (when there is only one possible state point) and for 

round five (when there are four possible state points, Xn1t = 0, 1, 2, 3 or 4). In each case the 

vertical axis denotes the value of the reservation payoff differential. Larger values indicate that 

option “1” has a larger continuation value relative to option “2,” so a greater current payoff 

differential is needed to induce choice of “2.” The horizontal axis indicates Xn1t , which is the 

only state variable relevant for calculating the reservation payoff differential. The figure also 

graphs the reservation payoff differential under the RE rule for comparison purposes.  

   Consider first the type one subjects, who are described in the top panel of Figure 4A. The 

reservation payoff differential for type ones is about right in round one. In round five, their 

reservation payoff differential is declining in the stock of “experience” in option “1.” This 

pattern also holds under the RE rule. Also note that, holding the number of prior choices of “1” 

fixed at zero, the optimal (RE) reservation payoff differential grows from 3733 to about 6000 as 

we move from round one to round five. Intuitively, this occurs because, as rounds go by, time is 

growing short to accumulate the six choices of “1” needed to reach the bonus phase. So the 

urgency to choose option “1” is growing. The type one subjects appear to understand this very 

                                                 
16 This drop is driven by the current payoff structure. Since there is a transition cost for moving into “1” from “2,” 
but not vice versa, the median payoff for option “1” drops in round two (since some people chose “2” in round one). 
17 The astute reader may notice an apparent contradiction between the behavior of the type three subjects in Figure 3, 
compared to their behavior as described in Figure 2 and Table 3. Figure 3 implies that type threes choose “1” much 
less often than other types. But Table 3 indicates that type threes chose “1” more often than type twos. Figure 2 
indicates that type threes chose “1” particularly often in rounds 5-7. The explanation is that actual type three subjects 
were “lucky” in that they got statistically significantly better than average draws for “1” in rounds 5-7. This induced 
them to chose “1” very frequently in those rounds. We discuss this further in section 5.4. 
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well. They get the reservation payoff differential almost exactly right at state points X1 =1, …, 4 

in round 5. They appear to be a bit off at X1 =0, but this estimate is noisy due to limited data at 

that point (i.e., type ones rarely get to round five without choosing option “1” at least once). 

Figure 4B provides similar information for rounds 9 and 13. Again consider the type one 

subjects, who are described in the top panel. The close agreement between their fitted decision 

rule and the RE rule is again quite remarkable, with one important exception. If a subject is in 

round 9 and has chosen option “1” either 6, 7 or 8 prior times, then that subject is in the bonus 

phase of the game, in which the option “1” base payoff is raised 7500 points. Recall that the 

bonus phase lasts until the subject has chosen option “1” four more times – not necessarily 

consecutively. Thus, there is an option value to choosing option “2,” because it prolongs the 

bonus phase. As a result, the reservation payoff differential goes negative at this point according 

to the optimal (RE) rule. That is, one should actually demand a premium to choose option “1.”  

As we see in Figure 4B, the type one subjects do not understand this. They continue to set a 

small but positive reservation differential during the bonus phase.   

One might worry that the failure of the fitted decision rule to align well with the RE rule 

in period 9 at states X1=6, 7, 8 could stem from a failure of our polynomial approximation in this 

range. But inspection of the individual level data suggests that this is not the case. In fact, once 

the bonus phase is under way, no subject in our entire data set ever chooses option “2,” even 

when it is optimal to do so. Thus, the failure to understand the option value of “2” during the 

bonus phase is clearly a feature of the data, and our polynomial approximation to the future 

component accurately reflects it. [This finding illustrates the power of our approach. We would 

not have thought to look for this pattern in the data unless Figure 4B had pointed us toward it.]    

 Based on the evidence presented so far, we decided to label the type one subjects as 

“Near-Rational.” They use a decision rule that is nearly identical to that of hypothetical RE 

subjects, except during the bonus phase, when they fail to grasp the option value of “2.” But this 

failure only costs them about a 2.3% loss in earnings, on average, relative to what they could 

have earned by playing exactly optimally. Understanding the investment value of “1,” and how 

this varies over states, is much more important for overall success in this game, and the type one 

subjects grasp this feature of the game very well.     

Now consider the type two subjects, whose behavior is described in the middle panels of 

Figures 4A and 4B. Figure 4A indicates that these subjects value alternative “1” in about the 
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same way as RE subjects in the first round of the game. However, by round five it is apparent 

that their reservation payoff differentials differ from the RE values in both level and shape.  

While the RE future component assigns less value to option “1” as experience in “1” increases, 

type two subjects do exactly the opposite. 

