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  Abstract 

 

 We develop a model of household demand for frequently purchased consumer goods that 

are branded, storable and subject to stochastic price fluctuations.  Our framework accounts for 

how inventories and expectations of future prices affect current period purchase decisions. We 

estimate our model using scanner data for the ketchup category. Our results indicate that price 

expectations and the nature of the price process have important effects on demand elasticities. 

Long-run cross price elasticities of demand are more than twice as great as short-run cross price 

elasticities. Temporary price cuts (or “deals”) primarily generate purchase acceleration and 

category expansion, rather than brand switching. 

 

Keywords: price expectations, pricing, scanner data, dynamic programming, simulation, discrete 

choice.  
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The goal of this paper is to develop and estimate a dynamic model of consumer choice 

behavior in markets for goods that are: 1) frequently purchased, 2) branded, 3) storable, and 4) 

subject to frequent price promotions, or “deals.” In such an environment, forward-looking 

behavior of consumers is important. Specifically, optimal purchase decisions will depend not 

only on current prices and inventories, but also on expectations of future prices. There is no 

single “price elasticity of demand.” Rather, the effect of price changes on consumer demand will 

depend upon how the price change effects expectations of future prices. This depends on the 

extent to which consumers perceive the price change to be permanent or transitory, and the 

extent to which they expect competitor reaction. These, in turn, depend on the stochastic process 

for prices in the market (see Marshak (1952), Lucas (1976)).    

   In recent years a wealth of supermarket scanner data have become available that 

document sales of frequently purchased consumer goods. In a number of instances, panels of 

households have been provided with individual ID cards, so that all their purchases over long 

periods of time can be tracked. These data provide a valuable opportunity to study consumer 

choice dynamics. We will argue that such analysis is important not only for marketers wishing to 

predict consumer response to promotions, but also for economists interested in firm pricing 

behavior, antitrust policy, welfare gains from introduction of new goods, construction of price 

indexes, etc.   

Since the pioneering work of Guadagni and Little (1983), an extensive literature has 

emerged that uses scanner data to study consumer choice behavior. But for the most part, this 

literature has relied on static models of consumer behavior, in the sense that consumers make 

decisions to maximize current period utility. Much of this literature has dealt with the issue of 

choice “dynamics,” where dynamics is used to refer to purchase carry over effects (or habit 

persistence) – i.e., does past purchase of a brand increase a consumer’s current period utility 

from purchase of that brand (see, e.g., Keane(1997a))? But none of the published literature 

examines consumer choice “dynamics” in the sense of how expectations of future prices 

influence the current period purchase decisions of forward looking consumers.1  

                                                 
1 Erdem and Keane (1996) develop a model of forward looking consumers, but the focus there is on learning about 
brand quality in an environment where consumers have uncertainty about brand attributes.  This generates a motive 
for trial or experimental purchases of brands to facilitate learning.  Erdem and Keane model prices as iid over time, 
so changes in current prices do not alter expected future prices.     
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Understanding the role of price expectations in consumer purchase behavior is important 

for many reasons. For instance, evaluations of the welfare effects of mergers and welfare gains 

from introduction of new goods (see Hausman (1997)), rely on estimates of own and cross-price 

elasticities of demand for the goods in question. But the existing literature only contains static 

elasticity estimates. Such estimates do not account for how a price cut today affects consumer 

expectations of future prices, or how elasticties may differ for price cuts that are perceived to 

have different degrees of persistence.2 We provide a framework for estimating dynamic price 

elasticities of demand for branded frequently purchased consumer goods. We will show that 

accounting for dynamics can have large effects on own and cross-price elasticity estimates. 

More generally, our framework can be used to predict how consumers’ purchase decision 

rules would respond to changes in the entire retail pricing process (such as, for example, a shift 

from high/low (H/L) pricing to “everyday low pricing” or EDLP). To our knowledge there is no 

prior structural work that enables one to predict consumer response to “major” pricing policy 

changes.3 This problem is apparently understood by marketing practitioners. For example, in a 

criticism of existing models of promotion response Struse (1987), a marketing manager at 

General Mills, observed that: “While analysis of past events may be … useful, the real need is to 

better predict the future - especially under interesting circumstances. That is, the manager needs 

a forecasting method which will be robust and discriminating over a wider range of conditions 

than actually seen in the market since he or she needs to explore alternatives which go beyond 

past practice …”  

Understanding consumers’ dynamic responses to pricing policy changes may also be 

important for understanding industry dynamics. Existing dynamic oligopoly models that 

endogenize price (see, e.g., Berry, Levinson and Pakes (1995)) typically assume that consumer 

behavior is static. This may be a serious misspecification in markets where purchases are made 

frequently, and changes in current prices lead to important changes in expected future prices. We 

                                                 
2  In “market mapping” methods (see Elrod (1988)) cross-price elasticities of demand are critical for the evaluation 
of the positioning of products in unobserved (or latent) attribute space. Srinivasan and Winer (1994) and Erdem 
(1996) discuss how “dynamics” in the sense of habit persistence may distort such evaluations.  How dynamics in the 
sense of price expectation formation might distort such evaluations has not been considered.     
3  See Keane (1997b) for a discussion of this issue. To give an example of the problem, we would expect that price 
elasticities of demand would differ between an EDLP regime and a H/L regime for a variety of reasons. For 
instance, a price cut has different effects on expected future prices under each regime, and the expected duration 
until the next price cut is different under each regime. As a result, one can’t use estimates obtained under the H/L 
regime to predict behavior under the EDLP regime, unless one uses a structural model like ours. 
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think work like ours will eventually prove useful for researchers seeking to elaborate the 

consumer side of dynamic oligopoly models.4           

Understanding how forward looking consumers respond to temporary price cuts is 

important for retailers and brand managers, who want to know if price cuts merely cause 

consumers to accelerate purchases, or whether they also induce brand switching and/or increased 

category sales. Furthermore, the design of intertemporal price discrimination strategies requires 

an understanding of how changes in the whole price process affect consumer demand (e.g., 

would more frequent promotion generate sales to new consumers, or simply alter the purchase 

timing of existing consumers?). 

As a final example, an understanding of the dynamics of consumer purchase behavior is 

important for the construction of price indices. To some extent, this involves the random 

sampling of posted supermarket prices, which will capture average offer prices.5 But, if a large 

share of purchases occurs on promotion, then the average offer price of a good is not the relevant 

measure of its typical cost to consumers. In fact, a widespread shift from H/L pricing to EDLP, 

such as occurred in the US in the late 80’s and early 90’s (see Lal and Rao (1997) for a 

discussion), could cause the average posted price to fall even though the average purchase price 

does not, thus distorting price level estimates based on random sampling of posted prices. Our 

framework allows one to estimate the relationship between mean offer and accepted prices under 

alternative price processes.         

In this paper, we estimate our model of consumer brand and quantity choice dynamics on 

scanner panel data provided by A.C. Nielsen. We use the data on household ketchup purchases.  

We choose the ketchup category for two reasons. First, it satisfies the four criteria discussed at 

the outset. In particular, there are frequent price promotions for ketchup. Pesendorfer (2002) 

finds that there is little evidence of seasonality in ketchup demand or prices, and that cost factors 

seem unrelated to short run price movements. He argues that a type of inter-temporal price 

                                                 
4  The computational capacity and econometric methods needed to estimate equilibrium models with forward-
looking behavior on both the firm and consumer side are probably several years away. But we should note that 
Ching (2002) has estimated a model of the pharmaceutical industry with dynamics on both sides of the market in 
two stages. First, the demand side model is estimated jointly with an approximate reduced form equation for firm’s 
pricing policy function. In a second stage the remaining supply side parameters are calibrated, treating the demand 
side parameters as known.    
5 The BLS website (see www.bls.gov/cpi/cpifact2.htm) contains some description of the random sampling of prices 
at selected department stores, supermarkets, service stations, doctors' offices, rental units, etc. that underlies 
construction of the CPI.  
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discrimination strategy on the part of firms, in which the retailers play mixed strategies, most 

plausibly explains frequent week-to-week price fluctuations for ketchup. We agree with this 

analysis, which supports the view that price movements are exogenous from the point of view of 

consumers. We believe that similar factors are at work in most frequently purchased consumer 

goods markets.  

Second, of the goods that satisfy our four criteria and for which scanner data have been 

released for public use, ketchup is the easiest category to work with. This is because the number 

of brand/size combinations for ketchup is lower than for the other available categories (there are 

4 brands – Heinz, Hunts, Del Monte and the Store brand – that come in 3 to 5 sizes each, giving 

a choice set with 16 elements). We felt it was sensible to first apply our framework to this 

category before tackling categories with more brands and/or sizes (such as yogurt, toilet paper, 

cereal, etc.).     

Our estimated model provides a very good fit to all the important dimensions of the data, 

including brand shares, size shares, purchase frequency, inter-purchase times, purchase hazard 

rates, brand switching matrices, and the distributions of accepted prices. In our view, this is a 

necessary condition in order for the model’s predictions to be credible.  

We use simulations of the model to evaluate the importance of price expectations. For 

instance, we can simulate the effect of a temporary price cut for one brand, both allowing for the 

effect of this price cut on expected future prices, and holding expectations fixed. Since the price 

process for ketchup exhibits substantial persistence, we find, as one would expect, that the 

current period increase of own brand sales in response to a temporary price cut is dampened by 

the expectations effect. However, this dampening effect is rather modest. For example, it is about 

10% for the leading brand - Heinz. Interestingly, however, we find that the cross-price effects 

that account for expectations are roughly twice as large as cross-price effects holding 

expectations fixed. For example, the percentage drop in current period sales for Hunts, Del 

Monte and the Store brand are roughly twice as great if we account for the effect of the Heinz 

price cut on expected future prices of all the brands.    

Two factors drive this key result: 1) if Heinz’ price is lowered today it leads consumers to 

also expect a lower Heinz price tomorrow. This lowers the value function associated with 

purchase of any brand other than Heinz today. 2) Given the price dynamics in the ketchup 

market, a lower price of Heinz today leads consumers to expect competitor reaction, so it lowers 
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the expected prices of the other brands tomorrow. This further lowers the value associated with 

purchase of those brands today.  

Obviously, the quantitative significance of these two effects depends on the price process. 

Thus, a key point is that cross-price elasticities do not (by themselves) reveal the similarity of 

differentiated products in attribute space (or their degree of competition). The magnitudes of 

cross-price elasticities also depend on the price process - because this determines how a price cut 

for one brand today affects expected prices of all brands in the future. Given the importance of 

cross-price elasticities of demand in such areas as the analysis of mergers and the valuation of 

new goods, our results clearly show that accounting for consumer price expectations may be 

critical in these areas.  

1. Background and Literature Review 

Research on joint modeling of consumer brand and quantity decisions has a long tradition 

in both marketing and economics. Hanneman (1984) developed a unified framework for 

formulating econometric models of discrete (e.g., brand choice) and continuous choices (e.g., 

quantity decisions) in which the discrete and continuous choices both flow from the same 

underlying utility maximization decision.6 Dubin and McFadden (1984) used such a model to 

analyze residential electric appliance holdings and consumption. In marketing, Chiang (1991) 

and Chintagunta (1993) also adopted the Hanneman framework and calibrated static models 

consistent with random utility maximization on scanner panel data.   

 All these models assume that consumers are myopic in that they maximize immediate 

utility. However, frequently purchased consumer goods typically exhibit substantial inter-

temporal price variation, which suggests that for storable goods consumer expectations about 

future prices may play an important role in purchase timing and quantity decisions. Indeed, the 

evidence of forward-looking behavior in frequently purchased consumer goods markets is 

overwhelming. For example, in descriptive analyses, both Hendel and Nevo (2001) and 

Pesendorfer (2002) find that, conditional on current price, current demand is higher when past 

                                                 
6 In Hanneman’s framework, the commonly observed phenomenon that consumers rarely (if ever) buy multiple 
brands of a frequently purchased product on a single shopping occasion is shown to arise if the brands are perfect 
substitutes, quantity is infinitely divisible and pricing is linear.  In that case, the brand and quantity decisions 
separate: In stage 1 it is optimal to choose the brand with the highest utility per unit, and in stage 2 the consumer 
chooses the number of units conditional on that brand.  Keane (1997b) pointed out that this separation does not go 
through if available quantities are discrete, as is the case with the large majority of frequently purchased consumer 
goods.  However, the literature typically ignores this problem, and assumes quantity is continuous, because of the 
computational difficulty involved in modeling choice among a multitude of discrete brand/size combinations.            
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prices were higher or time since last sale is longer (implying that past sales were lower, and 

hence that current inventories are lower). This implies that consumers “stock up” on storable 

goods when they see a “deal.” 

 Shoemaker (1979) and Ward and Davis (1978) were perhaps the first (of many) studies to 

find evidence of “purchase acceleration,” meaning that deals induce consumers to buy larger 

than normal quantities. Neslin, Henderson and Quelch (1985) found that advertised price cuts led 

to both shorter interpurchase time and larger purchase quantities for coffee. Hendel and Nevo 

(2001) confirm this for 3 more products, and also find that duration to next purchase is longer 

following a deal purchase. It is the combination of both increased current purchases and longer 

duration to next purchase that one needs forward-looking behavior to explain. While a static 

model with an outside good can explain a current increase in category sales in response to a 

temporary price cut, the increase in duration to next purchase implies that consumers time 

purchases to coincide with prices that are “low” relative to some inter-temporal standard. 

The large literature on “reference prices,” starting with Winer (1986), consistently finds 

that consumers base current purchase decisions not just on current prices but also on how these 

relate to some inter-temporal pricing standard (i.e., an average or typical price for the product). 

This is highly suggestive that expectations of future prices affect consumer purchase decisions.  

There is also clear (recent) evidence that the Lucas Critique is quantitatively relevant. 

Mela, Jedidi and Bowman (1998) examine 8 years of data for a frequently purchased consumer 

product. During the last 6 quarters of their data there was a regime shift where deals became 

much more frequent. Under the new regime: 1) consumers bought less often, concentrating their 

purchases in deal periods, 2) consumers bought larger quantities when they did buy, and 3) 

overall sales were roughly constant. Mela et al conclude that, under the new regime, consumers 

“learned to lie in wait for deals.” Furthermore, Kopalle, Mela and Marsh (1999) find (for several 

products) that increased frequency of promotion reduces “baseline sales” of a brand, and also 

increases its price elasticity of demand. 

The behavior of retail prices also provides indirect evidence for the importance of 

forward-looking behavior by consumers. Both Pesendorfer (2002) and Hong, McAfee and 

Nayyar (2002) point out that it is hard to explain observed serial correlation in retail prices 

without consumer stockpiling behavior. In static price discrimination story, a la Varian (1980), 

prices should be iid over time. In contrast, suppose there exists a segment of price sensitive 
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consumers who stockpile the good and “lie in wait for deals,” creating scope for intertemporal 

price discrimination. As time since the last sale increases, the number of price sensitive 

consumers looking to buy grows, which increases potential revenue from a sale. Eventually, the 

retailer decides to have a sale, and then quickly returns price to the “regular” level. This positive 

duration dependence in the probability of a deal is in fact the price pattern observed for 

frequently purchased storable consumer goods.  

In the marketing literature there are two influential papers that examined the purchase 

timing, brand choice and quantity decision of consumers for frequently purchased storable 

consumer goods. These are Gupta (1988) and Chintagunta (1993). Gupta models all three 

decisions, but the decisions are not linked, and there is no consumer taste heterogeneity. 

Chintagunta models all three choices in a unified utility maximization framework, and he allows 

for consumer taste heterogeneity. Interestingly, these two papers reach opposite conclusions 

regarding a key issue: Gupta concludes that most increased sales from a temporary price cut are 

due to brand switching, and that cross-price elasticities of demand are large. In contrast, 

Chintagunta finds that most increased sales from a temporary price cut are due to purchase 

acceleration by brand loyal consumers, and concludes that cross-price elasticities of demand are 

small. The Gupta results are the main evidence in the literature that is taken as unfavorable for 

dynamics/stockpiling behavior. 

