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Abstract
This paper develops and implements a practical simulation-based method for estimat-
ing dynamic discrete choice models. The method, which can accommodate lagged
dependent variables, serially correlated errors, unobserved variables, and many alter-
natives, builds on the ideas of indirect inference. In particular, the method uses a
descriptive statistical (or auxiliary) model—typically a linear probability model—to
summarize the statistical properties of the observed and simulated data. The method
then chooses the structural parameters so that the coefficients of the auxiliary model in
the simulated data match as closely as possible those in the observed data. The main
difficulty in implementing indirect inference in discrete choice models is that the objec-
tive surface is a step function, rendering useless gradient-based optimization methods.
To overcome this obstacle, this paper shows how to smooth the objective surface. The
key idea is to use a function of the latent utilities as the dependent variable in the
auxiliary model. As the smoothing parameter goes to zero, this function delivers the
discrete choice implied by the latent utilities, thereby guaranteeing consistency. A
set of Monte Carlo experiments shows that the method is fast, robust, and nearly as
efficient as maximum likelihood when the auxiliary model is sufficiently rich.
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1 Introduction

Many economic models have the feature that it is simple to simulate data from the model

(given knowledge of the model parameters), but that estimation of the model is extremely

difficult. Models with discrete outcomes or mixed discrete/continuous outcomes commonly

fall into this category. A leading example is the multinomial probit model, in which an agent

chooses from amongst several discrete alternatives the one with highest utility. Simulation

of data from this model is trivial: the agents simply construct the utility of each alternative

(algebraic operations) and then choose the alternative that gives highest utility. But esti-

mation of the model, via either maximum likelihood (ML) of method of moments (MOM),

is exceedingly difficult. This difficulty arises because, from the perspective of the econome-

trician, the probability that an agent chooses a particular alternative is a high dimensional

integral over stochastic factors—unobserved by the econometrician—that affect the utilities

that the agent assigns to each alternative. These probability expressions must be evaluated

in order to estimate the model by ML or MOM.

Econometricians worked for many years on developing simulation methods to evaluate the

choice probabilities in such discrete choice models (see Lerman and Manski 1981) but only

relatively recently have sufficiently accurate smooth probability simulators been developed

that make ML or MOM based on simulated proofs practical (see McFadden 1989 and Keane

1994).

A very different approach to inference in this type of model is “indirect inference” (II).

This approach circumvents the need to construct the choice probabilities generated by the

economic model, because the method is not based on either forming the likelihood for the

model or forming moments implicated by the model. Rather, the idea of indirect inference

is to simulate data from the structural economic model of interest. One then chooses a

descriptive statistical model that provides a rich description of the patterns of covariation

in the data. Such a descriptive model can be estimated on both the simulated data from

the economic model, and on the actual observed data. The indirect inference estimator of

the vector of structural parameters of the economic model, β, is that β̂ which makes the

simulated data from the economic model “look like” the observed data—in the sense that the

descriptive statistical model estimated on the simulated data “looks like”that same model

estimated on the observed data.

Different formal metrics for the similarity of a statistical model when it is estimated on

two different data sets lead to different varieties of indirect inference estimators. Of course,

to make this approach computationally appealing, one should choose the descriptive model
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in such a way that it is easy to estimate, and choose the distance metric in such a way that

it is easy to evaluate.

Indirect inference holds out the promise that it will be practical to estimate any economic

model from which it is practical to simulate data, even if construction of the likelihood or

population moments implied by the model is very difficult or impossible. But this promise

has not been fully realized because of limitations in the II procedure itself. It is very difficult

to apply II to discrete (or discrete/continuous) choice models for the following reason: Small

changes in the structural parameters of such models will, in general, cause the data simu-

lated from the model to change discretely. Such a discrete change causes the parameters of

a descriptive model fit to the simulated data to jump discretely. This jump, in turn, causes

the metric of distance between the descriptive models estimated on the observed and simu-

lated data to jump discretely too. When the statistical objective function one is seeking to

minimize is not a smooth function of the model parameters, one cannot use gradient-based

methods of optimization. One must instead rely on much slower random search algorithms

(like the simplex). These algorithms typically perform very poorly if there are more than a

few parameters.