    Based on this inversion in the shape of their future component, we decided to label the 

type two subjects “Fatalists.”  The reason is as follows: If type two subjects don’t choose option 

“1” many times in the early part of the game (say, because they happen to get a set of good 

payoff draws for option “2”), they reduce their reservation payoff differential for choosing “2” 

rather than increasing it. Thus, just when they should be increasing the urgency with which they 

attempt to choose “1,” they instead reduce it. This means, in effect, that if they don’t happen to 

choose “1” a few times early in the game, they start to “give up” on reaching the bonus phase.   

In contrast, suppose a type two happens to choose “1” a few times early in the game (say, 

because he/she happens to get some good payoff draws for option “1”). The optimal rule says to 

reduce the reservation payoff different ial, because, loosely speaking, you can now “relax” 

because you will almost surely get to the bonus phase before the end of the game even if you 

choose “2” the next few rounds. But a type two acts differently. He/she shows a greater urgency 

to chose “1” in this case. This means, in effect, that once the bonus phase appears to be easily 

“within reach,” type two subjects strive harder to reach it. 

 This behavioral pattern seems to be well described by “fatalism,” meaning that type two 

subjects assign too much significance to the luck of the draw in determining the outcome of the 

game. They fail to appreciate that by properly modifying the reservation payoff differential as 

the state evolves, one can almost guarantee that one will reach and complete the bonus phase 

before the end of the game (i.e., 94% of hypothetical RE subjects complete the bonus phase).     

 Finally, we turn to the type three subjects, whose behavior is described in the bottom 

panels of Figures 4A and 4B. As we have already noted, type three and RE subjects have about 

the same reservation payoff differential in first round. What is interesting is the difference that 

emerges in round five. The type threes let their reservation payoff differential for choosing “2” 

decline much too rapidly as they accumulate experience in “1.” Then, in round nine, their 

reservation payoff differential is much too small all states in which X1<6 (i.e., before the bonus 

round has started). It appears that type threes quickly become overconfident about reaching the 

bonus phase if they happen to choose “1” a few times early in the game. And then they seem to 
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largely forget about the investment value of option “1” by round nine. In light of this pattern, we 

decided to label the type three subjects “Confused.” Also consistent with this characterization is 

that σk is much larger for type threes than for the other types (see Table 2). 

 

5.4.  Addressing Some Common Concerns 

 We have heard four common concerns expressed regarding latent type classification 

algorithms in general, and our type assignments in particular. The first is a concern, arising out 

of work by Heckman and Singer (1984), that in mixture models the type specific parameters tend 

to be poorly estimated, and the number of types tends to be underestimated. To help dispel this 

concern, we present two small Monte-Carlo experiments, which suggest that our algorithm does 

do a good job of accurately uncovering the latent types that exist in a population. 

In the first experiment, we generated a hypothetical sample of 139 subjects, using the 

estimated decision rules and type proportions from Table 2. In the second experiment, we 

constructed an artificial sample of N=200 in which 5 decision rules are operative, and type 

proportions are 20% each. The 5 rules include the three rules from Table 2, along with two new 

rules. We added a myopic type, for whom the future component is zero, and a “future oriented” 

type. The latter have double the intercept of the “Near-Rational” future component, and the 

remaining *
kπ values set to zero. We ran the Gibbs sampler on each sample, using the same 

baseline prior as given in (5), and using P=3. The results are reported in Table 4. 

In Table 4, the marginal likelihood correctly chooses the three-type model on the three 

type data set, and the five type model on the five type data set, so there is no tendency to 

underestimate the number of types. The estimated decision rules for each type closely resemble 

the actual decision rules used to generate the data, but we do not report the large number of type 

specific polynomial parameters to conserve on space. Furthermore, the models assign subjects to 

types with a reasonably high degree of accuracy. In the three-type model, the Near-Rational 

subjects are assigned to the Near-Rational, Fatalist and Confused decision rules with posterior 

probabilities of .703, .293 and .004 on average. The comparable numbers for Fatalist subjects are 

.244, .690 and .066, and those for the Confused subjects are .046, .209 and .747. What drives the 

difference between our results and those of Heckman and Singer is that our experiment is 

structured to be much more informative about a subject’s type (i.e., we observe 15 choices for 

each subject while they consider only search durations). 
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A second common concern is that the draw sequence that a subject receives may 

somehow make him/her appear to be a particular type. For example, a person who was lucky 

enough to get all good draws for option “1” would never face a “tough” decision where the RE 

rule says “1” is optimal even though “2” has a considerably higher payoff. It would then be 

“easy” for this person to make optimal decisions. But this argument shows a misunderstanding of 

both our classification algorithm and the game. First of all, our algorithm would not clearly 

classify such a person as “Near-Rational.” Give such a history, the likelihood of this person’s 

draw sequence would be high under any type. Thus, our algorithm would conclude that the data 

is uninformative, and the person’s type classification would be ambiguous. Second, given the 

length of the game, such a scenario is highly unlikely. Since the game is 15 rounds, and payoff 

draws are i.i.d., almost every subject faces at least a few “tough decisions” where the RE rule 

implies the two alternatives have close to the same value, even though one may have a much 

better current payoff than the other.  