 In fact, the contrast between the Gupta (1988) and Chintagunta (1993) results is exactly 

what one would expect if forward-looking/stockpiling behavior is important. The difference in 

results would then be generated by dynamic selection and endogeneity bias. To see this, consider 

the following example. Suppose Brand A has a deal in period t. Then, the population of people 

who buy the category at t has an over representation of people “loyal” to A. In a static logit brand 

choice model, such as in Gupta (1988), low price for a brand is therefore correlated with high 

taste for the brand. As a result, cross-price effects are overestimated. Chintagunta (1993) deals 

with this selection bias because he allows for taste heterogeneity. Indeed, Sun, Neslin and 

Srinivasan (2001) show, using simulations, that static choice models without heterogeneity 

drastically overstate cross-price elasticities if consumers engage in stockpiling behavior. 
Recently, there have been a number of papers dealing with the issue of potential 

endogeneity of prices in consumer choice models (see, e.g., Nevo (2001)). In our view, much of 

this literature has missed the mark, because it has failed to make a crucial distinction between 
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endogeneity stemming from aggregate (market) demand shocks and endogeneity stemming from 

omitted variables. Frequently purchased consumer goods typically exhibit price patterns in which 

prices stay flat for weeks or months at a time (“regular price”), and then exhibit short-lived drops 

(“deals”). We find it extremely implausible that these deals are the result of manufacturer, 

wholesaler or retailer responses to aggregate taste shocks, for several reasons. Why would 

demand for a good like ketchup or yogurt suddenly jump every several weeks and then return to 

normal? And how could sellers detect such a jump quickly enough to incorporate it into daily or 

weekly price setting? As we noted earlier, a more plausible explanation for the observed price 

variation is some sort of inter-temporal price discrimination, such as that considered by 

Pesendorfer (2002) and/or Hong, McAfee and Nayyar (2002). 

 On the other hand, an important reason for endogeneity of prices in demand models is the 

failure to account for consumer inventories, which are not observed in scanner data. If prices are 

persistent over time and consumers engage in stockpiling behavior, then inventories will be 

correlated with current prices. This causes price to be econometrically endogenous due to the 

omitted variables problem, even though price fluctuations are exogenous from the point of view 

of consumers.7 The correct way to deal with this problem is to estimate a dynamic demand 

model, and to integrate out the unobserved latent inventory levels from the likelihood function. 

This is extremely computationally demanding, but it is exactly what we do in this paper. 

In principle, an alternative to our approach would be a BLP procedure using instruments 

for price that are uncorrelated with inventories. But the instruments would have to be correlated 

with current but not lagged prices, for if they are correlated with lagged prices they would be 

related to inventories by construction. Given the serial correlation in prices, such instruments 

would be very difficult if not impossible to find. 

 To our knowledge there is no published research that structurally estimates a model of 

consumer brand and quantity choice dynamics for frequently purchased storable consumer goods 

under price uncertainty.8 After our work on this project was well under way we became aware of 

ongoing work by Hendel and Nevo (2002), who develop a structural model that is in some ways 

                                                 
7 We thank Steve Berry for pointing this out to us.  
8 We note that G`nhl and Srinivasan (1996) estimated a dynamic model with uncertainty about coupon availability, 
using data on the diaper category. But they consider only category choice and not brand choice. The category price 
index depends on a weighted average of coupon availability measures across brands. Prices are assumed equal 
across brands and over time. They also ignore quantity choice, and assume that the probability of a stockout depends 
only on the current purchase decision and not on the lagged inventory level.  
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similar to ours. In the course of presenting our model (in the next section) we will provide some 

discussion of how their approach differs from ours. 

2.  The Model 

2.1. Overview  

In our model, the good is storable, and households get utility from its consumption.  

Brands differ in the utility they provide per unit consumed. A key aspect of the model is that 

consumers have a per period usage requirement for the good, which is stochastic, and which is 

only revealed after the purchase decision is made. Thus, households run a risk of stocking out of 

the good if they maintain an inadequate inventory to meet the usage requirement. There is a cost 

of stocking out. At the same time, there are carrying costs of holding inventories, and fixed costs 

of making purchases. The prices of each brand evolve stochastically according to a (vector) 

stochastic process that is known to consumers. 

The model incorporates consumer heterogeneity in two ways:  First, we allow for four 

types of consumers in terms of their vector of utility evaluations for the brands. Second, we also 

allow for four types of consumers in terms of the usage rate. Thus, there are sixteen types in all.  

We find that this degree of heterogeneity allows us to fit the data very well. A novel aspect of 

our model is that a household’s usage rate type evolves over time according to a Markov process. 

A salient feature of the data is that households will often be frequent purchasers of ketchup for 

several months, then stop buying ketchup for several months, etc. Allowing usage rate type to 

evolve stochastically over time allows us to capture this type of pattern.    

A vital component of our model is the price process, which we estimate separately in a 

first stage, using the price data from Nielsen. We estimate a multivariate jump process that 

captures three key features of the data: 1) prices typically are constant for several weeks, 

followed by jumps, 2) the probability and direction of jumps depends on competitor prices, and 

3) the direction of jumps depends on own lagged price (so the jump process is autoregressive). 

Consumers are assumed to know the price process for each brand, and to be aware of prices 

every week.           

2.2. Household Utility 

 We assume that households have utility functions defined over consumption of each 

brand of a particular good and a composite other commodity. Denote the per period utility 

function for household i at time t by: 
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),...,,( 1 itiJttiit ZCCUU =  

where Cijt is the quantity of brand j consumed by household i at time t, and Zit is the quantity of 

the outside good that is consumed. Utility depends on quantities consumed rather than quantities 

purchased because the good in question is storable and households hold inventories. To simplify 

the model we assume that the composite good is not storable. 

 Further, we assume that utility is linear in consumption and additively separable between 

the storable commodity and the composite other good, so Uit takes the form: 

(1) ∑
=

+=
Jj

itijtijit ZCU
,1
ψ  

where ψij represents household i's evaluation of the efficiency units of consumption provided by 

each unit of brand j. The assumption of perfect substitutability among brands, and that brands 

generate differential utility per unit consumed, is similar to the set up in Hanneman (1984). This 

linear form allows us to ignore saving decisions, so that the only inter-temporal link in the model 

comes through inventories. We view this simplification as desirable, since the focus of our study 

is on inventory decisions and not saving decisions.  

 We model unobserved heterogeneity in consumer evaluations of the efficiency units of 

consumption, ψij, by adopting a finite mixture approach (e.g., Heckman and Singer (1984), 

Kamakura and Russell (1989)). Thus, we assume that there are k=1, …,K types and we estimate 

type-specific parameters for the evaluation of the efficiency units of consumption, ψkj, along 

with the probability that a household is type k, which we denote by ωk.  

It is well established in the marketing literature that rich patterns of taste heterogeneity 

are typically needed to explain the brand switching patterns of households in frequently 

purchased categories. Elrod and Keane (1995) and Keane (1997a,b) discuss how brand switching 

patterns tend to identify distributions of consumer taste heterogeneity. As we noted earlier, we 

found that a model with four taste types gave a good fit to the data in general, and to brand 

switching patterns in particular. 

 We assume that households can only purchase a single brand j on a given purchase 

occasion t.  This is consistent with the observation that for most frequently purchased consumer 

goods, households rarely if ever buy multiple brands on a single purchase occasion. For each 
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brand j, the household can choose among a discrete set of available quantities (which we will 

enumerate in the data section).    

 The budget constraint for household i at time t is: 

 (2) ∑ =++++++
j

ititititijtijtitijtijt YZSCCCQQDQP )( 2
321 τττ  

where Pijt is the per-ounce price of brand j to household i at time t, Qijt is the quantity of j 

purchased by i at t, and Yit is income of i at t. A crucial point is that the per-ounce price is 

allowed to differ by quantity (i.e., container size). We leave the dependence of per-ounce price 

on quantity implicit in order to conserve on notation.    

 The term 2
321 ijtijt QQ τττ ++  in equation (2) is the fixed cost associated with a purchase, 

and Dit is an indicator variable equal to 1 if a purchase is made (and zero otherwise). In the 

results section we discuss why we chose to specify the fixed cost as a quadratic in container size. 

The term CCit is the cost associated with carrying an inventory of the storable good under 

analysis for household i during time period t. Finally, SCit is the fixed stock out cost incurred by 

household i during time period t if their usage requirement exceeds their inventory. We will 

further define CCit and SCit in Section 2.3.1 below.  

 The fixed cost can be interpreted, for instance, as the cost of going to the store, locating 

the product in the store, and then carrying the container home. But regardless of the story one 

tells to motivate this term, its role in the model is to regulate the frequency and size of purchases. 

A higher fixed cost will, ceteris paribus, lead households to purchase less frequently, and to 

purchase larger sizes when they do buy. 

Thus, one could also view the fixed cost as simply capturing the fact that ketchup demand 

is part of a larger household budgeting problem. It would be highly inconvenient (and time 

consuming) to buy a little bit of every product one needs each week. Even if ketchup prices were 

constant over time, usage rates were constant, and ketchup was available in infinitely divisible 

quantities, households would presumably concentrate their ketchup purchases in a small 

percentage of weeks in order to avoid the inconvenience of making frequent small purchases.       

 The role of inventory carrying costs is to provide an incentive for households to smooth 

inventories by spreading out their purchases over time. A higher carrying cost will, ceteris 

paribus, induce households to avoid buying very large quantities on single purchase occasions, or 
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buying in consecutive or nearby weeks. A crucial distinction between the fixed cost and the 

inventory carrying cost is that, with high fixed costs, households want to buy infrequently. But, 

conditional on the total number of purchases, high fixed costs do not induce a household to care 

if its purchases are close together or far apart. It is only the inventory carrying cost that induces 

the household to want to spread purchases out over time.     

In the absence of inventory carrying costs, households would tend to wait for deep 

discounts and then buy very large stocks of ketchup. In fact, given a positive fixed cost of 

purchase, a price realization close enough to the lower support point of the price distribution 

would induce a household to buy a lifetime supply. In contrast, in simple inventory models with 

constant prices and usage rates, the combination of a fixed cost of purchase and an inventory 

carrying cost induces an optimal inter-purchase time interval, and an optimal quantity. This 

generates a “saw tooth” pattern in inventories and the familiar square root purchase quantity rule 

(see Mellen (1925), Davis (1925)). 

 Finally, in a model with uncertainty about usage requirements, a stock out cost generates 

an incentive to hold a buffer stock, and to repurchase before inventories are too close to zero. In 

our model, a higher stock out cost induces stronger positive duration dependence of the purchase 

hazard, holding price fixed. In Appendix A we provide a more detailed discussion of how the 

fixed cost, carrying cost and stock out cost affect key features of the data.      

 Next, we derive the period utility for household i in week t. Substituting for Zit in (1) 

using (2) we obtain:  

(3) ititijtijt
Jj Jj

itijtijtitijtijit SCCCQQDQPYCU −−++−−+= ∑ ∑
= =

)( 2
321

,1 ,1

τττψ  

Because Yit enters the conditional indirect utility function given purchase of each brand j in the 

same way, Yit will not affect brand choice decisions and can be ignored in the model.9 Also note 

that we entered the fixed cost, inventory carrying cost and stockout cost terms in the budget 

constraint (2), but, as is obvious from (3), it is irrelevant whether these terms enter there or in the 

utility function, since utility is linear in consumption 

                                                 
9 An interpretation of the fact that price enters the conditional indirect utility linearly is that the marginal utility of 
consumption of the outside good is constant over the small range of potential expenditures on the inside good, since 
these expenditures will be very small relative to Yit. This type of assumption is standard in marketing studies of 
demand for inexpensive consumer goods.  It is exactly correct because we specify that utility is linear in demand for 
the outside good, but is still approximately correct under more general utility specifications, provided the inside 
good is inexpensive. 
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2.3. Household Inventories 

2.3.1. Preliminaries 

 We assume that households have an exogenous stochastic usage need for the storable 

commodity in each period, given by Rit, and that they only get utility from consumption of the 

good up to the level determined by the usage need, and not beyond that level. Define 

∑
=

=
Jj

ijtit CC
,1

 

Then,  

  itit RC ≤ . 

The inequality allows for the possibility of stock outs, in which case consumption falls short of 

the desired amount. We assume that Rit is not revealed until after the purchase decision is made 

at the start of period t.  

The assumption of an exogenous usage need is reasonable for many of the types of goods 

we are interested in, such as ketchup, toilet paper, laundry detergent, etc.. For such goods, we 

think it is plausible – at least to a first approximation - that consumers have a satiation point 

beyond which they do not derive additional utility from added consumption (e.g., you don’t get 

extra utility from using more than the recommended amount of detergent in each load of laundry, 

or using more ketchup beyond the ideal amount that the kids like on their hamburgers).  

Another way to phrase the assumption is that, barring a stock out, the usage rate does not 

depend on the inventory level. Indeed, previous work in marketing (e.g., Ailawadi and Neslin 

1998) suggests that this assumption holds in ketchup (the category we will study). In other 

words, consumers do not put less ketchup on their hamburgers when their stock is low. Rather, 

they use some desired amount of ketchup until they stock out - at which point they might turn to 

other condiments or cease eating hamburgers for awhile.   

It is worth emphasizing that the assumption of an exogenous usage need does not mean 

consumption is independent of price. If price is high for an extended period of time, the 

households in our model will reduce consumption by suffering more frequent stock outs – as 

opposed to consuming any ketchup that they have in stock at a slower rate. In other words, all 

adjustment of consumption to price is along the extensive rather than the intensive margin.  

Rather than assuming an exogenous usage requirement, we could have instead assumed 

that utility is concave in consumption. In that case, if price were high for an extended period of 
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time, households would reduce consumption by slowing down their consumption rate. More 

generally, the optimal current consumption rate would depend on both inventories and expected 

future prices.  

 We did not adopt such a specification for two reasons. First, we don’t observe actual 

consumption in scanner data, but only purchases. Without consumption data, we felt that 

identification of the extent to which households react to price changes by altering consumption 

along the intensive and/or extensive margin would, at best, be very tenuously identified. In 

particular, both the curvature of the utility function and the stock out cost regulate the duration 

dependence in the purchase hazard, so their separate effects would be hard to distinguish.    

Second, adding a weekly continuous consumption decision would vastly increase the 

computational burden of solving the household’s optimization problem. Thus, we felt that 

ignoring the intensive margin was a sensible modeling choice. 

We note that in some categories, such as potato chips, ice cream or cookies, consumption 

rates are, presumably, an increasing function of inventories. Our assumption of an exogenous 

usage need would be much less palatable in such categories. On the other hand, simply 

introducing concave utility into our model would not be a sensible strategy in such cases either. 

The salient feature of such categories is “temptation” as opposed to forward-looking behavior 

(i.e., potato chips are technologically but not practically storable – at least for most people). So 

we suspect that a sensible model for such categories would be one where the consumption rate 

depends on the stock of the good but not on expected future prices. This would require a model 

with myopia or a very short time horizon.  

Next, we allow the distribution of the stochastic usage requirement to be heterogeneous 

across consumers. Thus, 

 ),(~log llti NR σµ  

where l=1, …, 4 and l denotes the usage type, where l=1 has the highest usage rate, whereas l=4 

has the lowest usage rate. We assume that usage rate type is independent of preference type.  

Furthermore, we assume that a household’s usage rate type may vary over time following a 

Markov switching process. Let πii denote the probability that a household remains type i from 

one week to the next, and let ijπ denote the transition probability from type i to type j. We 

assume that: 
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3
0.1 ii

ij
ππ −

=   ∀  ji ≠ . 

This says that if a household changes type, it is equally likely to change to any of the other types. 