The non-smooth objective function of II procedures applied to discrete data is a very

serious problem, rendering the method of little practical use in such problems. By analogy,

simulated ML (SML) and simulated MOM approaches were very little used for discrete choice

problems until the advent of smooth simulation algorithms (see McFadden 1989 and Keane

1994) made such applications much more feasible. In this paper we develop a “generalized

indirect inference” procedure that addresses this problem.

The idea of the GII procedure is to apply different descriptive statistical models to the

simulated and actual observed data. The model applied to the simulated data will not

fit the discrete outcomes in that data. Rather, it will fit the underlying continuous latent

variables that generate those discrete outcomes. Since these latent variables are smooth

functions of the model parameters, the non-smooth objective function problem is resolved.

Of course, the same statistical model cannot be estimated on the observed data, because

the underlying latent variables generating actual agents’ observed choices are not seen by

the econometrician. However, as long as the two descriptive statistical models are chosen so

that both generate asymptotically the same vector of pseudo true parameter values, the GII

estimator based on minimizing the distance between these two models remains consistent and

asymptotically normal. Furthermore, the GII estimator is asymptotically efficient provided

that each descriptive model satisfies the information matrix equality.
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In the remainder of the paper we prove these results, and provide Monte Carlo evidence

that the GII procedure performs well on a set of example models. We look at some cases

where SML is also feasible, and show that efficiency losses relative to SML are small. We

also show how judicious choice of the descriptive (or auxiliary) model is very important for

the efficiency of the estimator. This is true not only here, but for II more generally.

2 The Model

In this section, we describe a class of discrete choice models that we will use as test cases for

the estimation method that we develop in this paper. As will become clear, however, this

method can be used in almost any conceivable model of discrete choice, including models

with mixed discrete/continuous outcomes and models in which individuals’ choices solve

forward-looking dynamic programming problems. In Section 5, we show how to use the

estimation method developed in this paper to estimate a selection model with both discrete

and continuous outcomes.

In this section, we consider panel data models with N individuals each of whom selects a

choice from a set of J discrete alternatives in each of T time periods. Let uitj be the (latent)

utility that individual i attaches to alternative j in period t. Without loss of generality,

set the utility of alternative J in any period equal to 0.1 In each period, each individual

chooses the alternative with the highest utility. Let yitj be equal to 1 if individual i chooses

alternative j in period t and be equal to 0 otherwise. Define uit ≡ (uit1, . . . , uit,J−1) and

yit ≡ (yit1, . . . , yit,J−1). The econometrician observes the choices {yit} but not the latent

utilities {uit}.
The vector of latent utilities uit is assumed to follow a stochastic process

uit = f(xit, yi,t−1, . . . , yi,t−`, εit; β), t = 1, . . . , T,

where xit is a vector of exogenous variables.2 For each individual i, the vector of disturbances

εit follows a Markov process εit = r(εi,t−1, ηit; β), where {ηit}T
t=1 is a sequence of i.i.d. random

vectors with known distribution. The functions f and r depend on a set of k structural

parameters β. The sequences {ηit}T
t=1, i = 1, . . . , N , are independent across individuals and

independent of xit for all i and t. The initial values εi0 and yit, t = 0,−1, . . . , 1− `, are fixed

exogenously.

1In other words, uitj can be interpreted as the difference between the utilities that individual i attaches
to alternatives j and J in period t.

2The estimation method proposed in this paper can also accommodate models in which the latent utilities
in any given period depend on lagged values of the latent utilities.
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Although the estimation method proposed in this paper can be applied to any model of

this form, we focus on four special cases of the general model. Three of these cases (Models

1, 2, and 4 below) can be feasibly estimated using simulated maximum likelihood, allowing

us to compare the performance of the proposed method to that of maximum likelihood.

In Model 1, I = 2, T > 1, and uit = γxit + εit, where xit is a scalar, εit = ρεi,t−1 + ηit,

ηit ∼ iidN(0, 1), and εi0 = 0. This is a two-alternative dynamic probit model with serially

correlated errors; it has two unknown parameters γ and ρ.

In Model 2, I = 2, T > 1, and uit = γ1xit + γ2yi,t−1 + εit, where xit is a scalar and εit

follows the same process as in Model 1. The initial value yi0 is set equal to 0. This is a

two-alternative dynamic probit model with serially correlated errors and a lagged dependent

variable; it has three unknown parameters γ1, γ2, and ρ.

Model 3 is identical to Model 2 except that the econometrician does not observe the

first s < T of the individual’s choices. Thus there is an “initial conditions” problem (see

Heckman 1981).