We can also examine directly whether the type of draws that subjects received tended to 

differ by type. In Table 5 we report the mean draws for option “1” and “2” among subjects who 

were classified as each of the three types. If, for example, the “Near-Rational” types tended to 

get relatively good draws for option “1” and poor draws for option “2,” making it “easy” for 

them to choose “1” frequently and hence reach the bonus phase, this would show up when we 

look at the mean draws. In fact, the only significant departure from mean zero draws was among 

subjects classified as “Confused.” These subjects actually got relatively good draws for option 

“1” and poor draws for “2,” although the latter is not significant. We interpret this as simply a 

chance outcome. It is hard to develop a story in which getting good draws for option “1” would 

make the game harder and somehow induce poor play. 

One might also wonder if draws in early rounds are particularly important. For example, 

perhaps a subject who gets good draws for “1” in the first few rounds will start down the path of 

investing, while a subject who gets good draws for “2” early will become myopic. To address 

this concern we ran logits for whether a subject was one of the three types on the subject’s draws 

in the first few periods. Early draws were not significant predictors of type. 

The third common concern is that the behavioral types we have uncovered do not really 

reflect differential ability of the subjects to perform the task, but merely differential effort. A 

dogmatic defender of complete rationality might well argue that all subjects were, in principle, 
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capable of solving our decision problem, and that those who performed poorly in the game were 

simply not trying. This might occur because the expected rewards to good performance were too 

small to elicit substantial effort. We believe that the data on practice rounds can be used to 

address this question. In Table 6 we present data on the number of times subjects of each type 

practiced. The mean number of practice rounds is 66 (the median is 58). This fact is in itself 

significant, because it suggests that the typical subject devotes a substantial amount of time to 

practice. Given that it takes roughly 45 to 60 seconds to play the game, the typical subject is 

devoting roughly 45 to 60 minutes to practice.    

Even more interesting is the ordering of practice rounds by type. “Near-Rational” 

subjects practiced 58 times on average, while “Fatalists” practice 69 times and “Confused” 

subjects practice 75 times. The medians were 48, 59 and 69, respectively. Thus, the subjects who 

perform worst in the experiment actually devoted the most effort to practice. It therefore appears 

difficult to rationalize their poor performance by lack of effort. 

The fourth common concern is that the behavioral types we uncover are not stable 

characteristics of subjects. Would subjects be consistently assigned to the same type if they 

played the game multiple times? We can’t address that question directly, but the practice round 

data can shed some light on the issue. We don’t expect that the subjects would use the same 

decision rules in the practice rounds as in the money round, simply because rational behavior 

would imply using the practice rounds to experiment. However, if the types are stable 

characteristics of subjects, we would expect to see the types practice differently.  

In Figure 5 we report information on the how well the subjects performed in the practice 

rounds. Specifically, for each type, we report mean earnings in each practice round. Quite 

interestingly, the relative performance of the three types in the very first practice round on day 

one is almost exactly the same as in the money round. The same is true of their relative 

performance in the first practice round on day 2. Thus, there is clear continuity of subject type 

behavior between the practice rounds and the money round. 

Note that all three types of subjects do noticeably better when they play for money.  Also 

note that the “Near-Rational” subjects, after doing clearly better (on average) than the other types 

for the first several practice rounds on day one, are less clearly superior in subsequent rounds on 

that day. Both these observations suggest that subjects are not trying to maximize points in each 

practice round, conditional on their knowledge of the game up to that point. Rather, since no 
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money is at stake, they may be making moves designed in part to enhance their knowledge.     

We can gain further insight into the relation between practice and money play by running 

our algorithm on some of the practice round data. We decided to run the algorithm on data from 

the first two practice rounds on day 2. By then, subjects should be familiar with the game. Also, 

it seems that performance deteriorates during a subject’s last few practice rounds (perhaps due to 

boredom). Thus, we anticipated that behavior in the first two practice rounds on day 2 would 

most resemble money play. To examine stability of types, we allowed a subject’s type to differ 

between the two practice rounds (i.e., we pretended we had data on 2⋅139 = 278 subjects).  

We again found clear evidence for 3 distinct decision rules.18 To characterize these rules, 

we assigned each of the 278 “subjects” to a rule, and constructed the same statistics as we 

reported in Table 3. The type one subjects complete the bonus phase 95% of the time, compared 

to 94% for the Near-Rational subjects in money play, and they have the smallest payoff loss 

relative to RE play of the three types.19 Thus, it again makes sense to describe their decision rule 

as “Near-Rational.” The type two subjects have exactly the same mean payoff loss relative to RE 

play as the Fatalist subjects in money play (11.7%), and they get through the bonus phase with 

roughly the same frequency (60% vs. 69%). The type three subjects again do considerably worse 

than the other two types (an 18.5% payoff loss vs. 18.6% for the Confused subjects in money 

play), so it again makes sense to describe their decision rule as “Confused.” 