Let iπ  denote the initial probability of being type i. In order to conserve on parameters, we 

assume that the initial probability is related to the family size (measured at the start of the panel) 

in the following way: 

 famsizef z 2 log log 101 += ππ  

famsizef z   loglog 202 += ππ  

303  log log ππ =  

famsizef z  loglog 404 −= ππ  

where famsize  is the family size.  

 We also allow a stock out to carry a fixed cost. Denote by Iijt the inventory that 

household i holds of brand j at the start of period t.  The total inventory of all brands is given by: 

(4) ∑
=

=
Jj

ijtit II
,1

 

Thus, if household i purchases Qjt units at the start of t, its maximum consumption during period 

t is Iit+Qit. Define   

(5) 
it

itit

R
QI

a
)( +

=  

If I[a < 1]=1 a stock out occurs, where I[ ] denotes an indicator function for the event within the 

brackets.   

The stock out cost to household i in period t has a constant component, as well as a 

component proportional to the magnitude of a shortfall, and is given by: 

(6) )(][)( 10 ititititititit CRICRsCRIsSC >−+>=  

where s0 is the fixed cost  and s1 is the per unit cost.  

 We further assume that the cost of carrying inventory is given by: 

(7) 2
21 ititit IcIcCC +=  

where itI is the average inventory level during period t, which is given by:   
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and where c1 and c2 are linear and quadratic terms in the average inventory level. Note that the 

construction of itI depends on whether or not a stock out occurs during the period. If there is no 

stock out (a ≥ 1), it is constructed assuming that usage is spread smoothly over the period. In the 

event of a stock out (a < 1), it is constructed assuming that usage is at a constant rate prior to the 

stock out, and that the stock is zero afterwards.  

2.3.2. Evolution of Household Inventories 

 At any t, a household might potentially have a number of brands in its inventory. In that 

case, we would need to model the order in which brands are consumed within a period. This 

would lead to greatly increased complexity of our model, for little payoff. In most categories of 

frequently purchased consumer goods, consumers almost never buy multiple brands on a single 

shopping occasion, and brand “loyalty” is strong, so inventory holdings will not exhibit much 

brand heterogeneity. So, to avoid having to model the order of consumption within a period in 

those rare instances where it would be relevant, we assume that in period t, after the minimum 

usage requirement Rit is realized, households use each brand in their inventory proportionately to 

meet their usage needs.10             

The state of a household at time t includes its time t inventories of each brand. If there are 

several brands, this means that the state space for the consumer’s dynamic optimization problem 

will grow quite large. However, under the assumption that brands are used proportionately to 

meet the usage requirement, a household’s state can be characterized by just two variables: its 

total inventory, as given by (4), and its quality-weighted inventory, which we define by   

∑
=

=
Jj

ijtijit II
,1

1 ψ  

Recall from (1) that ψij is household i's evaluation of the efficiency units of consumption 

provided by each unit of brand j. This is why we call I1it the “quality” weighted inventory. 

 After purchasing Qijt units of brand j, the total stock of the storable good is Iit+ Qijt, 

since households are assumed not to buy multiple brands in a given time period. Because of the 

assumption that households use each brand proportionately to meet their usage needs, if the total 

                                                 
10 Note that households would be indifferent to the order in which brands of different quality are consumed if they 
do not discount the future. Such indifference will hold to a good approximation if the discount factor is close to one. 
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amount of the storable good is greater than or equal to the minimum usage requirement Rit, then 

only a fraction 1/a of the stock of each brand is used, where a is given by equation (5).  

 Hence, if a stock out does not occur, then, using (3), (5) and (7), the utility of household i 

in period t, conditional of the purchase of Qijt, can be written as:  
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In this case, the inventory of household i in the following period t+1 will be 

(10) itijtitit RQII −+=+1  

and the quality-weighted inventory will be 

(11) ]11][1[1 1 a
QII ijtijtitit −+=+ ψ  

However, if the total amount of the storable good, Iit+ Qijt, is less than the minimum usage 

requirement Rit, all the inventories are used and a stock out occurs.  In this case the utility of 

household i in period t can be written, using (3), (5), (6) and (7), as:  
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Due to the stock out, both Iit+1 and I1it+1 are equal to zero. 

2.3.3. Identification 

 At this point, we have laid out all the equations of our structural model of household 

behavior. A formal analysis of identification is not feasible for a highly complex non-linear 

model like ours. However, in Appendix A we present an intuitive discussion of how the key 

model parameters are pinned down by patterns in the data. To summarize, note that the key 

structural parameters are the preference weights, ψ, the means of the log usage requirements, µ, 

the inventory carrying cost parameters, c, the fixed cost of purchase parameters, τ, and the stock 

out cost parameters, s. The discussion in Appendix A includes simulations that show how 

changing each of these parameters leads to different types of effects on household behavior, 

suggesting that each parameter is separately identified. An exception is the linear term in 
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inventory carrying costs, c1. As we describe in Appendix A, this has almost identical effects on 

behavior as the linear term in the fixed cost of a purchase, τ1. Thus, we fixed c1=0.  

2.4. The Price Process  

A key component of our model is the vector stochastic process for the prices of each brand/size 

combination. In order to have confidence in our model’s predictions of how price expectations 

affect brand and quantity choice dynamics, it is important that our assumed price process be 

realistic. Thus, our price process must capture three important features that are typical of 

observed price data for most frequently purchased consumer goods: 1) prices typically are 

constant for several weeks, followed by jumps, 2) the probability and direction of jumps depends 

on competitor prices, and 3) the direction of jumps depends on own lagged price. To capture 

these features of the data we specify the multivariate jump process described below.   

A key problem that we face is that the number of brand/size combinations is very large 

for the typical frequently purchased consumer good (e.g., in the case of ketchup it is 16). And per 

ounce prices for the same brand typically differ across sizes. This creates two problems. First, it 

is not feasible to estimate a vector price process including each of the 16 brand/size 

combinations, because of the substantial proliferation of parameters that would be entailed (i.e., 

consider the size of the variance/covariance matrix of the vector of price innovations). Second, if 

the price process exhibits persistence, so that current prices alter expected future prices, the 

expected value of the household’s next period state will depend on the current price of each 

brand/size combination. Thus, we must keep track of an infeasibly large number of state 

variables when solving the household’s dynamic optimization problem. 

To arrive at a practical solution of this problem, we exploit a common feature of most 

frequently purchased consumer goods categories. In most categories, there is one clearly 

dominant (or most popular) container size. That is, the large majority of sales are for a particular 

size. Thus, our solution is as follows: First, we estimate a vector process for the prices of the 

most common size (e.g., 32 ounces in the case of ketchup) of the alternative brands. This process 

captures the patterns of persistence and competitor reaction observed in the data. Second, we 

specify (for each brand) a process for the differentials of the per ounce prices of the “atypical” 

sizes relative to the most common size. We assume that the price differentials between the 

atypical sizes and the most common size are iid over time (except for constant mean differentials 

that capture the fact that per ounce prices differ systematically across sizes). 
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The assumption that price differentials between the atypical sizes and the common size of 

each brand are iid over time greatly simplifies the solution of the dynamic optimization problem.  

It means that the only state variables we need to keep track of are the prices of the common size 

of each brand. Without this assumption, the estimation of our model would be completely 

infeasible. In our view, the assumption is probably fairly innocuous.  Since most purchases are of 

the most common size, value functions should not be too sensitive to prices of atypical sizes. 

To proceed, we first specify the price process for the most common size of each brand, 

and then specify how price for atypical sizes move relative to the common size prices. The price 

of the most common size of brand j, denoted by c, is assumed to stay constant from one week to 

the next with probability jt1π . That is: 

)()( 1, cPcP tjjt −=     with probability jt1π ,  for j=1,J,  
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Thus, the probability of a price change is jtjt 12 1 ππ −= . In this case, the process is posited to be 
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where the vector of price shocks has a multivariate normal distribution 

),0(~ ΣNtε .   

Note that equation (13) specifies the probability of a price change as a logistic function.  

To capture competitive reaction, the probability that a brand changes its price is allowed to 

depend on the difference between the brand’s current price and the mean price of the other 

brands. Equation (14) specifies that if prices do change they follow an autoregressive process (in 

logs). Competitor reaction is captured in (14) by the parameter β2 that multiplies the mean (log) 

price of the competitor brands.       

Finally, the price process for the atypical sizes is specified as:  

( ) ( ) ( ) ( )zvcPzbzbzP jtjtjjjt ++= ln)(ln 21 , 

where c again indicates the common size and z indexes the atypical sizes. We also assume  

( ) ( )2,0~ vjt Nzv σ  
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The price process parameters are estimated in a first stage using the price data, prior to 

estimation of the choice model. They are treated as known in the second stage, at which point we 

plug them into the consumer’s dynamic optimization problem. The vector autoregressive jump 

(or switching) process for prices of the common size is estimated by maximum likelihood, while 

the price processes for the atypical sizes are estimated by OLS regression.   

In the first stage we estimate the price process faced by a typical household, which is 

subtly different from the price process that exists in particular stores. To estimate the price 

process for a particular brand/size, we first construct the price history for that brand/size that was 

faced by each individual household over the weeks of our sample period. We then pool these 

household specific price histories together in the estimation. Thus, variation in price due to 

uncertainty about which store will be visited in the next period is subsumed in the household 

level price process that we estimate.  

To justify this approach, we assume that the sequence of stores visited by a household 

over successive weeks is determined by a process that is exogenous to the brand and quantity 

choice process. This exogenous random variation in the store visited from week-to-week leads to 

mixing of the store level price processes, thus generating an additional source of variation in the 

prices a household faces. This assumption of exogeneity of the store visit process would 

probably not be a good assumption for big ticket items (say diapers) where price advertising 

might influence the store one visits. But we doubt that this is an important factor for inexpensive 

items like ketchup. 

Our model makes the strong assumption that consumers observe the price process 

realizations each week. We considered two types of alternatives to this basic model. One is a 

model in which consumers only see prices and can only make purchases in the weeks in which 

they visit a store. Then the dynamic optimization problem can be simply modified by specifying 

a weekly probability of a store visit. An agent at time t who is in a store and observing a set of 

prices must take into account probability he/she might not visit a store next week (and therefore 

won’t be able to make a purchase or see prices next week) when deciding whether to purchase at 

time t. But we found that this model produced essentially identical results to our model, because 

the large majority of households visit a store in the large majority of weeks. 

A second more extreme alternative is to assume that consumers only see prices in the 

weeks they actually purchase the good. This could be rationalized by a model in which 
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consumers first decide whether to buy the good in a given period, and only then go to the store 

and observe prices. But we reject this option out of hand, because such a model could not 

possibly explain the purchase acceleration effects that are clearly present in the data. 

Having completely described our model, we can provide some discussion of how it 

differs from that of Hendel and Nevo (2002). Their model is in many ways similar to ours, but a 

key difference is that they specify utility as a concave function of consumption and do not have a 

stock out cost parameter. In this framework, a high marginal utility of consumption near zero 

would induce consumers to try to avoid stock outs. They also assume that the utility from a brand 

is derived entirely at the moment of purchase. Hence, a household’s state depends only on its 

total inventory (and not how it is allocated among different brands). This assumption allows 

Hendel and Nevo to achieve a separation of the brand choice and quantity choice problems - 

households solve a dynamic optimization problem to choose optimal quantity each period, and 

then choose brands (conditional on quantity) in a static framework.11  

While the Hendel-Nevo approach leads to an important computational simplification, this 

of course comes at some cost. The complete separation of the brand and quantity choice 

problems breaks down if there is unobserved taste heterogeneity. In that case, the distribution of 

brand preferences in the selected sample of consumers who chose to buy a positive quantity in 

any given period will, in general, differ from population distribution of brand preferences (in a 

way that depends on prices). As we discussed in section 1, this is a source of bias in any 

estimation of price elasticities of demand based on static choice models. The Hendel and Nevo 

approach is likely to be most efficacious for categories in which the relation between usage rates 

and inventory is a first order problem while flexible modeling of unobserved consumer 

heterogeneity is of second order importance. In contrast, estimation of our model is more 

computationally demanding. But the main advantage of our approach is that we can easily 

accommodate unobserved heterogeneity. 

It is worth noting that unobserved heterogeneity in brand preferences can have important 

implications for how consumers optimize in the presence of inter-temporal price variation. To 

give just one example, consider a consumer who is very “loyal” to a particular name brand. 
                                                 
11 Taken literally, this assumption implies that brands are identical in attribute space (so they all generate the same 
utility when consumed), but that households’ perceptions of brands alter which brands they like to purchase. Such 
perceptions might be generated by “persuasive” or “image” advertising. However, if the discount factor is close to 
one, then to a good approximation it is irrelevant whether brands deliver different flow utilities when consumed, or 
if the expected present value of the brand specific flow utility is received at the time of purchase. 
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Suppose he/she is low on inventory, and faces a situation where current prices are high for 

his/her preferred name brand. This consumer has an incentive to buy a small quantity of the 

inexpensive store brand in order to tide him/herself over until a future time when the price of 

his/her favorite name brand is lower, anticipating that he/she can “stock up” on the favorite brand 

at that time.12 Such “stop gap” purchase behavior depends crucially on unobserved heterogeneity 

that generates a strong preference for a particular name brand.  

For instance, in the above example, a different consumer who was not “loyal” to a single 

name brand, but who preferred all name brands about equally, would not buy the store brand as a 

stop gap measure unless all name brand prices were high. Such a consumer would be much more 

likely to switch among the store brands as their prices fluctuate over time.       

2.5. The Household’s Dynamic Programming Problem 

The household’s optimal purchase timing, brand choice and quantity decisions can be 

described by the solution to a dynamic programming problem (see, e.g., Rust (1987), Pakes 

(1987), Wolpin (1987), Eckstein and Wolpin (1989), Erdem and Keane (1996)) with inventory 

Iit+1, quality weighted inventory I1it+1 and prices of the common size, Ptj for j=1,J, as the state 

variables.13 We assume that households solve a stationary problem.14  

Households are assumed to make their purchase decisions after they observe the prices at 

period t but before they observe their period t usage requirement (Rit).15 Now let us define the 

value function associated with the purchase of brand j and quantity Q before the realization of 

the usage requirement to be 

),(),,1,(),1,( 1 QjeRPIIVEPIIV itittititjQtRtititjQt t γ+=  

where eit(j,Q) is a stochastic term known to the household at the time of purchase but not 

observed by the analyst. To obtain multinomial choice probabilities (see McFadden (1974), Rust 

                                                 
12 In the data we examine, the store brand is indeed bought in small quantities much more commonly than the name 
brands.  This is precisely the mechanism our model uses to explain this phenomenon. 
13 In describing the households’ problem, we suppress the dependence of the value functions on household type, 
which depends on preference type and usage rate type. We also suppress the dependence of price on the household i 
that arises because different households shop in different stores.  
14 As described in Appendix B, we obtain a stationary solution for the value functions by artificially assuming a 
terminal period where all value functions equal zero, and then backsolving from that period until the state specific 
value functions converge to a fixed point.       
15 As described in section 2.2.1, the usage rate is stochastic for two distinct reasons.  Conditional on the household’s 
usage rate type, there is an iid stochastic shock to the usage rate each period.  But also, the household’s usage rate 
type varies over time according to a Markov process.  We subsume both types of uncertainty when we take the 
expectation over the usage rate realization.    
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(1987)), this error term will be assumed extreme value and i.i.d. distributed. γ denotes the inverse 

of the scale factor, which is proportional to the standard deviation of the extreme value 

distributed error term.  

The value function associated with the above problem for household i at period t is    

(15) )},(),,1,({),1,( 1
, QjeRPIIVEMaxEPIIV itittititjQtRQjetitit tit γ+=  

In writing the alternative specific value functions VjQt(Iit, I1it, Pt, Rit) there are two cases 

to consider. First, if Iit+ Qijt >Rit there is no stock out. In that case, using (5), (8) and (9) and 

applying Bellman's principle, the value function associated with brand j for household i at time 

period t is 
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with Ii,t+1 given by (10) and I1i,t+1 given by (11). 