In Model 4, I = 3, T = 1, and the latent utilities obey:

ui1 = γ10 + γ11xi1 + γ12xi2 + ηi1

ui2 = γ20 + γ21xi1 + γ22xi3 + c1ηi1 + c2ηi2,

where {ηi1}N
i=1 and {ηi2}N

i=1 are i.i.d. sequences of N(0, 1) random variables.3 This is a static

three-alternative probit model; it has eight unknown parameters {γ1i}2
i=0, {γ2i}2

i=0, c1, and

c2.

3 Generalized Indirect Inference

3.1 The central idea

The method that we propose to estimate the model described in Section 2 is a generalization

of indirect inference (see Smith 1990, 1993, Gourieroux, Monfort, and Renault 1993, and

Gallant and Tauchen 1996). Indirect inference exploits the ease and speed with which one

can simulate data from complicated structural models. The basic idea of indirect inference

is to view both the observed data and the simulated data (generated by the structural model

given structural parameters β) through the “lens” of an descriptive statistical (or auxiliary)

model characterized by a set of p auxiliary parameters θ. The k ≤ p structural parameters

3Since T = 1 in this model, the time subscript has been omitted, so that uij denotes the latent utility
that the ith individual attaches to the jth alternative xik denotes the kth element of the ith individual’s
exogenous vector xi, and ηij denotes the jth element of the random vector ηi.
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β are then chosen so as to make the observed data and the simulated data look similar when

viewed through this lens.

To formalize these ideas, assume that the observed choices {yit}, i = 1, . . . , N , t =

1, . . . , T , are generated by the structural model described in Section 2 given a set of structural

parameters β0.

The auxiliary model can be estimated using the observed data to obtain parameter esti-

mates θ̂. Formally, θ̂ solves:

θ̂ = arg max
θ

L(y; x, θ),

where L(y; x, θ) is the likelihood function associated with the auxiliary model, y ≡ {yit} is

the set of observed choices, and x ≡ {xit} is the set of observed exogenous variables.

Given x and structural parameters β, the structural model can be used to generate

M statistically independent simulated data sets {ỹm
it (β)}, m = 1, . . . ,M , where ỹm

it ≡
(ỹm

it1(β), . . . , ỹm
it,J−1(β)). Each of the M simulated data sets is constructed using the same set

of observed exogenous variables x. The auxiliary model can then be estimated using each

of the simulated data sets to obtain M estimated parameter vectors θ̃m(β). Formally, θ̃m(β)

solves:

θ̃m(β) = arg max
θ

L(ym(β); x, θ),

where the likelihood function associated with the auxiliary model is, in this case, evaluated

using the mth simulated data set ỹm(β) ≡ {ym
it (β)}. Denote the average of the estimated

parameter vectors by θ̃(β) ≡ M−1∑M
m=1 θ̃m(β). As the observed sample size N grows large

(holding M and T fixed), θ̃(β) converges to a nonstochastic function h(β). Gourieroux,

Monfort, and Renault (1993) refer to h as the “binding” function.

Loosely speaking, indirect inference generates an estimate β̂ of the structural parameters

by choosing β so as to make θ̂ and θ̃(β) as close as possible. When generating simulated

data sets, the set of random draws {η̃it} is held fixed for different values of β. The key idea

underlying the consistency of indirect inference is that, as the observed sample size N grows

large, θ̂ and θ̃(β0) both converge to the same “pseudo” true value θ0 = h(β0).

Magnac, Robin, and Visser (1995), An and Liu (2000), and Nagypál (2000) use vari-

ous implementations of indirect inference to estimate discrete choice models. These papers

encounter the difficult computational task of optimizing a step function. This task is very

time-consuming and puts severe constraints on the size of the structural models that can be

feasibly estimated. Step functions arise when applying indirect inference to discrete choice

models because any simulated choice ỹm
it (β) is a step function of β (holding fixed the set
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of random draws {η̃it} used to generate simulated data from the structural model). Conse-

quently, the estimated set of auxiliary parameters θ̃(β) is a step function of β.

We propose a generalization of indirect inference that addresses this difficulty. The

fundamental idea is that the estimation procedures applied to the observed and simulated

data sets need not be identical, provided that they both provide consistent estimates of the

same vector of pseudo true parameter values.4 We exploit this idea to smooth the function

θ̃(β), obviating the need to optimize a step function when using indirect inference to estimate

a discrete choice model.