A clear difference between practice and money play is that the percent of subjects 

assigned to the three rules - which, given their broad similarities to the money play rules, we will 

continue to call Near-Rational, Fatalist and Confused - are 26%, 30% and 44%, respectively, as 

opposed to 37%, 40% and 24% in money play. Thus, not surprisingly, subjects are considerably 

more likely to play the Near-Rational rule when they play for money. This may be partly due to 

additional learning subsequent to the first two practice rounds, and partly due to enhanced effort. 

To what extent do subject’s type assignments exhibit persistence over the two practice 

rounds and the money round? There are 27 possible sequences of type assignments over the three 

rounds. Figure 6 reports the number of subjects assigned to each type sequence. It also reports 

the expected number under the “Naïve” assumption that assignments are independent across 

                                                 
18 The marginal likelihood values were -3056, -2816 and -2825 for models with 2, 3 and 4 types, respectively. 
19 The type ones in the practice data choose option “1” a bit too readily relative to the RE rule, and so have a mean 
7% wealth loss relative to RE, as opposed to 2% for the Near-Rational type in money play. Still, their decision rule 
resembles the Near-Rational rule, subject to some additional fine-tuning of the reservation payoff differential. 
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rounds, given the marginal type proportions in each round. The cell counts depart substantially 

from what one would expect given random assignment. The χ2(20) test for the hypothesis of 

independent assignments across rounds is 71.4, compared to the 1% critical value of 37.6.  

A good deal of the variation in type across rounds that we do observe in Figure 6 is 

driven by improvement between practice and money play (due either to learning or enhanced 

effort). Note that only 3 subjects are assigned to the Confused rule in money play aft er having 

done better than that in both practice rounds (these are the RRC, FRC, RFC and FFC cells). But 

21 subjects are assigned to the Near-Rational rule in money play after never having done that 

well in the two practice rounds (these are the FFR, CFR, FCR and CCR cells). Furthermore, 

among subjects whose performance varied between the two practice rounds, there are 34 cases 

where money play was as good as the subject’s best practice round (these are the RFR, FRR, 

RCR, CRR, FCF and CFF cells), and only 17 cases where money play was as bad as the 

subject’s worst practice round (these are the RCC, CRC, FCC, CFC, RFF and FRF cells). 

Table 7 provides another way of looking at the data that helps to clarify the extent of 

persistence in type assignments between practice play and the money round. Clearly, practice 

round play is quite predictive of money play type assignments, but the agreement is far from 

perfect. An interesting question is the extent to which the variability in type assignments across 

the three rounds is attributable to type switching vs. errors in our probabilistic type assignments. 

To address this, we estimate a simple model of an econometrician trying to infer subject types. 

A general model would have 20 free parameters: 2 type proportions in practice play, 2 

type proportions in money play, a 3 by 3 matrix of type transition probabilities containing 4 free 

parameters (once the type proportions in practice and money play are given), and two 3 by three 

matrices of classification rates in practice and money play, each of which has 6 free parameters 

(since the classification probabilities in each row must sum to one). Thus 2+2+4+6+6 =20. 

We impose three restrictions to obtain a simpler model. First, we assume that 

classification error is unbiased. This means the restriction P(k*) = P(R) P(k*|R) + P(F)P(k*|F) + 

P(C) P(k*|C) = P(k) must hold for k=R, F, C, where P(k*) denotes the probability a subject is 

classified as type k, while P(k) denotes the proportion of type k in the population. This reduces 

the number of free parameters in the classification rate matrices from 6 down to 4. It also means 

that the 4 free type proportion parameters are equal to the observed population type frequencies.  
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Second, we restrict the 3 diagonal elements in the classification matrix in the money 

round to differ from those in practice play by a common additive constant. This is motivated by 

the fact (apparent in Figure 5) that the degree of type separation in money plays seems to be 

greater, so we expect that the overall rate of correct classification in money play may be higher.  

By constraining the model in this way, we leave only two free parameters in the money round 

classification rate matrix. Third, we assume that type improvement between practice and money 

play is possible (due to either learning or increased effort), but that deterioration is not. This 

zeros out three elements in the type transition matrix, leaving it with just one free parameter. 

Thus, we are left with just 4+2+1=7 parameters to be estimated. We estimate these by 

maximum likelihood using the 27 cell frequencies in Figure 6. The results are in Table 8. The 

χ2(20) statistic for our “Simple” model is 10.25, compared to the 10% critical level of 28.41. 

Thus, the model reproduces the cell frequencies in Figure 6 very accurately. We were unable to 

significantly improve the likelihood by relaxing any of our restrictions. On the other hand, any 

further restrictions on the classification rate or type transition matrices are rejected.  