 If Iit+ Qijt < Rit there is a stock out. Then, using (8) and (12), the value function is: 
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and next period inventory levels will be such that Iit+1=0 and I1it+1=0. Note that V0t, the value 

of the no purchase option, is obtained just by substituting Qijt = 0 in either equation (16) or (17).   

Equations (16) and (17) capture the notion that households may not make the choice that 

maximizes the expected time t payoff, but rather will also consider the consequences of their 

time t decisions for expected future payoffs. For example, if a household expects that a 

substantial price cut for their favorite brand is likely at t+1, it may be optimal to make no 

purchase at t, even if this means running a high risk of a stock out, because it is optimal to try to 

arrive at t+1 with inventories as low as possible. On the other hand, if a substantial price cut for 

a favorite brand occurs at t, it may be optimal to buy heavily - thus incurring substantial carrying 

costs at t and in the near future - due to the expected utility flow from consuming the brand over 

the next several periods. 



  25 

We are now in a position to write out the probability that a household chooses to buy a 

particular brand/size combination conditional on its state (which includes inventories and the 

current price vector). Denote by dijt an indicator equal to 1 if household i buys brand j at time t, 

and equal to 0 otherwise, and let di0t=1 denote the no purchase option. Since we have assumed 

that the alternative specific taste shocks eit(j,Q) in equation (15) follow an i.i.d. extreme value 

distribution, the probability that household i purchases brand j in quantity Q at time t is given by 

a multinomial logit type expression: 

(18) 
( )[ ]{ }

( )[ ]{ }∑
=

==

QJl
RPIIVE

RPIIVE
PIIQdob

ittititlQtR

ittititjQtR
tititijtijt

it

it

;..,,0
,,1,exp

,,1,exp
],1,|),1[(Pr  

With regard to the summation in the denominator, Q must belong to a discrete set of available 

sizes, which may in general be different for every brand j. Also note that l=0 corresponds to the 

no purchase option, and there is slight ambiguity in notation because in that case V does not have 

a Q subscript. Finally, note that the probability of no purchase is obtained by substituting V0t for 

VjQt in the numerator of (18). 

2.6. The Solution of the Dynamic Programming Problem 

Given the very large number of points in the state space, we do not solve for the value 

function at each point. Instead, following Keane and Wolpin (1994), we evaluate the value 

function only at a finite grid of points, assigned randomly over (I, I1, P) space. We then fit 

polynomials in (I, I1, P) to the values on these grid points, and use them to interpolate the value 

function at points outside the grid points.  

Using a polynomial in state variables to approximate the value function has an additional 

advantage: the integrations of the value function with respect to price shocks that appears in (16) 

and (17) can be done separately for each polynomial term in price that appears in the 

approximation. These integrations can be done analytically, since the price shocks in (14) are 

normal. Also, the integration with respect to the usage requirement shocks that appears in (15) 

can be done simply using quadrature integration.  We describe the details of the solution of the 

dynamic programming problem and of our approximation methods in Appendix B.  

2.7. The Likelihood Function and the Initial Conditions Problem 

 In our model, household choices are stochastic from the perspective of the 

econometrician for four reasons: The econometrician does not observe a household's preference 
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type, its usage rate type, or its inventory levels. And furthermore, the econometrician does not 

observe the idiosyncratic extreme value distributed taste shocks for brand-size combinations.  

The choice probabilities given in equation (18) assume that only the taste shocks are not 

observed by the econometrician. However, we need to form choice probabilities by integrating 

over all the state variables that are unknown to the econometrician. Thus, we also need to 

integrate over the latent taste types, usage rate types and inventory levels. 

Note that we face an initial conditions problem since we do not know the inventory levels 

of households at the start of the data set (see Heckman (1981)). We integrate out the initial 

conditions in the following way: We assume that the process had a true start that occurred t0 

periods prior to the start of our data, so that households had zero inventories at that point. Call 

this t=1. Our model specifies probabilities that each household is each usage rate type at t=1 

(these were denoted  π1 through π4 in section 2.3.1). Conditional on an initial usage rate type and 

a preference type, we simulate the household’s purchase and consumption process for t0 weeks 

(this requires us to draw prices, usage rates and usage rate types), bringing us up to the start of 

the observed data.16 Call the first period of observed data t=t0+1. Doing this M times, we obtain 

M simulated initial inventory levels and initial usage rate types. This process is repeated for each 

of the L possible initial usage rate and preference types, and for each household in the data. Thus, 

for each household we get L⋅M draws of initial inventories. In our application, we set M=10 and 

t0 = 246 (which is equal to twice the number of weeks of observed data). Also note that 

L=4⋅4=16. 

Suppose that we observed consumption of households during the sample period, which 

runs from t=t0+1 to t=T.  Then we could form the simulated likelihood17 of household i’s 

observed choice history as follows:   
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where 0
ijtd  denotes the observed choice for household i at time t, 0

ijtQ denotes the observed 

quantity for household i at time t, and 0
itP denotes the price vector faced by household i at tim e t. 

                                                 
16  To draw prices we use a block bootstrap in which we sample 10 week long sequences of prices from the actual 
price data. This was done in an attempt to retain the serial correlation properties of prices present in the data.  
17 See Keane (1993, 1994) for a discussion of simulated maximum likelihood methods for discrete panel data. 
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kω is the population proportion of taste type k, lπ  is the probability the initial usage rate type is l, 

and kΨ  is the vector of taste parameters for taste type k. Here, )(
0

m
lkitit II  denotes the inventory 

level of the household i at time t, conditional on simulation m of the initial inventory level and 

type, as well as on the households choice and consumption history up to time t.  The object 

)1,(1
00

m
lkit

m
lkitit III  is similarly defined. m

lil
t0

is the usage rate type for the household at t0, according 

to simulation m and conditional on draw l for the initial usage rate type.18 

Unfortunately, we also face a problem of unobserved endogenous state variables, because 

we do not observe households’ usage rate realizations (or equivalently, their consumption levels) 

even during the sample period. Thus, even if we knew the initial inventory level at the start of the 

observed data, we could not construct in-sample inventory levels. We deal with this problem by 

simulating each of the M inventory histories constructed above forward from t=t0+1 to t=T.  

Then we form the simulated likelihood contribution for household i’s observed choice history as 

follows: 
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where m
lkitI  is the inventory level at time t for household i of taste type k and initial usage rate type 

l, according to the mth draw sequence. The quality weighted inventory m
lkitI1 is defined similarly. 

And m
litl denotes household i’s usage rate type at time t according to draw m and conditional on 

initial type l. 

3. Data Description 

We estimate the model introduced in Section 2 on A.C. Nielsen scanner panel data from 

Sioux Falls, SD. The data set contains 2797 households and covers a 123 week period from mid-

1986 to mid-1988.  Every market of any significant size in the city of Sioux Falls was included 

in the study, so that we should have fairly complete data on the purchases of the participating 

households.19   

 Three national brands (Heinz, Hunt’s and Del Monte), together with Store brands, 

capture more than 96% of total sales in this market. We therefore restricted the analysis to these 
                                                 
18 In writing the likelihood, we have left the integration over the latent usage rate types from time t0+1 through t0+T 
implicit. 
19  We will of course miss purchases that were made out of town.   



  28 

four brands, and eliminated households that bought other, minor, brands. Among these four, 

Heinz is clearly the dominant brand, with roughly a 66% share of all purchases, followed by 

Hunts at 16%, Del Monte at 12% and Store brands at 5%. The sizes available are 14, 28, 32, 40 

and 64 ounces. But Hunt’s is not available in 14 and 28 ounce sizes, and the Store Brands are not 

available in the 40 and 64 ounce sizes. Of all the 16 available brand/size combinations, Heinz 32-

ounce is the market share leader with 36% share. 

We wanted to limit the sample to households who are regular ketchup users because it 

seems unlikely that our model would be relevant for households who are not regularly in the 

market. A careful inspection of the data revealed that some households would be heavy ketchup 

users for several months, and then seem to never purchase again. We are uncertain if this is 

because these households actually stopped buying ketchup, or perhaps because of some problem 

with the data.20 In order to obtain a sample of households who appeared to be regular ketchup 

buyers throughout the 123 week period, we subdivided the period into three 41 week sub-

periods. Then, we took only households who bought at least once during each sub-period. This 

reduced the sample size from 2797 households to 996 households. 

Figure 1 reports the distribution of households by total number of ketchup purchases 

during the 123 week period. We discovered that with only 4 usage rate types our model had 

difficulty simultaneously fitting the fat right tail of very heavy ketchup users, along with the 

large number of light users. This problem is compounded by the fact that, as we noted earlier, 

households usage intensity often seems to vary greatly over the 123 week period. Thus, our 

usage rate heterogeneity distribution has to play the dual role of explaining the dispersion in 

purchase frequency across households (Figure 1), and the heterogeneity within households in 

purchase intensity over time. Adding more usage rate types would solve the problem, but 

computational barriers precluded us from pursuing that course. 

Hence, we decided to further screen the sample down to households who bought at least 4 

times and bought no more than 16 times over the 123 week period.  This further reduced the 

sample size from 996 to 838.         

 We also had to decide on which purchase quantities would be included in the choice set.  

As we noted, there are 5 sizes of ketchup container (14, 28, 32, 40 and 64 oz.), but households 

                                                 
20  We speculate that some households may have moved out of Sioux Falls, but that this wasn’t recorded, or perhaps 
that the ID cards malfunctioned for some households. 
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could purchase other quantities by buying multiple containers. However, we found that 7 options 

accounted for more than 99% of all ketchup purchases:  1) buy a single container of one of the 5 

sizes, 2) buy two bottles of the 14-ounce size, or 3) buy two bottles of the 32-ounce size. Since 

option (2) generates a 28 oz purchase, and option (3) generates a 64 oz purchase, we decided to 

limit the discrete set of quantities that any household can buy to just {14, 28, 32, 40, 64}.    

A feature of the data is that not every brand size/combination is available in every store in 

every week. Table 1 reports the sample frequencies with which each brand/size was present in 

the choice sets of the households in the data (conditional on the stores they visited each week). 

This variability in the choice sets was accounted for in both the solution of the DP problem and 

the construction of the likelihood for our model. We ignored this in the presentation of the 

model, because it would be notationally cumbersome. Essentially, we assume the households in 

our model know the probabilities in Table 1, and that they take these into account when 

constructing their expected value functions. 

 Tables 2 and 3 contain some descriptive statistics about prices. Table 2 reports the mean 

(offer) price of each of the 32 oz sizes in cents.21 Note that Heinz, the most popular brand, is also 

the most expensive. Table 3 reports the mean price per oz differentials between the various sizes 

and the 32oz size. Notice that, in most cases, the 32 oz size is actually cheaper, on a price per oz 

basis, than the larger sizes.    

4. Empirical Results 

4.1.  Parameter Estimates for the Price Process 

Table 4 reports the maximum likelihood estimates of the parameters of the price process 

for the per ounce price of the 32 ounce sizes. The top panel of the table reports the parameters in 

the logit for the probability that price remains constant from one week to the next. The most 

interesting coefficient here is δ2, the coefficient on the squared difference between own price and 

mean competitor price. This term is negative, indicating that when the price differential is large 

                                                 
21 The price variable used in the estimation is the price paid before coupons (i.e., the shelf price). Including the 
redeemed coupon value in the price of the purchased brand would create a serious endogeneity problem.  This is 
because we do not observe what coupons the households could have used for the brands they chose not to buy.  
Including the coupon value only in the price of the brand actually bought is like including a dummy for the brand 
purchased (interacted with coupon value) as an explanatory variable in the choice model.  That is, one is including a 
transformed version of the dependent variable as an independent variable!!  While this has often been done in 
scanner data research, it is clearly a serious misspecification.  Erdem, Keane and Sun (1999) show that it leads to 
serious exaggeration of price elasticities of demand.    
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the contribution of this term to the logit becomes a large negative. Thus, a brand’s price is less 

likely to stay constant if it departs greatly from competitors’ prices. 

 The bottom panel of Table 4 reports the parameters of the autoregressive process for log 

per ounce prices in the event that there is a price change. Note the autoregressive coefficient on 

own lagged price is .4473, while the coefficient on the average price of competitors is .1482.  

This is again consistent with competitor reaction, since it implies that Pt+1 tends to be higher 

relative to Pt if competitors’ prices are higher.   

 Also interesting are the covariances between the price shocks. Note that the covariances 

among the price shocks for the three national brands (Σ23, Σ23, and Σ23), are very small, and in 

two out of three cases negative. This suggests that when brands change prices simultaneously in 

a given week, there is no clear tendency for the prices to move in the same direction. This 

suggests that common demand shocks are not driving the price changes, which is consistent with 

our argument that price movements are largely exogenous from the point of view of consumers. 

 Table 5 reports the OLS estimates of the processes for how the per ounce prices of the 

“atypical” sizes differ from that of the common 32 ounce size. Interestingly, the fact that the 

slope coefficients are in many instances small suggests that these prices do not move very 

closely together.22 This again suggests that brand specific demand shocks are not what drives 

price fluctuations.  

4.2.  Parameter Estimates of the Choice Model 

Table 6 presents the simulated maximum likelihood estimates of our dynamic model of 

consumer choice behavior. Consider first the taste parameter estimates for the four taste types.  

These are interpretable as cents per ounce. Thus, type 1 households receive a monetary 

equivalent utility of 4.09 ⋅ 32 = $1.31 from consuming a 32 oz container of Heinz. Type 1’s have 

a clear preference for Heinz over the other three brands. And type 1’s account for 51% of the 

population, which is consistent with Heinz’ dominant position. This “loyal” type will buy Heinz 

almost exclusively. 

Type 2’s and 3’s also prefer Heinz to the other brands, which illustrates just how 

dominate Heinz is in the this market. However, type 2’s like Hunts almost as much as they like 

Heinz, and type 3’s like Del Monte almost as much as they like Heinz. Type 2’s will tend to 
                                                 
22 This is a weakness of our approach, since it means our model of the price process fits the behavior of the 
“atypical” sizes less well than we would like. But, as noted in Section 2.4, we expect that value functions will not be 
too sensitive to the price process for the atypical sizes since they are bought much less frequently than the 32oz size. 
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switch over time between Heinz and Hunts, while type 3’s will tend to switch between Heinz and 

Del Monte. The type 4’s, who make up only about 4% of the population, like the store brand 

much more than do the other types. They will tend to switch between Heinz and the Store brand 

over time.     

The next section of Table 6 contains the estimates of the parameters that characterize 

stock out costs, inventory carrying costs and the fixed cost of a purchase. Note that the linear 

inventory carrying cost term was set to zero for identification reasons, as discussed in Appendix 

A. The quadratic inventory term (.001157) implies that the cost of carrying a stock of 32 ounces 

is only about 1 cent per week. Based on this, inventory carrying costs may seem to be trivial. It 

should be noted, however, that the quadratic term would become important if households tried to 

hold very large inventories (e.g., at 100 ounces it becomes 11.6 cents per week, and at 200 

ounces it becomes 46 cents per week). Thus, this parameter plays a key role in the model (i.e., 

simulations of our model imply that households rarely hold inventories in excess of 64 ounces, 

and practically never hold more than 80 ounces).  

The stock out cost is about 12 cents. In contrast, the fixed cost of making a purchase of a 

32 ounce size is 228 – 4.73 (32) + 0.06 (32)2 = $1.38. This slightly exceeds the typical price of 

the 32oz size. This estimate seems quite reasonable if one interprets the fixed cost as consisting 

primarily of the utility cost (i.e., time cost) of going to the store to make the purchase. However, 

since we know households go to the store in the large majority of weeks, this interpretation is not 

“realistic.” More plausibly, what the high fixed cost really captures is that it would be highly 

inconvenient to make frequent small purchases of ketchup and other consumer goods, rather than 

concentrating ones purchases for each good into a small number of weeks. Given the low stock 

out cost and the large fixed cost of making a purchase, it is not surprising that simulations of the 

model imply stock outs are very common (see Section 4.3 below). 