Let ũm
it (β) denote the set of latent utilities that individual i attaches to the first J − 1

alternatives in period t of the mth simulated data set, given structural parameters β (recall

that the latent utility of the Ith alternative is set to 0). Rather than use the choice ỹm
itj(β)

when computing θ̃(β), we use instead a function g(ũm
it (β), j; λ) of the latent utilities. The

function g is chosen so that as the smoothing parameter λ goes to 0, g(ũm
it (β), j; λ) converges

to ỹm
itj(β). Letting λ go to 0 at the same time that the observed sample size goes to infinity

ensures that θ̃(β0) converges to θ0, thereby delivering consistency of the generalized indirect

inference estimator of β0.

Although many functional forms could be chosen for g, in this paper we define g as

follows:

g(ũm
it (β), j; λ) =

exp(um
itj(β)/λ)

1 +
∑J−1

k=1 exp(um
itk(β)/λ)

.

Because the latent utilities are smooth functions of the structural parameters β, g is a smooth

function of β. Moreover, as λ goes to 0, g goes to 1 if alternative j has the highest latent

utility and to 0 otherwise.5

3.2 Choosing a metric

Implementing indirect inference requires the choice of a formal metric for measuring the

“distance” between θ̂ and θ̃(β). There are three approaches to choosing such a metric, cor-

responding, roughly, to the three classic approaches to hypothesis testing: Wald, likelihood

ratio (LR), and Lagrange multiplier (LM).6 All three approaches to indirect inference yield

4Genton and Ronchetti (2003) use a similar insight to develop robust estimation procedures in the context
of indirect inference.

5This approach to smoothing in a discrete choice model bears a superficial resemblance to the approach
that Horowitz (1992) uses to create a smoothed version of Manski’s (1985) maximum score estimator for a
binary response model. Whereas Horowitz (1992) focuses on the estimation of a limited set of discrete choice
models in a semiparametric setting, in this paper we develop smooth methods to estimate a wide range of
fully specified models with mixed discrete/continuous outcomes.

6This nomenclature is due to Eric Renault. The Wald and LR approaches were first proposed in Smith
(1990, 1993) and later extended by Gourieroux, Monfort, and Renault (1993). The LM approach was first
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consistent and asymptotically normal estimates of the true structural parameters β0. More-

over, in the exactly identified case in which the number of structural parameters k is equal

to the number of auxiliary parameters p, all three approaches yield numerically identical

estimates of the structural parameters (provided that the same random numbers are used to

generate the simulated data in all three approaches).

The Wald approach to indirect inference chooses β to minimize a quadratic form in the

vector θ̂ − θ̃(β):

β̂Wald = arg min
β

(θ̂ − θ̃(β))′ W (θ̂ − θ̃(β)),

where W is a positive definite “weighting” matrix.

The LR approach to indirect inference forms a metric by using the likelihood function

L(y; x, θ) associated with the auxiliary model. In particular,

β̂LR = arg max
β

L(y; x, θ̃(β)).

Finally, the LM approach to indirect inference does not work directly with the estimated

auxiliary parameters θ̃(β) but instead uses the score vector associated with the auxiliary

model.7 Given the estimated auxiliary model parameters θ̂ from the observed data, the

score vector is evaluated using each of the M simulated data sets. The LM approach then

chooses β to minimize a quadratic form in the average score vector across these data sets:

β̂LM = arg min
β

(
M−1

M∑
m=1

Lθ(ỹm(β); x, θ̂)

)′

V

(
M−1

M∑
m=1

Lθ(ỹm(β); x, θ̂)

)
,

where Lθ denotes the vector of partial derivatives of L with respect to θ and V is a positive

definite weighting matrix.