Turning to the estimates, we obtain probabilities of correct assignment for types R, F and 

C in practice play of 51%, 53% and 78%, respectively, while in the money round these figures 

are 69%, 71% and 95%.20 The improvement in the rate of correct assignment in money play is 

18%.21 Unconditionally, the probability of correct classification in the practice round is 64%, 

while that in the money round is 76%. There is also strong evidence of improvement between 

practice and money play. For instance, the estimates imply that 37% of the F subjects improve to 

R. These figures clarify the extent of type switching and classification error that is necessary to 

explain the variability in type assignments across rounds that we observe in Figure 6.             

 

6. Conclusion 

We have described a new Bayesian procedure for classification of subjects into decision 

rule types in choice experiments. We applied the procedure to experimental data from a 

sequential discrete choice setting in which optimal decision making would require subjects to 

                                                 
20 A completely uninformative algorithm would assign subjects to each type with rates equal to the population type 
proportions (i.e., 26%, 30% and 44% for R, F and C in practice play, and 37%, 40% and 24% in money play). 
21 Our model constrains type to be invariant between the two practice rounds. Type changing between the two 
practice rounds would therefore be reflected in a lower rate of correct type assignment. For instance, Glenn Ellison 
points out to us that (using a slightly different model) he calculates rates of correct assignment of about 58% and 
68% for the R and F types in practice if he assumes a 40% chance of changing type between the two rounds.    
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solve a difficult dynamic programming problem. The procedure produced a clear classification 

of the subjects into three behaviorally distinct types.  

More than a third of the experimental subjects followed a rule very close to the optimal 

(expected wealth maximizing) rule. We labeled them “Near-Rational,” since their play resulted, 

on average, in only about a 2% payoff loss relative to optimal play. We were surprised that so 

many subjects learned to play nearly optimally in a very difficult dynamic problem after about a 

half hour of practice (on average), particularly since the monetary rewards were fairly small. 

The remaining subjects departed more clearly from optimal play. About 40% followed a 

sub-optimal rule that resulted in 12% payoff losses on average. We labeled these subjects 

“Fatalists,” because their behavior implied too much reliance on the luck of the draw and a 

failure to appreciate the extent to which payoffs in the game were a controlled stochastic process. 

About a quarter of our subjects performed substantially less well, following a rule that earned 

about 19% less than optimal play on average. We labeled them “Confused” (see Andreoni (1995) 

or Houser and Kurzban (2002) on confusion in other experimental settings). 

Experimental work that finds departures from optimal behavior is often criticized on the 

grounds that subjects had little incentive to behave optimally. We don’t find this a compelling 

criticism of our findings here, since the interesting outcome was that so many people indeed 

behaved close to optimally, and because the practice round data shows that most subjects put 

substantial effort into the task. Furthermore, it was the types that performed worst in the game 

who tended to practice most.  

In future work, we plan to examine how various experimental design features, such as (1) 

size of payoffs, (2) complexity of the problem, (3) amount of practice time allowed for learning 

about the game, and (4) amount of information given to the participants, effect the types of 

decision rules people use. Our (very) long-term goal is to try to provide some characterization of 

the types of situations in which people do and do not behave close to optimally, and to ascertain 

if certain sub-optimal behavioral patterns recur in many different contexts. 

Our work raised two particular questions that we will investigate in future work. One is 

whether the “fatalistic” type behavior that we uncovered is common in other dynamic stochastic 

choice problems. A second question is whether the notion of an option value is generally much 

harder to understand than that of an investment value. All the subjects in our experiment 

understood, at least to some extent, the notion of an “investment value” of a choice. That is, all 
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subjects chose options that had low current payoffs, but that raised future expected payoffs, far 

more often than would myopic subjects. But not even the best performing subjects showed any 

understanding of the notion of an “option value.” That is, no subject ever declined a high payoff 

alternative in order to defer the option of choosing it to a future round. In future work, we will 

examine whether the notion of an option value becomes more salient if the rewards to 

understanding the concept are increased.  

Our Bayesian procedure for decision rule classification could potentially be applied in 

many settings besides the dynamic discrete choice problem we have considered. For instance, it 

could be used to model decision rules in strategic games, in which case the polynomial 

approximation to the continuation value would typically include state variables characterizing 

the play of other subjects. And it could be applied to field as well as experimental data. In each 

case, the key identifying assumption is that the investigator must specify a priori the set of state 

variables that he/she will entertain as potential arguments in subjects’ decision rules.    

Our finding that behavioral heterogeneity is important in experimental data is consistent 

with prior results. For instance, El-Gamal and Grether (1995), in their experiment on Bayesian 

learning, found evidence that subjects fell into three types: Bayesians, conservative Bayesians, 

and those who used the representativeness heuristic (see also McCabe et al (2001)). Given the 

accumulating evidence that decision rule heterogeneity is important in laboratory environments, 

we believe it is reasonable to suspect that such heterogeneity is also important in field data. 