Our estimates of the quadratic in container size implies that the fixed cost of purchasing 

the 32 oz size is lower than the fixed cost of purchasing any other size.  This seems plausible, 

given that the 32 oz size is typically prominently displayed in the store (sometimes including end 

of aisle displays, in aisle displays, etc.), while other sizes may take more effort to locate.  

Obviously, our fixed cost parameters are capturing time and search costs, not just the physical 

effort involved in carry containers. It is worth noting that ketchup purchases are quite heavily 

concentrated at the most popular (32oz) size (see Section 4.3). Our model can generate that the 
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32oz is clearly the most popular size even without making the fixed cost a quadratic in size, but 

not to the same degree seen in the data.23     

We turn next to a discussion of the usage rate parameters for each of the four usage rate 

types. Type 1’s have a very high usage rate – about 23 ounces per week on average.24 But the 

probability a household remains a type 1 from one week to the next is only .35. The mo del uses 

the type 1’s to capture instances in the data where households are observed to buy large amounts 

of ketchup in consecutive (or nearby) weeks. We speculate that these unusual episodes are 

probably due to events like container breakage or instances where families throw large parties or 

cook outs. 

Type 2’s and 3’s exhibit much more moderate usage rates, and also much greater 

persistence over time. For instance, type 2’s use about 8 ½ ounces per week on average. They 

have a week-to-week probability of staying type 2’s of .9958, which implies there is about a 20% 

chance they change type within a year. Type 3’s use about 2 ounces per week on average. 

Note that usage rate parameters for type 4’s are not reported in the table. In the estimation 

process, the model wanted to generate one type with a very low usage rate. This enables the 

model to explain instances where households go several months without buying any ketchup.  

Thus, at some point in the estimation process we simply fixed the usage rate for type 4’s at zero.   

The last set of estimates, reported at the bottom of Table 6, are the probabilities that a 

household is each of the four usage rate types in the initial week of the data. The most common 

initial type is actually the zero usage rate type (e.g., 34.2% if family size is set to zero). As we 

would expect, the family size coefficient suggests that larger families are more likely to be the 

higher usage rate types (initially). The estimate implies that the probability of being a zero usage 

rate type drops by about 3.5% with each additional family member (e.g., the probability of being 

the zero usage rate type drops to 29.8% if family size is 4).   

4.3.  Goodness of Fit 

Table 7 compares the sample choice frequencies and simulated choice frequencies for all 

brand/size combinations. Overall, the fit of the model is very good on this dimension. The 

probability that a household makes a ketchup purchase in any given week in the data is 6.768%. 

                                                 
23 This same problem – the extent of preference for the most popular size is hard to explain - has been noted in 
many past marketing studies.  These typically invoke size specific preferences (or “size loyalty”) to explain the 
phenomenon. 
24 To obtain this figure, use the µ1 and σ1 from Table 6, and plug them into the formula exp(µ1 + σ1

2/2). 
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Simulation of our model generates a probability of 6.771%. The model also fits the brand shares 

extremely well. For example, the Heinz share is 66.4% and the model predicts 64.6%.      

The only dimension in which the model (slightly) fails is generating the size distribution 

of purchases. The 32 ounce share is slightly underestimated (61% in the simulation vs. 64% in 

the data) and the 28 ounce share is also slightly underestimated (13.7% in the simulation vs. 

17.0% in the data). Both these errors get pushed into the 40 ounce share, which is seriously 

overestimated (11.4% in the simulation vs. 5.4% in the data). 

Obviously, inventories are unobserved, so we cannot compare the model’s inventory 

predictions to the data. The simulation implies that households carry a mean inventory of 7.5 

ounces, and that they are stocked out (have no ketchup at all) in 2/3 of the weeks. This rate may 

seem high, but we have no data to compare it against. Also, recall that our estimates imply that 

roughly 1/3 of households have zero desired usage. These households are not really “stocked 

out” in the standard sense of the term, but simply do not want ketchup (i.e., they bear no stock 

out cost). It is also useful to recall that, in our model, households adjust consumption rates along 

the extensive margin (i.e., percentage of weeks they have ketchup available to consume) rather 

than along the intensive margin (i.e., rate of ketchup consumption in weeks when it is available). 

Thus, price changes effect consumption via their effect on stock out frequency, and the stock out 

frequency is therefore closely related to the price elasticity of demand.  

An interesting aspect of the data is that the share of the 14 ounce size in total brand sales 

is much greater for the Store brand (29%) than for the name brands (7% for Heinz and 4% for 

Del Monte). The model captures this pattern quite well, despite the fact that there is no specific 

parameter that could pick it up (i.e., we do not have brand/size specific taste parameters). Thus, 

the pattern is generated by the basic structure of our behavioral model itself. We can show in a 

greatly simplified version of our model that if a household has low inventory (i.e., it is at risk of 

stocking out) and the prices of preferred name brands are high, it is optimal to buy a small 

amount of the cheapest brand as a stop gap measure while waiting for prices to fall. This basic 

mechanism presumably carries over to the more complex model estimated here.        

Figures 2, 3 and 4 provide evidence on how the model fits choice dynamics.25 Figure 2 

compares the simulated and actual distributions of inter-purchase times (in weeks). The main 

                                                 
25 Of course, in the data, some spells are left or right censored. To make the simulations of the distribution of 
interpurchase times, the survivor function and the hazard comparable to those in the data, we imposed the same 
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failure of the model is that it somewhat underestimates the frequency of very short inter-purchase 

spells. For instance, the percent of the time that people buy again in just one week is 3.8% in the 

data vs. 2.7% in the simulation. By four weeks the model predicts 5.3% vs. 5.9% in the data. But 

other than that, the agreement of the simulated and actual distributions is quite impressive. The 

modal inter-purchase time is 6 weeks, and this is correctly predicted by the model. The model is 

also accurate regarding the amount of mass in the vicinity of the mode. In data, 18.8% of spells 

are in the 5 to 7 week range, compared to 17.7% in the simulation. The model (very) slightly 

overestimates the percent of inter-purchase spells in the 8-22 week range, and is quite accurate 

for spells of over 22 weeks. 

Another way to look at the data is to look at the survivor function for no-purchase spells, 

which is reported in Figure 3. Here, the agreement between the model and the data is quite good. 

Consistent with the observations made above, the simulated survivor function from the model is 

slightly above that in the data in weeks 1-16, because the model predicts too few short spells. 

And the simulated survivor function drops a bit below the data in the 21-37 week range – 

because too many spells are predicted to end in that range. But the divergence between the data 

and simulated survivor functions is never more than a few percent.26 In the data the survivor 

function first drops below 50% at 10 weeks (i.e., 47.8% of no-purchase spells survive more than 

10 weeks). The model survivor function implies that 50.2% of spells survive past 10 weeks, and 

dips below 50% at 11 weeks. The model and data survivor functions both drop below 20% at 18 

weeks.   

Figure 4 reports hazard rates for the hazard of making a purchase. Again the empirical 

and simulated hazard rates line up quite well. The hazard rate for the data is rather jagged due to 

noise, especially after about 30 weeks, since less than 10% of all no purchase spells survive that 

long (see the survivor function). The model predicts that purchase hazard is quite low 

immediately after a purchase, and then rises to the vicinity of 8% after about 7 weeks. It then 

                                                                                                                                                             
censoring on the simulated data. However, we found that this led to only trivial changes in the simulated 
distributions. This contrasts with the usual experience with unemployment duration data, where truncation typically 
has large effects. The reason for the difference lies in the different nature of these two types of data. In 
unemployment spell data, the sample usually consists of people who became unemployed in a particular week. Thus, 
the finite length of the sampling period leads to right censoring of longer spells. In our data, in contrast, the sample 
begins at random points during no-purchase spells of households. And the sampling frame of nearly three years is 
long relative to even the longest no-purchase spells. This means that short spells are just as likely to be right 
censored as long spells when the data set ends.          
26 The maximum divergence is at week 7. In the data 61.9% of no-purchase spells survive past week 7, and the 
model predicts 65.8%. 
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stays fairly flat at that level regardless of spell length. Note that empirical hazard is very similar 

to the simulated hazard up through week 16, and by that point over 70% of spells are ended (see 

survivor function). The empirical and simulated hazards diverge a bit after week 16. The 

difference is that, while the simulated hazard stays near 8%, in the actual data the hazard sags to 

the 6-7% range in weeks 16-32, and after week 35 it averages around 10%. 

Table 8 reports on how the model fits the distribution of accepted (per ounce) prices. The 

top two panels of the table contain mean offer prices from the data vs. simulation of the model. 

These are virtually identical. The bottom two panels contain mean accepted prices from the data 

vs. the simulation. The mean price for each brand/size combination is reported as a price per 

ounce. For example, for Heinz, the mean offer price in the data is 3.596 cents per ounce for the 

32 ounce size, or $1.15. The mean accepted price is $1.12. In the simulation, these figures are 

$1.15 and $1.11, respectively.  Note that mean accepted price is only a few cents below mean 

offer price, which is consistent with the fact that a large fraction of consumers have a strong 

preference for Heinz, thus isolating it from strong price competition.   

As we would expect, differentials between offer and accepted prices are generally much 

larger for Hunts, Del Monte and the Store Brand. For example, for Del Monte, the mean offer 

price in the data is $1.05 and the mean accepted price is 96 cents. The simulation also generates 

predictions of $1.05 and 96 cents, respectively. For the Hunts 32oz, the offer/accepted 

differential is about 5 cents in both the data in the simulation. Overall, the fit of the model to the 

accepted price distribution is remarkably good.27  

Finally, Table 9 compares the brand transition matrix in the data vs. that generated by 

simulation of our model. Some features of the transition matrix for the data are quite striking. 

First, note that a household that buys Heinz on a given purchase occasion has a 79% probability 

of buying Heinz again on the next purchase occasion. But the pattern is strikingly different for 

the other three brands. For example, a household that buys Del Monte on a given purchase 

occasion has only a 34% probability of buying it again on the next purchase occasion. It actually 

has a higher probability of buying Heinz (41%). Indeed, Heinz is so dominant in this market that 

this basic pattern holds for all three alternative brands. In general our model fits the transition 

matrix quite well, except that we understate the own transition rate for Del Monte by a third.    

                                                 
27  The only exceptions are the Heinz 64 oz and the Del Monte 40 oz. For each of these, the model substantially 
under-predicts mean accepted price. 
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4.4. Policy Experiments 

Our model could potentially be used to study the impact of a multitude of possible policy 

experiments. In this section we report the results of two types of experiment that are of particular 

interest. First, we discuss a transitory price cut experiment. This experiment is aimed at 

evaluating the importance of price expectations in the determination of own and cross price 

effects on demand. Second, we evaluate the effects of three types of permanent changes in 

pricing policy: a permanent reduction in mean price, a permanent reduction in price variability, 

and a simultaneous reduction in both the mean and variance of prices.   

4.4.1.  Effects of Transitory Price Changes: Evaluating the Importance of Expectations 

In our first experiment we simulate the effect of a 10% temporary (i.e., one week in 

duration) price cut for all sizes of the leading brand, Heinz. This change in price at time t will 

alter the expected future prices of Heinz, and all the other brands. Using our model, we can 

simulate the “total” effect of the temporary price cut on demand, which includes this change in 

expectations. We can also calculate an “expectations fixed” effect, in which households do not 

update their forecast of future prices when Heinz changes its time t price. To implement this, we 

simply use the original (rather than the reduced) Heinz price when constructing the future 

components of  the alternative specific value functions given by (16) and (17).    

To conduct the experiment, we first generate 10,000 simulated price histories that last 

246 weeks (twice the sample period in our data). Four each of the four taste types, we then 

simulate the behavior of 10,000 households, each facing one of these price histories. The 40,000 

simulated households are then weighted according to our estimates of the population type 

proportions. Details of the simulation procedure are presented in Appendix C. 

We start each household with zero inventories at t=1, just as when we integrate out the 

initial conditions in simulating our likelihood function. We simulate the effect of a price cut at 

week 80, under the assumption that the distribution of inventories would have converged to the 

stationary distribution by that point. This leaves 167 weeks over which to trace out the impulse 

response to the price cut. By using 10,000 simulated price histories, we essentially integrate over 

the distribution of initial prices and inventories that exist at the time of the price cut, as well as 

over the distribution of price changes (for Heinz and other brands) that occur after the price cut. 

Table 10 reports the effects of the temporary price cut on purchase probabilities for Heinz 

and all other brands in the week of the price cut, week 1, and in subsequent weeks through week 
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15. The table reports percentage changes in the number of purchases. We found that after week 

15 effects on demand were trivial, so we do not report them. Under each brand heading in the 

table, the first column reports the “total” effect, and the second column reports the “expectations 

fixed” effect. The first column indicates that purchases of Heinz increase 41.3% percent in the 

week of the price cut (corresponding to an elasticity of demand of roughly –4). This very large 

own effect is consistent with a large body of work in marketing (using scanner data) showing 

large effects of temporary price cuts on demand for many frequently purchased consumer goods.     

Consider now the cross-price effects. The 10% price decrease for Heinz results in 

decreases in demand in week 1 of about 4% for Hunts, 3.6% for Del Monte and 3.1% for the 

Store Brand, implying cross-price elasticties of demand in the range of .30 to 40.   

Note that total demand in the category rises 25.3%. This indicates that the price cut for 

Heinz is not just stealing customers away from the other brands. Rather most of the increase in 

Heinz sales results from either “purchase acceleration” or category expansion. 

 Next, consider the effect of the price cut, holding expectations of future prices fixed. As 

we would expect, the positive effect on Heinz sales is now greater; 45.3 % compared to 41.3 % 

when expectations adjust. The reason is that, with expectations held fixed, given the high degree 

of persistence in the price process, consumers expect that at t+1 the price of Heinz will very 

likely be near its original (pre-promotion) level. Thus, there is an added incentive to purchase at 

time t (i.e., “make hay while the sun shines”). Still, the most striking thing about this effect is 

that it is rather small. The own price elasticity of demand holding expectations fixed is only 10 % 

greater than the elasticity when expectations adjust. 

The striking result in the table is the impact of expectations on cross-price elasticities of 

demand.  When expectations are held fixed, these are reduced by roughly 50 %. The expectations 

fixed cross-price elasticities of demand for Hunts, Del Monte and the Store Brand are only about 

.20. Two factors drive this result: 1) if Heinz’ price is lowered today it leads consumers to also 

expect a lower Heinz price tomorrow. This lowers the value function associated with purchase of 

any brand other than Heinz today. 2) Given the price dynamics in the ketchup market, a lower 

price of Heinz today leads consumers to expect competitor reaction, so it lowers the expected 

prices of the other brands tomorrow. 

Table 11 reports the results of the exact same experiment, except that there we report the 

effects of the price cut on quantities demanded, rather than on purchase probabilities. The basic 
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story is exactly the same. The only additional point worth noting is that the price cut for Heinz 

causes both the Heinz quantity sold and the overall category quantity sold to increase by about 

10% more than did the purchase incidence. This implies that, in response to the price cut, 

consumers are also switching to somewhat larger quantities (conditional on purchase). This is as 

we would expect, and is again consistent with purchase acceleration. 

Finally, we report the effect of the temporary price cut on total quantity sold over weeks 

1 through the end of the simulation (a period of 167 weeks). As a percentage of average weekly 

sales, the sales of Heinz increase 35.5%, while the sales of Hunts, Del Monte and the Store 

Brand decline –7.9 %, -6.9 % and –6.6 %, respectively. Overall category sales increase 20.5%.28  

Thus, it is clear that the short run increase in the level of sales due to the temporary price cut is 

not wiped out, even in the long run, by sales reductions in later periods. The temporary price cut 

not only produces purchase acceleration, but also generates some additional Heinz and category 

sales that otherwise would not have occurred.  