Each of the three approaches to indirect inference can be generalized simply by replacing

each simulated choice ym
itj(β) with its smoothed counterpart g(um

it (β), j; λ). In particular, we

can state the following proposition (whose proof is to be added):

Proposition 1 Under appropriate regularity conditions, generalized indirect inference (im-

plemented using any of the three metrics) yields consistent and asymptotically normal es-

timates of the true structural parameter vector β0, provided that the smoothing parameter

λ goes to 0 at an appropriate rate as the observed sample size N goes to infinity (holding

fixed the number of simulated data sets M and the number of time periods T ).

proposed in Gallant and Tauchen (1996).
7When the LM approach is implemented using an auxiliary model that is (nearly) correctly specified in

the sense that it provides a (nearly) correct statistical description of the observed data, Gallant and Tauchen
refer to this approach as efficient method of moments (EMM).
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When the weighting matrices W and V are chosen optimally (in the sense of minimizing

asymptotic variance) the Wald and LM approaches to indirect inference (and to generalized

indirect inference) have the same asymptotic efficiency. The LR approach, by contrast,

produces estimates that are, in general, less efficient asymptotically than under the Wald

and LM approaches. If, however, the auxiliary model is correctly specified (in the sense that

it provides a correct statistical description of the observed data), then all three approaches are

asymptotically equivalent not only to each other but also to maximum likelihood (provided

that the number of simulated data sets M is sufficiently large).

For two reasons, we focus in this paper on the LR approach to indirect inference. First,

unlike the Wald and LM approaches, the LR approach does not require the estimation of an

optimal weighing matrix. In this respect, the LR approach is easier to implement than the

other two approaches. Furthermore, because estimates of optimal weighting matrices often

do not perform well in finite samples, the LR approach is likely to perform better in small

samples than the other two approaches. Second, because the LR approach is asymptotically

equivalent to the other two approaches when the auxiliary is correctly specified, the asymp-

totic efficiency loss of the LR approach relative to the two other approaches is likely to be

small when the auxiliary model is chosen judiciously.

3.3 Choosing a value for the smoothing parameter

Implementing generalized indirect inference requires choosing a value for the smoothing

parameter λ. This choice is difficult because of two opposing considerations: bias and

smoothness. Large values of λ do a good job of smoothing the objective surface but can

lead to biased estimates of the structural parameters. Small values of λ reduce this bias but

lead to “choppiness” in the objective surface, making it difficult to optimize. For a given

value of λ, increasing M , the number of simulated data sets, can mitigate the effects of this

choppiness, but only at the cost of increased computation time.

To address these practical problems, we advocate a two-step approach. In the first step,

choose a relatively large value for λ so that the objective surface is smooth enough to allow

the use of standard gradient-based methods to find its optimum. In this step, the number of

simulated data sets M can be small (in fact, as small as M = 1) so as to reduce computation

time. The first-step estimate β̂1 optimizes the objective (i.e., it solves one of the optimization

problems in Section 3.2) and is, therefore, a consistent estimate of the structural parameters

(where the argument for consistency requires that the smoothing parameter go to 0 as the

observed sample size increases). Although β̂1 is consistent, in finite samples it tends to have
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large bias (because λ is large) and to be contaminated by simulation error (because M is

small).

In the second step, choose a relatively small value for λ (to reduce bias) and a relatively

large value for M . Choosing a large value for M in the second step serves two purposes.

First, it ensures that simulation error does not inflate the standard errors of the estimates.

Second, it reduces choppiness in the objective surface, compensating for the relatively small

value of λ in the second step. Since M is large in the second step, finding the value of β

that optimizes the objective could be very costly in terms of computation time. Rather than

optimize the objective, instead take one Newton-Raphson step from the consistent estimate

β̂1, thereby delivering an estimate β̂2 that is asymptotically equivalent to the estimate that

optimizes the objective.

The appropriate Newton-Raphson step varies with the approach—Wald, LR, or LM—

used to define the generalized indirect inference estimator. The following proposition (whose

proof is to be added) shows how to compute the second-step estimate β̂2 for the LR approach

to indirect inference.

Proposition 2 Let β̂1 be a consistent estimate of the true structural parameter vector β0.

Then

β̂2 = β̂1 −
(
Ĵ ′ Lθθ(y; x, θ̃(β̂1)) Ĵ

)−1
Ĵ ′Lθ(y; x, θ̃(β̂1)),

is a consistent and asymptotically normal estimate of β0, where Lθθ denotes the p×p Hessian

of the likelihood function associated with the auxiliary model and Ĵ is an estimate of the

p × k Jacobian of the binding function h, evaluated at β̂1. Moreover, β̂2 is asymptotically

equivalent to the generalized indirect inference estimate based on the LR approach.

3.4 Choosing an auxiliary model

The main consideration when choosing an auxiliary model with which to conduct indirect

inference is efficiency. As discussed in Section 3.2, indirect inference (generalized or not) has

the same asymptotic efficiency as maximum likelihood when the auxiliary model is correctly

specified in the sense that it provides a correct statistical description of the observed data.