Developing empirical strategies to model such heterogeneity is an important research agenda. 
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Appendix A: Numerical Procedure for Calculating Marginal Likelihood Values 
 

We construct the marginal likelihood for each of our candidate models using the 
procedure developed by Lewis and Raftery (1997). Their algorithm combines posterior 
simulation with the Laplace-Metropolis estimator. Alternative numerical procedures for 
calculating the marginal likelihood are discussed in Gelfand and Dey (1994), Geweke (1997), 
Geweke and Keane (2001), and Chib (2001), among others. 

The marginal likelihood value for a model, which we denote by g(⋅ ), is the integral of the 
model’s likelihood function with respect to the model’s prior. For the model we present in 
Section IV, the marginal likelihood is: 
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where KPM indicates a model with K types of subjects, in which the order of the polynomial F is 
P, and in which the prior is p(⋅ |MKP). Dropping the notational dependence on the model, and 
letting ξ  denote the parameter vector and D  the vector of observed decisions, this can be written 
 

( ) [ | ] ( ) .g D D p dξ ξ ξ= ∫L  

 
The Laplace method generates the following approximation for the marginal likelihood: 
 
 / 2 * 1/2 * *( ) (2 ) | | ( ) ( | )g D H p Dλπ ξ ξ≈ L  
 
where *ξ  is the value of ξ  at which { }( ) log ( ) ( | )h p Dξ ξ ξ≡ L  attains its maximum (i.e., the 

posterior mode), *H is minus the inverse Hessian of h  evaluated at * ,ξ  and λ  is the dimension 
of the parameter space. Taking logarithms, this can be rewritten as 
 

(A1) { } { } { }* * *1
log{ ( )} log{2 } log | | log ( ) log ( | ) .

2 2
g D H p D

λ
π ξ ξ≈ + + + L  

 
Lewis and Raftery (1997) call this the Laplace-Metropolis estimator. It is attractive because the 
quantities *ξ  and *H  can both be easily derived from Gibbs sampler output. To determine *ξ we 
evaluate ( )h ξ at each draw from the posterior, and chose that parameter vector for which ( )h ξ  
was the largest. The quantity *H  is asymptotically equivalent to the posterior variance matrix, so 
one may use the sample covariance matrix of the simulation output as an estimate of its value.  

The marginal likelihood tends to favor more parsimonious models for the following 
reason: If we increase K and/or P then the prior is specified over more parameters. Thus, ceteris 
paribus, the prior mass in the vicinity of any particular parameter vector (such as the posterior 
mode, ξ*) will fall. This tends to reduce the value of (A1), inducing an implicit penalty on added 
parameters. 
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Appendix B:  An exact transcript of the written instructions provided to subjects 
 

Instructions  
Thank you for coming today.  This is a study of individual decision making, for which you will 
earn cash.  The amount of money you earn depends on your decisions, so it is important to read 
and understand these instructions.  All the money that you earn will be awarded to you in cash 
and paid to you privately at the end of the experiment.  The funding for this experiment has come 
from a private research foundation. 

The experiment lasts for 15 periods.  Each period you will choose between two 
alternatives, which will be called ‘1’ and ‘2’.  Each alternative has a payoff which is shown on 
the left-hand side of the screen.  If you choose ‘1’ you earn the payoff associated with ‘1’, and if 
you choose ‘2’ you earn the payoff associated with ‘2’.  The payoff for each alternative will be 
shown to you before you make your choice.  At the end of the experiment, you will be awarded 
an amount of cash equal to the sum of your 15 chosen payoffs.  Your choices are private:  do not 
discuss them with anyone else in the room. 

The future payoffs offered for alternative ‘1’ depend on the previous choices that you 
made.  The future payoffs offered for alternative ‘2’ do not depend on any of your previous 
choices.  No payoff will ever be less than zero.  The specific structure of payoffs is as follows: 
 
 Payoff per period for alternative ‘1’: 
 
 Base Pay:  3,000 
 
                     0 if you have chosen “1” 0, 1, 2, 3, 4, or 5 previous times 
 Bonus:              7500 if you have chosen “1” 6, 7, 8 or 9 previous times 

       0 if you have chosen “1” 10, 11, 12, 13 or 14 previous times  
 

Costs:  A cost of 5000 will be incurred if you chose ‘2’ the previous period,  
otherwise none. 

 
Lottery: Random draw that takes value between -5000 and 5000 with equal chance.  

 
Total payoff: (Base Pay + Bonus - Costs +/- Lottery), or 0, whichever is bigger. 

 
Payoff per period for alternative ‘2’: 

 
 Base Pay:  4,000 
  

Bonus:  None 
 

Costs: None 
 

Lottery: Random draw that takes value between -5000 and 5000 with equal chance.  
 