4.4.2.  Effects of Permanent Changes in Pricing Policy 

 The real strength of a structural approach to demand estimation is that we can forecast 

how consumer behavior will respond to fundamental changes in pricing policy. In this section we 

analyze three such policy changes: 1) a permanent 10% cut in the mean price of Heinz, 2) a 

permanent 50% reduction in the standard deviation of Heinz prices around their mean, and 3) a 

combined experiment where we lower both the mean and variance in Heinz prices. The results of 

these three experiments are reported in Table 12. For both Heinz and the competitor brands we 

report the percentage changes in purchase incidence, total quantity sold (i.e., sales weighted by 

the container size), sales revenue, and mean accepted price.  

The top panel of Table 12 reports results from a permanent 10% reduction in the mean 

price of Heinz. This price reduction was applied to all sizes.29 Note that the purchase frequency 

for Heinz increases 33.1%, while the total quantity of Heinz sales increases 35.6%. Thus the 

price cut generates some shift towards purchase of larger sizes. As we would expect, the long run 

                                                 
28  Dividing these figures by 167, we see that percentage increase in Hunts sales over the whole 167 week period is 
less than 2 tenths of 1 percent.  Since essentially all the change happens in the first several weeks, we see that 
asymptotically, as t grows large, the effect of the temporary price cut on the percentage increase in total sales is (of 
course) approaching zero.   
29 To determine the new stochastic process for prices, we reduced all Heinz prices in the data by 10%, and then re-
estimated the price process of Section 4.1. Since the price process includes terms that capture competitor reaction, 
these parameters must adjust so that the new price process generates the same distribution of competitor prices as 
did the original price process (despite the lower prices of Heinz).  
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elasticity of quantity demanded with respect to the permanent price cut (-3.5) is less than the 

short long elasticity with respect to a transitory price cut (-4.5). 

It is also interesting to compare short-run vs. long-run cross-price elasticities of demand. 

Recall from Table 11 that the short-run cross-price elasticities with respect to transitory price 

changes were in the range of .30 to .40. Here, we see that the long-run elasticities with respect to 

permanent price changes are in the range of .75 to 1.0. Thus, the long run cross-price elasticities 

are much greater than the short-run elasticities. Finally, note that the 10% price cut for Heinz 

leads to a 19.7% increase in overall category demand in the long-run. As we would expect, this is 

substantially less than the 31.3% short-run category expansion effect we found for a transitory 

price cut in Table 11. 

The finding that long-run cross price elasticities of demand greatly exceed short-run 

cross-price elasticities is a key result of our analysis. This result implies that the degree of 

competition between brands is substantially greater than short-run elasticity estimates would 

indicate. But, in interpreting this result, it is important to bear in mind that we are not modeling 

competitor reaction to the permanent change in Heinz pricing policy.30 Thus, our experiment 

involves permanently lowering the price of Heinz relative to other brands. Obviously, this will 

induce a certain degree of brand switching (from other brands to Heinz). In contrast, when we 

simulated a transitory price cut for Heinz, this induced consumers to expect competitor reaction, 

in the form of lower prices for the other brands in the future. Thus, to some extent, the transitory 

price cut generates delay as opposed to switching, thus dampening the cross-effect. 

There is a second mechanism that also dampens the short-run cross-price effect relative 

to the long-run effect. Given a transitory price cut for Heinz, a “switch” to Heinz will, for 

households with relatively large inventories, require a “purchase acceleration” ahead of the time 

when they would have otherwise bought again. Such households may be deterred from switching 

because it will entail extra inventory costs in the short run. With a permanent price cut this 

mechanism is not operative – a household with large current inventories can simply delay the 

Heinz purchase until some future point when inventories are sufficiently run down.   

In other words, given a permanent Heinz price cut, a household can raise its steady state 

share of Heinz purchases without being subject to any short run spike in inventories. But, with a 
                                                 
30 To do so we would need to develop and estimate a market equilibrium model, which is beyond the scope of this 
paper. As we noted in the introduction, the technology to estimate market equilibrium models with forward-looking 
behavior on both the firm and consumer sides is probably several years away.  
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purely transitory price cut, a household whose current inventory is relatively high can only take 

advantage of the sale by bearing the cost of a short run inventory spike. Intuitively, households 

that already have a 64 oz bottle of ketchup at home will not want to buy Heinz even if it is on 

sale this week, because they don’t want to waste more room in their kitchen cabinets on ketchup. 

Thus, households with high inventories are insensitive to transitory price cuts.        

It is important to consider the implications these findings for conventional estimations of 

demand elasticities using static models. The fact that elasticities with respect to permanent and 

transitory price cuts differ substantially means that conventional estimates will be quite sensitive 

to whether the price changes present in the data under analysis are primarily persistent or 

transitory changes. Of course this is not a new point. For instance, Keane and Wolpin (2002) 

recently made a similar point regarding estimates of elasticities of various behaviors such as 

labor supply, fertility, marriage and welfare participation with respect to permanent vs. transitory 

changes in welfare benefit rules, and, much earlier, Lucas and Rapping (1969) considered 

elasticities of labor supply with respect to permanent vs. transitory wage changes. But it appears 

that previous work on scanner data has not paid serious attention to this issue.      

The second panel of Table 12 reports the effects of a 50% reduction in the variance of 

Heinz prices. To implement this experiment, we first calculated the mean offer price for each 

Heinz container size. We then compressed these offer prices around the size specific means, and 

re-estimated the price process of Section 4.1. Note that the Heinz purchase probability falls 

5.3%, while total quantity of Heinz sold drops by 6.6%. This implies there is some shift towards 

the purchase of smaller sizes. Heinz total sales revenue drops by 4.2%. Revenue drops less than 

quantity because the mean accepted price increases by 2.6%. This is as we would expect in a 

search model, given a reduction in the dispersion of the offer price distribution.       

Our final experiment was designed to determine whether it would be possible for Heinz 

to increase profits by simultaneously reducing the mean and variance of prices. This corresponds 

to a policy of having fewer sales, while also maintaining price at a consistently lower mean level. 

This experiment is of some interest, because there was a widespread shift from a policy of 

frequent sales to a policy of “every day low pricing” (EDLP) for many frequently purchased 

consumer goods in the late 1980s and early 1990s (i.e., after our sample period ended).  

Of course, not knowing the cost function, we can’t in general determine how changes in 

pricing policy would affect profits. However, if we assume that production cost is only a 
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function of total quantity sold, then we can compare profits under policies that generate equal 

sales quantities simply by comparing revenues. Given a 50% reduction in the variance of its offer 

prices, we determined that Heinz would need to reduce its mean offer price by 2.2% in order to 

hold the quantity of sales constant. We report this experiment in the bottom panel of Table 12.  

Note that the change in pricing policy has a positive effect on Heinz revenue, which 

increases by ½ of one percent. Thus, our model of consumer demand does imply that “Heinz” 

had an incentive to try this type of change in strategy. Of course, we are abstracting from the fact 

that “Heinz” is not a unitary actor. Actual retail price setting for a brand involves a complex 

interaction between retailers, wholesalers and manufacturers. Manufacturers use systems of 

incentives to attempt to induce particular pricing strategies on the part of retailers. For 

discussions of this topic, see, e.g., Lal (1990), Neslin, Powell and Schneider-Stone (1995) and 

Neslin (2002). It is beyond the scope of our analysis to explain how any increase in Heinz 

revenues resulting from the policy change would be distributed among the various actors in the 

supply chain, or to consider how such a policy change might be instigated.    

  The Heinz pricing policy change actually reduces demand for all competing brands and 

for the ketchup category as a whole. So whether a retailer would have an incentive to try such a 

change in strategy is ambiguous. Of course, not knowing wholesale costs for the various brands, 

we cannot determine how the policy change affects total category profits for the retailer. Within 

a range of plausible estimates for markups, our estimates in Table 12 imply reduced profits from 

other brands but ambiguous effects for the category as a whole.31   

The reason demand for competing brands is reduced is the very dominant position of 

Heinz in the market. Even the type 2 and 3 households, who account for the bulk of Hunts and 

Del Monte sales, respectively, actually slightly prefer Heinz. Thus, a large fraction of their sales 

derive from situations in which the Heinz price is relatively high. The variance reduction reduces 

the extent of such events.32       

                                                 
31 For example, assuming all brands have a 20% markup, and that marginal cost is constant, the estimates imply an 
increase in Heinz profits of 3.2%, reduced profits from Hunts, Del Monte and the Store brand of –9%,-11% and –7% 
respectively, and a small decline of –0.4% in category profits. Assuming smaller markups for the smaller brands 
would easily swing the sign of the net category effect, as would assuming smaller markups in general. 
32 Of course, the variance reduction also reduces the magnitude of Heinz sales. But there is an asymmetric effect of 
the variance reduction because, loosely speaking, as long as Heinz price is at or below its mean, households are 
much more likely to buy Heinz than the competing brands anyway. 
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Even if we adopt the abstraction of each brand as a unitary actor, our policy experiment is 

also limited because it holds competitors’ pricing policy rules fixed. Thus, the policy change 

could still be undesirable if Heinz expected it to induce competitor reactions that would 

adversely affect Heinz profits. At best, an analysis of demand side response alone can only tell us 

whether a policy change would have some potential for increasing profits given the predicted 

nature of consumer reaction. It cannot reveal whether a policy change would still increase profits 

once competitor reaction is factored in. 

Nevertheless, our results in the bottom panel of Table 12 do suggest that a strategy based 

on reducing price variance would have offered some promise. For such a strategy to be 

successful, a necessary condition is that it induce a substantial increase in mean accepted price. 

Notice that under the experiment, consumers are predicted to buy the same quantity of Heinz but 

at a mean accepted price that is ½ of one percent higher. This may represent a significant 

percentage increase in margins.      

Finally, our experiment also illustrates why a price index constructed by randomly 

sampling offer prices would be misleading during a period in which retailers switched to an 

EDLP strategy. In our experiment the mean offer price for Heinz falls 2.2%, yet the mean 

accepted price for Heinz rises 0.5%, and that for the category as a whole rises 0.85%. Thus, such 

a price index would falsely imply that the price of ketchup had fallen, when in reality the 

effective price of ketchup to consumers had increased.         

5. Conclusion 

 We have shown that our dynamic model of consumer brand and quantity choice 

dynamics under price uncertainty does an excellent job of fitting data on consumer purchase 

behavior in the market for a particular frequently purchased consumer good, namely ketchup. 

Our results indicate that increased brand sales resulting from a temporary price cut are 

mostly due to a combination of purchase acceleration and category expansion, rather than brand 

switching. Given the stochastic process for prices present in our data, cross-price elasticities of 

demand with respect to temporary price cuts are modest compared to the own price elasticities. 

More generally, our work suggests that estimates of own and particularly cross-price 

elasticities of demand may be very sensitive to the stochastic process for price and how 

households form expectations of future prices. In particular, the magnitude of cross-price 

elasticities of demand depends not just on the similarity of goods in attribute space, but also on 
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the extent to which changes in current prices affect expected future prices for the own brand and 

other brands. This in turn will depend on the price process itself, which is just another way of 

saying hat price elasticities of demand are reduced form, and not “structural,” parameters. These 

findings suggest that researchers working on merger analysis and evaluation of welfare gains 

from the introduction of new goods should be careful about interpreting cross-price elasticities as 

measures of the degree of competition between brands.  

 A second main finding of our work is that estimates of cross-price elasticities with 

respect to permanent or long-run price changes are substantially greater (i.e., by a factor of two) 

than estimates of cross-price elasticities with respect to transitory or short-run price changes. The 

short-run estimates are dampened by the presence of both inventory carrying costs and expected 

competitor reaction. For this reason, the long-run estimates provide a better measure of the 

intensity of competition between brands. 

 Finally, we showed how a pricing policy change that involves a simultaneous change in 

mean offer prices and price variability can create a substantial wedge between the change in 

mean offer vs. accepted prices. Thus, price indices based on sampling of offer prices can 

potentially be highly misleading as measures of changes in effective costs to consumers during 

periods when price variability is changing.  

 It is beyond the scope of this paper to determine if retailers confronted with the 

consumers in our model would choose pricing patterns with positive duration dependence in the 

probability of sales. Models of sales that capture this pattern, like Pesendorfer (2002) and Hong, 

McAfee and Nayyar (2002) are quite stylized. But the essential dynamic that these models 

capture is that demand is increasing in duration since the last sale, because consumer’s 

inventories are dwindling. This implies that the potential revenue from holding a sale is 

increasing over time, which, combined with appropriate assumptions about the supply side, 

creates at least the potential for positive duration dependence in the probability of sales. Our 

demand side model does imply that demand is increasing in duration since the last sale, so it may 

be consistent with duration dependence in pricing. On the other hand, in a static demand model, 

or a model without inventory carrying costs, demand is not a function of inventory, so demand 

cannot depend on duration since the last sale. Thus, consumer forward-looking behavior, along 

with storability and inventory carrying costs, appear to be essential ingredients for any realistic 

equilibrium model that seeks to generate positive duration dependence in the probability of sales. 
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  Appendix A:  Identification 
 
 Our model is too complex to for us to provide analytic results on identification, so we 
instead provide an intuitive discussion of how the key model parameters are pinned down by 
patterns in the data. We also present, in Table A1, simulations of how increasing each of the key 
model parameters affects key features of simulated data. These simulations are useful for 
understanding how various parameters have different effects, and are therefore identified.   
 First, we discuss the parameters that determine the inventory carrying cost (CC), fixed 
cost of purchase (FC) and stock out cost (SC). Recall that the equations for these are: 
 

Carrying Cost: CC = c1 I + c2 I2 
 

Fixed Cost:  FC = J0 +  J1 Q + J2 Q2 
 

Stock Out Cost: SC = s0 + s1 (R – C)  
 
First, consider the linear component of fixed cost (J1) and the linear term in inventory carrying 
costs (c1).  If the quantity Q that a consumer buys is used at a constant rate over time (i.e., R is 
fixed), and/or there is no discounting, it is irrelevant whether carrying costs are spread out over 
the period the good is consumed (reflected in c1), or whether the present value of carrying costs 
is born up front (reflected in J1). Thus, c1 and J1 would not be separately identified. 
 In our model, there is discounting, and usage rates R do fluctuate over time, so the 
parameters c1 and J1 would have subtly different effects on behaviour, but it would not be 
surprising if these are hard to detect. Indeed, when we tried to iterate on both parameters, we 
found that the likelihood was extremely flat along a locus in (c1, J1) space, and that the two 
parameters would run off in opposite directions. Thus, we discovered that we cannot separately 
identify these two parameters, and so we constrained c1 = 0. It is comforting that this 
identification problem was made obvious by our search algorithm, and that such problems did 
not emerge for any other model parameters.       
 Next consider J0, the constant in the fixed cost of purchase function. A large J0 would 
induce one to minimize the frequency of purchases, and to buy large quantities when one does 
buy. Thus, it is pinned down by data on the frequency and size of purchases.33 It is important to 
note that while a high J0 discourages frequent purchases, it does not affect or induce duration 
dependence in the purchase hazard. For example, with a high J0 one wants to avoid having many 
purchases during a year, but, conditional on the total number, one doesn’t care if purchases are 
spread out or close together. Indeed, simulations of our model, which we report in Table A1 
indicate that an increase in J0 shifts down the purchase hazard, but has little effect on its shape. 
 Next, consider the quadratic terms c2 and J2. These might at first appear to be subject to 
the same sort of identification problem that affects c1 and J1. If a consumer had I=0, usage rate 
was fixed and/or there were no discounting, and furthermore, if the consumer knew that he/she 

                                                 
33 Suppose we had not constrained c1 = 0. Higher inventory carrying costs would also cause one to buy small 
quantities frequently, so as to smooth inventories over time. Thus, a reduction in J0 and in increase in c1 would both 
lead to more frequent small purchases and hence smoother inventories. However, the former would increase overall 
demand, while the later would reduce it. So the likelihood would not be flat in these two parameters. 
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would not buy again until Q was used up, then there would be a locus of c2 and J2 values that 
would generate equal present values of fixed plus carrying costs for a purchase Q.  