From the perspective of efficiency, then, it is important to choose an auxiliary model (or a

class of auxiliary models) that is flexible enough to provide a good description of the data.

Another important consideration when choosing an auxiliary model is computation time.

For the Wald and LR approaches to indirect inference, the auxiliary parameters must be

estimated repeatedly using different simulated data sets. For this reason, it is critical to use
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an auxiliary model that can be estimated quickly and efficiently. This consideration is less

important for the LM approach to indirect inference, since the LM approach does not work

directly with the estimated auxiliary parameters but instead uses the first-order conditions

(the score vector) that define these estimates.

To meet the twin criteria of statistical and computational efficiency, we let the auxiliary

model be a linear probability model (or, more accurately, a set of linear probability models).

This class of models is flexible in the sense that an individual’s current choice can be allowed

to depend on polynomial functions of lagged choices and of current and lagged exogenous

variables. This class of models can also be very quickly and easily estimated using ordinary

least squares. Section 4 describes in detail how we specify the linear probability models for

each of the structural models described in Section 2.

4 Monte Carlo Results

This section conducts a set of Monte Carlo experiments to assess the performance, in terms

of bias, efficiency, and computation time, of the estimation method (referred to hereafter

as GII, for generalized indirect inference) described in Section 3. The parameters of each

of the four models described in Section 2 are estimated a large number of times using

“observed” data generated by the respective models. For Models 1, 2, and 4, the parameters

are estimated in each Monte Carlo replication using both GII and simulated maximum

likelihood (SML) in conjunction with the Geweke, Keane, and Hajivassiliou (GHK) smooth

probability simulator.8 Model 3, which cannot easily be estimated via SML, is estimated

using only GII. For each model, the Monte Carlo experiments are conducted for several sets

of parameter configurations.

To optimize objective functions, we use a version of the Davidon-Fletcher-Powell algo-

rithm (as implemented in Chapter 10 of Press et al 1996). The initial parameter vector

in the hillclimbing algorithm is the true parameter vector. Most of the computation time

in generalized indirect inference lies in computing ordinary least squares (OLS) estimates.

The main cost in computing OLS estimates lies, in turn, in computing the X ′X part of

(X ′X)−1X ′Y . We use blocking and loop unrolling techniques to speed up the computation

of X ′X by a factor of 2 to 3 relative to a “naive” algorithm.9

8Lee (1997) uses SML with the GHK simulator to estimate versions of Models 1, 2, and 3.
9To avoid redundant calculations, we also precompute and store for later use those elements of X ′X that

depend only on the exogenous variables.

10



4.1 Results for Model 1

As described in greater detail in Section 2, Model 1 is a dynamic two-alternative probit

model with serially correlated errors and a single exogenous regressor. It has two unknown

parameters: γ, the coefficient on the exogenous regressor, and ρ, the serial correlation pa-

rameter. We set γ = 1 and we consider three values for ρ: 0, 0.4, and 0.85. In the Monte

Carlo experiments for this model, the number of individuals N = 1000 and the number of

time periods T = 5. When implementing generalized indirect inference, we use the two-step

approach described in Section 3.3 and summarized in Proposition 2. When computing the

first-step estimates of the structural parameters, the smoothing parameter λ = 0.03 and

the number of simulated data sets M = 10. When computing the second-step estimates,

λ = 0.003 and M = 300. The exogenous variables (the xit’s) are i.i.d. draws from a N(0, 1)

distribution; each Monte Carlo replication has a new set of draws.

The auxiliary model consists of a set of T linear probability models, one for each time

period. The right-hand side variables in the linear probability models differ across time

periods. This structure serves two purposes: one, it allows the parameters of the auxiliary

model to depend on time; two, it allows the auxiliary model to incorporate more lagged

information in later time periods.

Let zit be the vector of regressors in the auxiliary model for individual i in time pe-

riod t. The vector zit consists of polynomial functions of lagged choices and of current and

lagged exogenous variables. Equation t in the auxiliary model is yit = z′itαt + νit, where

νit ∼ iidN(0, σ2
t ) and αt and σ2

t are parameters to be estimated. The auxiliary model, then,

is characterized by a set of parameters θ = (αt, σ
2
t ), t = 1, . . . , T . Since the errors in the linear

probability models are assumed to be independent across both time and individuals, the like-

lihood function associated with the auxiliary model is L(y; x, θ) = ΠN
i=1Π

T
t=1 L(yit; zit, αt, σ

2
t ),

where L is a normal probability density function with mean z′itαt and variance σ2
t .