Total payoff: (Base Pay + Bonus - Costs +/- Lottery), or 0, whichever is bigger. 
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 The payoff structure will be shown to you on the screen for easy reference.  Your screen 
will also include a green window called ‘Summary’, which will show you the total number of 
periods in the experiment (15), the current period, your accumulated payoffs, the number of 
times you have chosen ‘1’, the number of times you have chosen ‘2’, and the choice you made 
the previous period.   

The right hand section of the screen details the history of the payoffs of each alternative, 
and the choice you made, by period.  Finally, you will see in the bottom left hand side of the 
screen a red window which describes the current period’s payoff choices. 

You will be paid $5 for attending the first day, another $5 for attending the second day, 
plus any earnings from the decisions you made on the second day.  You will receive all of your 
payments at the end of the second day. 

The first day you can practice as much as you like.  The second day, when you are ready, 
you may play one time for money by pressing the “Play for Money” button in the bottom left 
hand side of the screen (you will only see this button on the second day).  If you have a question 
raise your hand and an experimenter will come to answer.  We cannot tell you which decision is 
‘best’ for you.  Your decisions are entirely up to you. 
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. 
Table 1: Model Selection Based on Marginal Likelihood Values 

 
 
 
Marginal Likelihoods under Baseline Prior 
 
  Order of Future Component             

Number of Types P=3 P=4 P=5 
1 -1712 -1721 -1736 
2 -1451 -1364 -1442 
3  -1224  -1277 -1369 
4 -1312 -1342 -1449 
    

Prior Sensitivity 
A. Prior Std. Dev. Of π* Reduced 50% 
Types P=3 P=4 P=5 

1 -1708 -1704 -1728 
2 -1445 -1373 -1420 
3  -1213  -1271 -1347 
4 -1275 -1316 -1370 
    

B. Prior Std. Dev. Of π* Increased 50% 
Types P=3 P=4 P=5 

1 -1731 -1707 -1741 
2 -1459 -1366 -1502 
3  -1231  -1282 -1439 
4 -1297 -1286 -1437 
    

C. Prior on σ2 Scaled Up 
Types P=3 P=4 P=5 

1 -1706 -1716 -1731 
2 -1442 -1363 -1432 
3  -1209  -1263 -1355 
4 -1285 -1319 -1429 

 
Note: The preferred model under each prior is highlighted in bold.  
 
 
 
 
 
 

 



 40 

Table 2:  Prior and Posterior Means and Standard Deviations 
 of Future Component Parameters 

 
 Prior Distribution Type 1:  N=51 

“Near-Rational” 
Type 2:  N=55 

“Fatalist” 
Type 3:  N=33 

“Confused” 
 Mean SD Mean SD Mean SD Mean SD 

*
0π : Intercept 0.0 2x104 4259.21 108.60 3478.47 209.06 3711.68 476.31 
*
1π : X1 0.0 103 -4.42 22.51 411.33 38.00 -429.17 82.87 
*
2π : X2 0.0 103 92.57 42.90 276.70 49.67 -447.22 120.54 
*
3π : X1^2 0.0 102 -29.29 1.49 -32.47 2.85 -16.97 5.82 
*
4π : X2^2 0.0 102 -73.35 5.39 -3.57 2.38 -2.89 6.98 
*
5π : X1*X2 0.0 105/2 -86.00 2.47 -1.17 4.92 -103.36 11.61 

ησ : Optimization       
       error 

Not 
Defined 

Not 
Defined 

208.91 58.43 863.81 29.50 2270.96 78.73 

:kθ population             
      type probability 

0.33 0.18 0.36 0.06 0.40 0.06 0.25 0.05 

 
Note: “X1” Denotes experience in alternative “1,” and “X2” denotes experience in alternative “2.”  
The round is not included as a state variable in the polynomial since it is perfectly collinear with X1 
and X2.  Lagged choice is not included because it drops out of the differenced future component 
(and is subsumed in the constant). 
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Table 3:  Descriptive Statistics for the Play of Each Type 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: “Mean earnings under RE” reports the mean earnings for hypothetical subjects who follow 

the optimal (expected wealth maximizing) decision rule, given that they face the same draws for 

the stochastic component of payoffs as did the actual subjects.    
 
 
 

Type 1: Type 2: Type 3:
"Near-Rational" "Fatalist" "Confused"

Number of subjects (percent)    51 (37%)  55 (40%)    33 (24%)
Mean earnings (points) 87983 80811 75966

Mean earnings under RE 90047 91546 93316
Percent loss relative to RE 2.3% 11.7% 18.6%

SD of earnings 9620 13727 14189
Number who earn at least as 

much as RE subjects 22 3 2

Number who earn exactly as 
much as RE subjects 11 0 0

Mean number of times 
alternative "1" is chosen 11 9.2 9.6

Number who complete all 
bonus rounds 48 (94.1%) 38 (69.1%) 12 (36.3%)
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Table 4: Marginal Likelihoods of Various Models Using Simulated Data 
 

 
 
 
 

Table 5: Mean Value of Draw by Alternative and Type 
 

 
Note: p-values for two-sided t-test that mean is zero are in parentheses. 