However, c2 and J2 are separately identified by variation in inventories and the 
probability of subsequent purchases. A large c2 says one should avoid buying a large quantity if 
current inventory is already large and/or one thinks it is likely one would want to buy again in 
the near future (say, because a deal is likely). In contrast, a large J2 says one should avoid buying 
large sizes regardless of one’s state. This will tend to make time between purchases shorter, 
leading to less positive duration dependence in the purchase hazard. 

In contrast to fixed costs, higher inventory carrying costs should induce more positive 
duration dependence in the purchase hazard. A value of c2 > 0 induces one to smooth 
inventories, to the extent that one wishes to avoid very high inventory spikes, but it leaves one 
rather indifferent to fluctuations of inventories around low levels.  In other words, since c2 > 0 
induces a convex carrying cost function, the marginal cost of carrying inventories will be small 
until inventories grow quite large. Thus, purchase probability is increasing in duration since last 
purchase. 

The simulations reported in Table A1 are consistent with these assertions. They indicate 
that while increases in c2 and J2 both shift down the purchase hazard, the increase in c2 makes the 
hazard steeper (i.e., greater positive duration dependence), while the increase in J2 makes the 
hazard flatter.   

Next consider the role of stock out costs. The critical role of these parameters is to induce 
positive duration dependence in purchase probabilities. With a stock out cost, the probability of a 
purchase is increasing in duration since last purchase, holding price fixed. As we noted earlier, 
fixed costs of purchase cannot induce positive duration dependence, so there is no danger of 
confounding these parameters with the stock out cost parameters.34 However, an inventory 
carrying cost also makes purchase more likely as duration since last purchase increases. But a 
higher inventory carrying cost reduces demand, while a higher stock out cost increases demand, 
so these parameters have different effects. All these statements are verified by the simulations in 
Table A1.  

Now consider the tastes for consumption (or utility weights) R and the usage rate R. An 
increase in R or R each increases demand. However, they have different effects on the duration 
dependence of purchase probabilities. A higher usage rate R causes important changes in the 
duration dependence in the purchase hazard, while a higher R does not. As the simulations in 
Table A1 show, the effects of increasing usage rates on the duration dependence of the purchase 
hazard are rather complex. For high and medium usage rate types, the increase in R leads to less 
positive duration dependence (i.e., the relative frequency of short inter-purchase spells 
increases). But for low usage rate types the hazard increases for intermediate length spells 
relative to both short and long spells.     
 Table A1 also describes how key parameters affect accepted prices. It is interesting that 
most parameters seem to have negligible effects on accepted prices. It is also interesting that the 
utility weights have ambiguous effects. Of course, in a static model, an increase in the utility 
weights would unambiguously raise accepted prices. This is no longer true in a dynamic model, 
where consumers can search for good prices over time. One clear cut effect is that if we raise the 

                                                 
34 In addition, our fixed cost parameters (constant, linear and quadratic) are also pinned down by the relative 
purchase frequencies for the different sizes.   
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Heinz utility weight for type 1 consumers (i.e., the ones who strongly prefer Heinz) it raises 
accepted prices for Heinz. Other effects are more complex. 
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Appendix B: The Solution of the Dynamic Programming Problem 
 

In this appendix we describe the details of how we solve the dynamic programming (DP) 
problem faced by households in our model. The solution of the DP problem proceeds as follows. 
In order to construct the value function V(Iit, I1it, Pt) in equation (15) we need to construct the 
objects ( )[ ]ittititjQtR RPIIVE

it
,,1, . Given those objects, the expected maximum taken in equation 

(15) has simple closed form. The ( )[ ]ittititjQtR RPIIVE
it

,,1,  are expectations (over usage rate 
realizations) of the alternative specific value functions, which are given by equations (16) and 
(17). Using (16) and (17), along with (8), and letting F(R) denote the cumulative distribution 
function of the usage rate, we obtain:  
 
 (A1) ( )[ ]ittititjQtR RPIIVE
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,,1,  
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Note that the first term in brackets corresponds to usage rate realizations that generate no stock-
out, while the second term in brackets corresponds to cases in which a stock-out does occur. The 
univariate integrals over Rit in (A1) can be done analytically.      

The last term in (A1) is the future component, [ ]ijttitittititPR QPIIPIIVEE
tit

,,1,),1,( 1111 ++++
, 

which we must somehow compute. In our model, we assume that households solve an infinite 
horizon stationary problem. However, as computational device for solving the DP problem, we 
assume there is terminal period T at which the future component is exactly zero at all state 
points. Then, at t=T-1, equation (A1) takes a simple form, since the last term drops out, and we 
can calculate the ( )[ ]11111, ,,1,

1 −−−−−− iTTiTiTTjQR RPIIVE
iT

 values analytically. These can then be 
substituted into equation (15) to obtain values for the V(Ii,T-1, I1i,T-1, Pt,T-1). Given these, it is 
straightforward to construct the future component terms in (A1) that are relevant for t=T-2. 
Given these, we can calculate the ( )[ ]22222, ,,1,

2 −−−−−− iTTiTiTTjQR RPIIVE
iT

 values analytically, and so 
on. This process of solving a finite horizon DP problem by working backward from a terminal 
period in which the value functions are known is called “backsolving.”  

Our computational procedure for solving the infinite horizon DP problem is to backsolve 
the finite horizon DP problem for a sufficiently large number of time periods so that the value 
functions at each state point become stable, meaning that they cease to change significantly as 
we move further back. This approach to solving infinite horizon problems is quite common. We 
will make the criterion for stability more precise below. 

It is important to note that the state variables in our DP problem, Iit, I1it and Pt, are 
continuous. Therefore, in contrast to problems with a finite number of state points, it is not 
possible to solve exactly for ),1,( 111 +++ titit PIIV at every state point. Thus, exact solution of the 
DP problem is impossible, and an approximation method must be used. We therefore introduce a 
polynomial approximation for ),1,( 111 +++ titit PIIV .  

The polynomial for ),1,( 111 +++ titit PIIV is a function of total inventories, Iit, the ratio of 
quality adjusted inventories to total inventories I1it/Iit, and the vector of prices of the common 
size of each brand, Pjt(c) for j=1,…,4. To be precise, we specify: 
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where the )4(),..,1(,, mmlkC  are parameters to be estimated, and ),( lkM is a set whose elements satisfy 
the following conditions: 
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The structure of the set M(k,l) is set up so as to ignore various high order interaction terms, thus 
achieving a more parsimonious specification. For instance, the cases where the m(j) sum to 2 and 
k=0, l=0 correspond to squared terms in prices and interactions between each pair of prices. The 
requirement that k=0 and l=0 in this case means that these second order price terms are not 
interacted with inventories. The total number of coefficients in the approximating polynomial is 
48, and the R2 is .99.   
 The )4(),..,1(,, mmlkC  parameters are estimated by OLS regression. To obtain the sample of 

data points on which the regression is run, we calculate ),1,( ggg PIIV on 1000=G  

inventory/price grid points ),1,( ggg PII . To set up the grid, we first set the inventory grid 
points gI to be the Chebychev quadrature points on the interval from 0 to 80. The values of 
quality adjusted inventories and prices at each grid point are then set as follows: 

First, we generate a fraction of inventories that is allotted to each brand.35 Given these 
fractions and the Ig, we can construct brand specific inventories g

jI , j=1,…,4. We then multiply 
these by the utility weights ψj to obtain the quality weighted inventory I1g. 

Second, the four (brand specific) prices are drawn i.i.d. from a uniform distribution on the 
interval from 35 cents to 200 cents. This exceeds the range of prices for the 32 oz size observed 
in the data. These prices are then divided by the standard size 32 to obtain prices per ounce. 

Having defined the grid over which we calculate the value functions, we can now return 
to the issue of convergence of the backsolving process. We backsolve until we reach a point 
where, in going back one additional period, the maximum percentage change in the value 
functions across all grid points is less than 0.1%.    

We now discuss why we use I1it+1/Iit+1 as an argument in the polynomial approximation 
for ),1,( 111 +++ titit PIIV , rather than I1it+1 itself. One reason is that I1it+1 is highly collinear with 
Iit+1, while I1it+1/Iit+1 is not. Thus, the OLS regression we use to estimate the )4(),..,1(,, mmlkC is better 
behaved if we use the ratio.  

A second reason is more subtle. The ratio specification has a computational advantage 
that arises because I1it+1/Iit+1 does not depend on Rit. To see this, note that if 

ijtitit QIR +≤ then itijtitit RQII −+=+1 . Thus, using (5) and (11), we have: 
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35 To generate the inventory shares for each brand, we draw three uniform random numbers on the interval (0,1). 
Denote these by u1, u2 and u3. Then numerator of the share for brand 1 is set to 321 uuu , that for brand 2 is set 

to 321)1( uuu− , that for brand 3 is set to 321 )1)(1( uuu −− , and that for brand 4 is set to )1)(1)(1( 321 uuu −−− . 
The denominator of the shares are set to the sum of the four numerators. This construction guarantees that the 
inventory shares of the four brands sum to one.  
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Thus, I1t+1/It+1 does not depend on Rit.36  We now describe why this is advantageous. 
 Updating (A2) by one period and substituting for Iit+1 and I1it+1/Iit+1, we obtain: 
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Since Rit does not appear in the I1it+1/Iit+1 term, the expectation over Rit is simply:  
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Now, for each k, the terms k

itijtitR RQIE
it

)( −+ can be calculated analytically using a simple 
quadrature procedure. 
 Finally, to obtain the future component, [ ]ijttitittititPR QPIIPIIVEE

tit
,,1,),1,( 1111 ++++

, which 
is the last term in (A1), we must also take an expectation with respect to price realizations at t+1. 
We have:   
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where, using equations (13) and (14), the last term in (A5) can be written:  
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The integration over realizations of the error term for prices jtε in equation (13) can be done 
analytically, since we assume these errors are normally distributed. 

                                                 
36 Note that if ijtitit QIR +> , then 01 =+itI and 01 1 =+itI , so the ratio is undefined. However, the Chebychev 

quadrature points that we use always have Ii,t+1>0, so this problem does not arise. 
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Appendix C: Simulation of the Model 
 This appendix describes how we simulate data from the model, both to evaluate model fit 
and to conduct policy experiments. The first step is to generate 10,000 simulated price histories 
that last 246 weeks (twice the sample period in our data). Recall that in our model there are four 
taste types and four initial usage rate types, giving a total of 16 types. We simulate the behavior 
of 10,000 households of each taste type. Each of these faces one of the 10,000 simulated price 
histories. Within each taste type, 2500 households are assigned to each initial usage rate type. 
Thus, we simulate a total of 40,000 households, 2500 for each of the 16 types. In order to form 
sample statistics, the simulated households are weighted according to our estimates of the 
population type proportions. We discard the data from the first 79 weeks. 

Given a simulated price history, we simulate the choice history for a household of a 
particular taste and initial usage rate type as follows: 
 
1) Assume initial inventory is zero. 
 
2) Use equation (18) to determine the probability of each of the 17 choice options at t=1.   
These are conditional on the t=1 price vector P1, the initial inventories I1=0 and quality weighted 
inventories I11=0, and the household’s initial usage rate type. Denote the set of choice  
probabilities by {p1, …, p17}. Define q0 = 0 and qk = ∑

= kl
lp

,1
. Draw a uniform random variable 

u1 on the interval [0,1]. Option j is chosen iff qj-1 < uj < qj. 
 
3) Draw the t=1 usage requirement from a log normal distribution. Update inventory using 
equation (10) to obtain I2, and update quality weighted inventory using (11) to obtain I12. 
 
4) Use the usage rate type transition probabilities πij for j=1, …,4 to draw the household’s  
t=2 usage rate type. This is done using a uniform draw, following the same type of algorithm  
used in step (2). 
 
5)  Use equation (18) to determine the probability of each of the 17 choice options at t=2,  
conditional on the t=2 price vector P2, the t=2 inventory levels I2 and I12, and the t=2 usage rate 
type. A particular choice option is drawn using a uniform random draw, just as in step 2. 

 
Steps analogous to these are repeated until a complete history is obtained. 
 
It is worth noting that simulation of data from the model is trivial once we have solved 

the dynamic optimization problem and can form the conditional choice probabilities (18), 
because the inventories and the latent usage rate types that enter the conditioning set are fully 
observed along the simulated choice path. This contrasts with construction of the likelihood 
function, which is very difficult because inventories and usage rate type realizations are 
unobserved in the actual data, and therefore must be integrated out of the choice probability 
expressions.   
   It is also worth noting that, whenever we implement a policy experiment, we hold fixed 
the uniform and log normal random draws that determine the choice history. In that way, all 
changes in behavior are due to changes in the prices facing the household or changes in the 
choice probabilities determined by equation (18), rather than due to simulation induced noise. 
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Table 1: Probability of availability of various brands and sizes. 

 
Sizes (oz) Brands 

 Store Brand Del Monte Heinz Hunts 
14 0.8840 0.4268 1.0000 0.0 
28 0.7060 0.7817 0.9975 0.0 
32 0.8840 1.0000 0.9968 0.9968 
40 0.0 0.5630 0.9968 0.6071 
64 0.0 0.9264 0.9968 0.9968 

 
 
 

Table 2: Mean price of the 32 oz. size (in cents) 
 

Store Brand Del Monte Heinz Hunts Total 
90.70 105.07 115.09 104.93 104.33 

 
 
 

 
Table 3: Average % Difference in per oz. prices from 32 oz. size 

 
Oz. Size Store Brand Del Monte Heinz Hunts Total 

14 33.43 67.88 54.66  48.97 
28 43.47 51.53 37.26  43.51 
40  32.44 33.55 39.86 35.03 
64  -9.93 16.00 -6.76   0.00 
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 Table 4: Estimates of the Price Process Coefficients 
 

 
Parameters in Logit for Probability of Price Staying Constant 

Store Brand intercept 01δ             1.829      (0.01890) 
Del Monte intercept 02δ             0.6170    (0.00901) 
Heinz intercept 03δ             0.3079     (0.00980) 
Hunts intercept 04δ             0.7655     (0.00814) 
Store Brand slope coefficient 11δ             1.139       (0.0460) 
Del Monte slope coefficient 12δ             2.004       (0.0327) 
Heinz slope coefficient 13δ             1.908       (0.0145) 
Hunts slope coefficient 14δ             1.577       (0.0371) 
Square term coefficient 2δ           -0.1453      (0.0239) 
 

Parameters of the Autoregressive Process for Log Price Change 
Store Brand Intercept 01β             0.3851       (0.00428) 
Del Monte intercept 02β             0.4375       (0.00415) 
Heinz intercept 03β             0.5068       (0.00470) 
Hunts intercept 04β             0.4534       (0.00455) 
Slope coefficient 1β             0.4473       (0.00330) 
Square term coefficient  2β             0.1482       (0.00516) 
 

Variance Covariance Matrix Parameters 
11Σ            0.00402      (3.22E-5) 

12Σ            0.00121      (5.10E-5) 

13Σ            0.00148      (6.37E-5) 

14Σ            0.00014      (4.53E-5) 

22Σ            0.01189      (5.71E-5) 

23Σ          -0.00042      (9.04E-5) 

24Σ            0.00218      (6.14E-5) 

33Σ            0.00891      (9.63E-5) 

34Σ          -0.00050      (6.42E-5) 

44Σ            0.00820      (4.93E-5) 
Note: The brand subscripts are defined as follows: Store Brand=1, Del Monte=2, Heinz=3, 
Hunts=4.  
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Table 5: OLS Results for Log Prices of Atypical Sizes Relative to 32oz  

 
 
 

Constant Terms 
Size (oz) Store Brand Del Monte Heinz Hunts 

14 1.409 1.642 1.814  
28 0.971 1.338 1.191  
40  1.566 1.639 1.265 
64  0.445 1.143 0.614 