In order to examine how increasing the “richness” of the auxiliary model affects the

efficiency of the structural parameter estimates, we conduct Monte Carlo experiments using

four nested auxiliary models. In all four auxiliary models, we impose the restrictions αt = αq

and σ2
t = σ2

q , t = q + 1, . . . , T , for some q < T . We impose these restrictions because the

time variation in the estimated coefficients of the linear probability models is small after the

first few time periods. Most of the time variation in the initial time periods comes from the

non-stationarity of the errors in the structural model (we assume that the initial error is not

drawn from the stationary distribution implied by the law of motion for the errors).

In auxiliary model #1, q = 1 and the regressors in the linear probability model are given
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by: zit = (1, xit, yi,t−1), t = 1, . . . , T , where the unobserved yi0 is set equal to 0. We use

this very simple auxiliary model, which has only 4 parameters, to illustrate how generalized

indirect inference can produce very inefficient estimates if one uses a poor auxiliary model

(i.e., one that does a poor job of capturing the statistical properties of the observed data).

In auxiliary model #2, q = 4 and the regressors in the linear probability models are defined

as follows:

zi1 = (1, xi1)

zit = (1, xit, yi,t−1, xi,t−1), t = 2, . . . , T

This auxiliary model has a total of 18 parameters. Auxiliary model #3 adds additional

terms to the vectors of regressors in auxiliary model #2:

zi1 = (1, xi1, x
3
i1)

zi2 = (1, xi2, yi1, xi1)

zi3 = (1, xi3, yi2, xi2, yi1, xi1)

zit = (1, xit, yi,t−1, xi,t−1, yi,t−2, xi,t−2, yi,t−3), t = 4, . . . , T

This auxiliary model has a total of 24 parameters. Finally, in auxiliary model #4, q = 5 and

there are 35 parameters:

zi1 = (1, xi1, x
3
i1)

zi2 = (1, xi2, yi1, xi1)

zi3 = (1, xi3, yi2, xi2, yi1, xi1)

zi4 = (1, xi4, yi3, xi3, yi2, xi2, yi1, xi1)

zit = (1, xit, yi,t−1, xi,t−1, yi,t−2, xi,t−2, yi,t−3, xi,t−3, yi,t−4), t = 5, . . . , T

Table 1 presents the results of six sets of Monte Carlo experiments, each with 2000

replications. The first two sets of experiments report the results for simulated maximum

likelihood, using 25 draws (SML #1) and 50 draws (SML #2) in the GHK probability

simulator. The remaining four sets of experiments report the results for generalized indirect

inference, where GII #i refers to generalized indirect inference using auxiliary model #i.

In each case, we report the average and the standard deviation of the parameter estimates.

We also report the efficiency loss of GII #i relative to SML #2 in the columns labelled

σGII/σSML, where we divide the standard deviations of the GII estimates by the standard

deviations of the estimates for SML #2. Finally, we report the average time (in seconds)
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required to compute estimates (we use the Intel Fortran Compiler Version 7.1 on a 2.2GHz

Intel Xeon processor running Red Hat Linux).

Table 1 contains several key findings. First, both SML and GII generate estimates with

very little bias (provided that sufficiently many draws are used in SML when the serial

correlation in the errors is large).

Second, GII is less efficient than SML, but the efficiency losses are small provided that

the auxiliary model is sufficiently rich. For example, auxiliary model #1 leads to large

efficiency losses, particularly for the case of high serial correlation in the errors (ρ = 0.85).

For models with little serial correlation (ρ = 0), however, auxiliary model #2 is sufficiently

rich to to make GII almost as efficient as SML. When there is more serial correlation in the

errors, auxiliary model #2 leads to reasonably large efficiency losses (as high as 30% when

ρ = 0.85), but auxiliary model #3, which contains more lagged information in the linear

probability models than does auxiliary model #2, reduces the worst efficiency loss to 13%.

Auxiliary model #4 provides almost no efficiency gains relative to auxiliary model #3.