 
 
 

Table 6: Practice Rounds by Day and Type 
 

 
Note:  The file containing practice round data for 15 of our 139 subjects was inadvertently 
deleted.  This table reports data for the remaining 124 subjects. 

 

Number of 
Distributions in 

Mixture
3-Mixture 
Simulation

5-Mixture 
Simulation

1 -1388 -2651
2 -826 -2000
3 -604 -1359
4 -802 -1113
5 -NA- -1039
6 -NA- -1052

Posterior Type 
Classification

Draw for 
Alternative 1

Draw for 
Alternative 2 Difference (1-2)

Near-Rational 108 33 75
(0.29) (0.75) (0.59)

Fatalist 31 99 -69
(0.76) (0.34) (0.64)

Confused 269 -58 327
(0.05) (0.64) (0.08)

Type N Day 1 Practice Rounds Day 2 Practice Rounds Total Practice Rounds
Mean Median Min Max Mean Median Min Max Mean Median Min Max

Near-Rational 49 43 29 0 166 15 14 2 44 58 48 6 180
Fatalist 50 52 42 0 195 17 12 2 95 69 59 4 201

Confused 25 54 46 1 131 21 18 2 50 75 69 3 154
All 124 49 38 0 195 17 14 2 95 66 58 3 201
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Table 7: Probability of Type in Money Round Conditional on Practice Play 

 
 
 
 
 
 
 

Table 8: A Simple Model of Type Assignments 

 
Note: The "simple" model has 7 free parameters in the classification rate and transition 
rate matrices. The "Naive" model assumes that type assignments are independent across 
rounds. The "Unconstrained" model sets the probability of each cell in Figure 6 equal to 
its empirical frequency. The 10% critical value of the χ2(20) statistic is 28.41.    

Money Game
Practice N Near Rational Fatalist Confused

RR 14 42.9% 42.9% 14.3%
FR, RF 24 70.8% 29.2% 0.0%

FF 19 47.4% 47.4% 5.3%
RC, CR 22 31.8% 45.5% 22.7%
FC, CF 21 28.6% 47.6% 23.8%

CC 39 15.4% 33.3% 51.3%

Classification Probabilities - Practice Rounds Transition Rates - Practice to Money
True Type Classified Type Practice Money

R F C R F C
R 0.51 0.39 0.10 R 1.00 0.00 0.00
F 0.23 0.53 0.24 F 0.37 0.63 0.00
C 0.14 0.09 0.78 C 0.00 0.45 0.55

Classification Probabilities - Money Round Model Fit Statistics
True Type Classified Type Model Chi-Square Log-likelihood

R F C Simple 10.3 -421.7
R 0.69 0.28 0.03 Naïve 71.4 -448.4
F 0.29 0.71 0.00 Unconstrained 0.0 -416.1
C 0.01 0.04 0.95
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Figure 1: Fraction of Alternative One Choices by Round for Actual Subjects, 

and their Rational Expectations and Simulated Counterparts 
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Figure 2: Fraction of Actual and Simulated Alternative One Choices by 

Round for Each Type 
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Figure 3:  Fraction of Alternative One Choices Under Simulations of Various 

Decision Rules 
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Near-Rational
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Figure 4A: Comparison of Fitted and Rational Expectations Future 
Component at Early State Vectors for Each Type 
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Near-Rational
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Figure 5: Mean Earnings During Practice by Round and Type 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Means that include a small number of subjects are highly volatile over rounds. Hence, for 
each type we include only rounds where over half of our subjects practice. In each panel, the 
number of subjects underlying each mean is greater than 25, 25 and 13 for near rational , fatalist 
and confused subjects, respectively.  
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Note:  The labels on the horizontal axis indicate sequences of rules followed in the first and 
second practice round and the money round, in that order. "R" denotes rule 1 ("Near-Rational"), 
"F" denotes rule 2 ("Fatalist") and "C" denotes rule 3 ("Confused"). For example, the cell labeled 
"CCR" gives the number of subjects assigned to the Confused rule in the two practice rounds and 
the Near-Rational rule in the money round. The expected number of subjects in each cell under 
independence of type assignments across rounds is calculated using the marginal type 
probabilities for each round. Specifically, if p(X,j) represents the fraction of subjects classified as 
type X in round j, then the expected proportion of subjects in cell XYZ is the product 
p(X,1)p(Y,2)p(Z,3). 
 
 
 
 
 
 
 

Figure 6: Expected and Actual Cell Frequencies
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