 
 

Slope Coefficients 
Size (oz) Store Brand Del Monte Heinz Hunts 

14 -0.090 -0.003 -0.085  
28 0.419 0.197 0.324  
40  -0.211 -0.059 0.228 
64  0.561 0.211 0.411 

 
 
 

Standard Errors 
Size (oz) Store Brand Del Monte Heinz Hunts 

14 0.046 0.033 0.045  
28 0.128 0.107 0.087  
40  0.145 0.060 0.096 
64  0.127 0.150 0.119 
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Table 6: Parameter Estimates for the Structural Model  
Parameter Symbol Estimate Standard Error 

 
Utility Type 1 

Store Brand Utility Weight 11Ψ  0.0373 0.108 
Del Monte Utility Weight 12Ψ  0.4520 0.176 
Heinz Utility Weight 13Ψ  4.0860 0.135 
Hunts Utility Weight 14Ψ  1.3924 0.174 

 
Utility Type 2 

Store Brand Utility Weight 21Ψ  0.0099 0.174 
Del Monte Utility Weight 22Ψ  2.2218 0.150 
Heinz Utility Weight 23Ψ  3.3812 0.144 
Hunts Utility Weight 24Ψ  3.2828 0.145 

 
Utility Type 3 

Store Brand Utility Weight 31Ψ  0.1205 0.295 
Del Monte Utility Weight 32Ψ  2.7410 0.188 
Heinz Utility Weight 33Ψ  3.0087 0.212 
Hunts Utility Weight 34Ψ  1.3046 0.397 

 
Utility Type 4 

Store Brand Utility Weight 41Ψ  3.2608 0.214 
Del Monte Utility Weight 42Ψ  0.3618 0.339 
Heinz Utility Weight 43Ψ  2.4825 0.199 
Hunts Utility Weight 44Ψ  2.8661 0.198 

 
Type Probabilities 

Utility Type 1 1Π  0.5148 0.025 
Utility Type 2 2Π  0.3426 0.026 
Utility Type 3 3Π  0.0996 0.020 

 
Other Utility Function Parameters 

Precision of Utility Shocks γ  0.03125 3.51E-4 
Discount factor β  0.99   
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Table 6: Continued 
Parameter Symbol Estimate Standard Error 

 
Parameters of Stockout Costs, Inventory Carrying Costs and Fixed Costs of Purchase  

Stockout cost: Constant s0 11.528 1.446 
Stockout Cost: Linear Term s1 0.001728 0.370 
 
Inventory Carrying Cost: Square Term 2c  0.006236 5.16E-5 
 
Cost of Purchase: Constant 1τ  228.46 3.527 
Cost of Purchase: Size 2τ  -4.7263 0.271 
Cost of Purchase: Size2 3τ  0.06119 0.0016 
 

Usage Rate Process: Type 1 
Mean  1µ  3.0186 0.063 
Standard Deviation 1σ  0.5111 0.011 
 

Usage Rate Process: Type 2 
Mean 2µ  1.5222 0.0033 
Standard Deviation 2σ  1.1224 0.0054 
 

Usage Rate Process: Type 3 
Mean 3µ  0.5267 0.034 
Standard Deviation 3σ  0.5253 0.042 
 

Usage Rate Type Persistence 
     Type 1 11Π  0.3511 0.0060 
     Type 2 22Π  0.9958 9.53E-4 
     Type 3 33Π  0.9101 3.95E-4 
     Type 4 44Π  0.9049 3.41E-4 
 

Usage Rate Types, Initial Probability 
     Type 1 01Π  0.1245 0.031 
     Type 2 02Π  0.2770 0.101 
     Type 3 03Π  0.2565 0.045 
 
Family Size Effect on Usage Rate zf  0.03484 0.097 
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Table 7: Choice Frequencies in Data vs. Model Predictions 
 
Sample Choice Frequencies 

Brand  
Size (oz) Store Del Monte Heinz Hunts 

 
Size Total 

14 0.0159 0.0049 0.0489  0.0698 
28 0.0050 0.0156 0.1498  0.1752 
32 0.0326 0.0904 0.3643 0.1540 0.6413 
40  0.0032 0.0444 0.0060 0.0535 
64  0.0029 0.0571 0.0049 0.0649 

  
Brand Total 0.0535 0.1170 0.6646 0.1649 1.0000 
Purchase probability: 0.06768 
 
 
Simulated Choice Frequencies 

Brand  
Size (oz) Store Del Monte Heinz Hunts 

 
Size Total 

14 0.0183 0.0079 0.0426  0.0688 
28 0.0158 0.0145 0.1064  0.1367 
32 0.0310 0.0723 0.3636 0.1431 0.6100 
40  0.0123 0.0848 0.0167 0.1139 
64  0.0050 0.0486 0.0169 0.0705 

  
Brand Total 0.0651 0.1155 0.6461 0.1768 1.0000 
Purchase probability: 0.06775 
Stockout probability: 0.6665 
Average Inventory Level: 7.5226 
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Table 8: Average Offer and Accepted Prices in Data vs. Model Predictions 
 
Mean Offer Prices - Data 

Oz. Size Store Brand Del Monte Heinz Hunts 
14 3.752 5.154 5.492  
28 4.024 4.830 4.901  
32 2.836 3.288 3.596 3.280 
40  4.007 4.742 4.502 
64  2.845 4.137 3.024 

 
 
Mean Offer Prices – Simulation of the Model 

Oz. Size Store Brand Del Monte Heinz Hunts 
14 3.752 5.154 5.491  
28 4.022 4.827 4.897  
32 2.833 3.284 3.594 3.273 
40  4.013 4.743 4.500 
64  2.835 4.133 3.023 

 
 
Mean Accepted Prices - Data 

Oz. Size Store Brand Del Monte Heinz Hunts 
14 3.747 5.078 5.535  
28 4.045 4.706 4.749  
32 2.760 2.996 3.509 3.114 
40  4.145 4.619 4.470 
64  2.580 3.909 2.993 

 
 
Mean Accepted Prices – Simulation of the Model 

Oz. Size Store Brand Del Monte Heinz Hunts 
14 3.737 5.136 5.464  
28 3.666 4.649 4.674  
32 2.785 3.006 3.463 3.099 
40  3.657 4.663 4.392 
64  2.638 3.302 2.789 

 
 
Note: The figures in the table are cents per ounce. For accepted prices, brand totals are obtained 
by dividing aggregate brand sales revenue by the aggregate quantity sold of the brand (i.e., 
purchases of larger sizes receive more weight).  
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Table 9: Brand Switching Matrix in Data vs. Model Predictions 
 
 
Data 

 Store Brand Del Monte Heinz Hunts 
Store Brand 0.2719 0.1338 0.4233 0.1711 
DelMonte 0.0583 0.3407 0.4111 0.1898 

Heinz 0.0340 0.0698 0.7895 0.1067 
Hunts 0.0678 0.1576 0.4516 0.3230 

 
 
Simulation of the Model  

 Store Brand Del Monte Heinz Hunts 
Store Brand 0.2363 0.0930 0.4661 0.2047 
DelMonte 0.0520 0.2270 0.4850 0.2360 

Heinz 0.0468 0.0834 0.7422 0.1276 
Hunts 0.0780 0.1474 0.4643 0.3103 

 
 
Note: The left column reports the brand bought on the previous purchase occasion. The top row 
indicates the brand bought on the current purchase occasion.   
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Table 10: Effects of Temporary 10% Heinz Price Decrease 
 On Purchase Frequencies for Heinz and Other Brands 

   When Expectations are Adjustable (“Full”) or Fixed  
 

Week         Heinz         Hunts     Del Monte    Store Brand Total 
 Full Fixed Full Fixed Full Fixed Full Fixed Full Fixed 

1 41.30 45.28 -3.99 -1.93 -3.58 -1.81 -3.11 -1.88 25.32 28.53
2 -2.07 -2.31 -1.23 -1.38 -1.23 -1.29 -1.07 -1.21 -1.75 -1.96
3 -1.56 -1.72 -0.94 -1.02 -0.80 -0.89 -0.79 -0.88 -1.31 -1.45
4 -1.40 -1.54 -0.68 -0.72 -0.57 -0.63 -0.58 -0.65 -1.13 -1.24
5 -0.80 -0.92 -0.53 -0.55 -0.37 -0.41 -0.39 -0.43 -0.68 -0.77
6 -0.55 -0.58 -0.26 -0.27 -0.21 -0.21 -0.18 -0.19 -0.44 -0.46
7 -0.42 -0.42 -0.15 -0.19 -0.12 -0.14 -0.24 -0.26 -0.33 -0.34
8 -0.25 -0.24 -0.10 -0.12 -0.06 -0.07 -0.09 -0.10 -0.19 -0.19
9 -0.17 -0.19 -0.02 -0.04 -0.05 -0.06 -0.05 0.03 -0.12 -0.14

10 -0.30 -0.15 -0.04 -0.04 -0.08 -0.06 0.04 -0.05 -0.21 -0.11
11 -0.13 -0.14 -0.04 -0.04 -0.08 -0.07 -0.03 0.04 -0.09 -0.10
12 -0.21 -0.21 -0.03 -0.04 -0.02 -0.03 -0.12 -0.04 -0.15 -0.15
13 -0.05 -0.04 0.01 -0.01 -0.01 -0.01 -0.01 -0.11 -0.04 -0.03
14 -0.15 -0.01 0.02 0.01 0.00 0.00 0.01 -0.00 -0.10 -0.01
15 0.02 0.04 0.03 0.04 0.01 0.03 0.01 0.02 0.02 0.04

 
Note: The table reports the effects of a temporary 10% price cut for Heinz on simulated weekly 
sales frequencies for Heinz and the other brands over a 15 week period. Changes are reported in 
percent terms. The first column (for each brand) shows the effect when expectations of future 
prices are allowed to adjust (which we denote here as “full” expectations). The second column 
(for each brand) shows the effect holding expectations of future prices fixed.  
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Table 11: Effects of Temporary 10% Heinz Price Decrease 
 On Purchase Quantities for Heinz and Other Brands 
When Expectations are Adjustable (“Full”) or Fixed 

 
Week Heinz Hunts Del Monte Store Brand Total 

 Full  Fixed Full Fixed Full Fixed Full Fixed Full Fixed 
1 45.07 49.19 -4.02 -1.90 -3.64 -1.78 -3.15 -1.82 27.93      31.28
2 -2.14 -2.38 -1.22 -1.38 -1.13 -1.30 -1.08 -1.23 -1.81 -2.01
3 -1.51 -1.67 -0.91 -0.99 -0.80 -0.89 -0.81 -0.90 -1.29 -1.42
4 -1.61 -1.75 -0.65 -0.69 -0.56 -0.62 -0.60 -0.67 -1.26 -1.37
5 -0.87 -0.97 -0.54 -0.55 -0.36 -0.41 -0.41 -0.45 -0.73 -0.80
6 -0.57 -0.60 -0.26 -0.27 -0.20 -0.20 -0.19 -0.21 -0.46 -0.48
7 -0.43 -0.44 -0.14 -0.18 -0.11 -0.13 -0.24 -0.25 -0.33 -0.35
8 -0.26 -0.24 -0.13 -0.15 -0.06 -0.06 -0.09 -0.10 -0.20 -0.20
9 -0.18 -0.20 -0.02 -0.04 -0.04 -0.05 0.03 0.01 -0.13 -0.14

10 -0.44 -0.15 -0.04 -0.03 -0.08 -0.07 -0.05 -0.05 -0.31 -0.11
11 -0.12 -0.13 -0.04 -0.04 -0.08 -0.03 0.03 -0.03 -0.09 -0.10
12 -0.33 -0.32 -0.03 -0.04 -0.02 -0.01 -0.03 -0.04 -0.22 -0.22
13 -0.06 -0.04 -0.01 -0.01 -0.01 0.00 -0.10 -0.10 -0.04 -0.04
14 -0.19 -0.02 0.02 0.01 0.01 0.03 -0.01 -0.00 -0.12 -0.01
15 0.02 0.05 0.03 0.04 0.02 0.04 0.01 0.02 0.02 0.04

 
Note: The table reports the effects of a temporary 10% price cut for Heinz on simulated weekly 
sales quantities for Heinz and the other brands over a 15 week period. Changes are reported in 
percent terms. The first column (for each brand) shows the effect when expectations of future 
prices are allowed to adjust (which we denote here as “full” expectations). The second column 
(for each brand) shows the effect holding expectations of future prices fixed. 
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Table 12: Predicted Effects of Permanent Changes in Heinz Pricing Policy 
 
 
Permanent 10 % drop in Mean Offer Price of Heinz 
 Store Brand Del Monte Heinz Hunts Total 
Purchase 
Probability 

-8.078 -9.071 33.071 -10.100 18.038 

Purchase 
Quantity 

-8.075 -8.821 35.581 -10.186 19.844 

Revenue 
 

-8.052 -9.008 23.363 -10.242 13.151 

Accepted Price 
(Mean) 

-0.048 -0.205 -9.012 -0.063 -5.585 

 
 
Permanent 50 % drop in the Standard Deviation of Heinz Offer Prices 
 Store Brand Del Monte Heinz Hunts Total 
Purchase 
Probability 

-6.351 -10.172 -5.278 -6.994 -6.200 

Purchase 
Quantity 

-7.522 -11.145 -6.642 -7.256 -7.295 

Revenue 
 

-7.385 -10.683 -4.221 -7.110 -5.485 

Accepted Price 
(Mean) 

0.141 0.520 2.594 0.157 1.952 

 
 
Combined 2.2% Permanent drop in Mean and 50 % drop in Standard Deviation for Heinz Price 
 Store Brand Del Monte Heinz Hunts Total 
Purchase 
Probability 

-6.746 -12.157 1.052 -9.347 -2.774 

Purchase 
Quantity 

-7.340 -13.021 ≈0 -9.660 -3.622 

Revenue 
 

-7.238 -12.669 0.537 -9.545 -2.802 

Accepted Price 
(Mean) 

0.110 0.404 0.530 0.127 0.851 

 
   
Note: The table reports the percentage changes in each of the indicated quantities for the period 
after the policy change, compared to a baseline simulation under the present pricing policy. The 
mean accepted prices are obtained by dividing aggregate sales (over all sizes) by aggregate 
quantity.  



     

Table A1: Effect of Increasing Fundamental Parameters on Key Features of the Data 
 
 Purchase Hazard  Purchase Frequency  
 
Parameter 

 
General Level 

 
Duration 
Dependence 

  
Overall 

Large Size vs. 
Small Size 

 
Mean Accepted Price 

Carrying Cost       
   Quadratic  - c2 - +  - - ≈ 0 
Fixed Cost of 
Purchase 

      

   Constant - τ0 - 0  - + ≈ 0 
   Linear - τ1 - 0  - - ≈ 0 
   Quadratic - τ2 - -  - -- ≈ 0 
Stock Out Cost       
   Constant – s0 + +  + + ≈ 0 
   Linear – s1 Small + 0  Small + Small + ≈ 0 
       
Utility Weights - ψ + 0  + + Ambiguous (small + own 

effect for preferred brand) 
Usage Rate       
   High Type + at early weeks only --  + + + for 64 oz. Only 

 
   Medium Type  - at early weeks (≤ 5) 

+ at weeks 6+ 
 

--  ≈ 0 + ≈ 0 

   Low Type + at intermediate      
weeks only 

+ at early weeks 
- at later weeks 

 + + ≈ 0 

Note: “+” denotes increase and “-“ denotes decrease.  A “- -“ denotes that increasing a parameter results in an exceptionally sharp 
decrease for some data feature, relative to the magnitude of the parameter’s effect on other data features 
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Figure 1: Observed Frequency of Total Purchases
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Figure 2: Interpurchase Time Distribution
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Figure 3: Survivor Function
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Figure 4: Purchase Hazard 
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