Third, GII is faster than SML: computing a set of estimates using GII with auxiliary

model #3 takes about 30% less time than computing a set of estimates using SML with 50

draws. Note too that we are using conservative choices for the number of simulated data sets

in the first and second steps of the estimation (10 and 300, respectively). Preliminary results

suggest that by reducing the number of simulated data sets (say, to 5 and 150, respectively),

it will be possible to reduce the computation time of GII without adversely affecting its finite

sample properties.

For generalized indirect inference, we also compute (but do not report in Table 1) es-

timated asymptotic standard errors. In all cases, the averages of the estimated standard

errors across the Monte Carlo replications are very close to (within a few percent of) the

actual standard deviations of the estimates, suggesting that the asymptotic results provide

a good approximation to the behavior of the estimates in finite samples of the size that we

use.

4.2 Results for Model 2

As described in greater detail in Section 2, Model 1 is a dynamic two-alternative probit

model with serially correlated errors, a single exogenous regressor, and a lagged dependent

variable. It has three unknown parameters: γ1, the coefficient on the exogenous regressor,

γ2, the coefficient on the lagged dependent variable, and ρ, the serial correlation parameter.

We set γ1 = 1, γ2 = 0.2, and we consider three values for ρ: 0, 0.4, and 0.85. In the Monte
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Carlo experiments for this model, the number of individuals N = 1000 and the number of

time periods T = 10. When implementing generalized indirect inference, we use the two-step

approach described in Section 3.3 and summarized in Proposition 2. When computing the

first-step estimates of the structural parameters, the smoothing parameter λ = 0.05 and

the number of simulated data sets M = 10. When computing the second-step estimates,

λ = 0.003 and M = 300. When implementing GII for Model 2, we use the same set of four

auxiliary models that we use for Model 1. As in Model 1, the exogenous variables (the xit’s)

are i.i.d. draws from a N(0, 1) distribution and each Monte Carlo replication has a new set

of draws.

Table 2 presents the results of six sets of Monte Carlo experiments, each with 1000

replications. The first two sets of experiments report the results for simulated maximum

likelihood, using 25 draws (SML #1) and 50 draws (SML #2) in the GHK probability

simulator. The remaining four sets of experiments report the results for generalized indirect

inference, where GII #i refers to generalized indirect inference using auxiliary model #i.

The results for Model 2 are similar to those for Model 1. Both SML and GII generate

estimates with very little bias (provided at least 50 draws are used in SML, especially when

the errors are persistent). SML is more efficient than GII, but the efficiency loss is small

(15% at most) when the auxiliary model is sufficiently rich. Auxiliary model #1 can lead

to large efficiency losses, but auxiliary model #4 provides few efficiency gains relative to

auxiliary model #3. When the errors are not persistent (ρ = 0), auxiliary model #3 leads

to no efficiency gains relative to auxiliary model #2. Finally, GII using auxiliary model #3

is about 25% faster than SML using 50 draws.10

4.3 Results for Model 3

As described in greater detail in Section 2, Model 3 is a dynamic two-alternative probit

model with serially correlated errors, a single exogenous regressor, and an “initial conditions”

problem: the econometrician does not observe individuals’ choices in the first s time periods.

Model 3 has the same three unknown parameters as Model 2: γ1, the coefficient on the

exogenous regressor, γ2, the coefficient on the lagged dependent variable, and ρ, the serial

correlation parameter. As for Model 2, we set γ1 = 1, γ2 = 0.2, and we consider three

values for ρ: 0, 0.4, and 0.85. In the Monte Carlo experiments for this model, the number

of individuals N = 1000, the total number of time periods T = 15, and the number of

10For generalized indirect inference, we also compute estimated asymptotic standard errors As for Model 1,
in all cases the averages of these standard errors are close to the actual standard deviations of the estimates.
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unobserved time periods s = 5 (so that the econometrician observes each individual’s choices

in periods s+1 = 6 through T = 15). When implementing generalized indirect inference, we

use the two-step approach described in Section 3.3 and summarized in Proposition 2. When

computing the first-step estimates of the structural parameters, the smoothing parameter

λ = 0.05 and the number of simulated data sets M = 10. When computing the second-step

estimates, λ = 0.003 and M = 300. As in Models 1 and 2, the exogenous variables (the xit’s)

are i.i.d. draws from a N(0, 1) distribution and each Monte Carlo replication has a new set

of draws.

Auxiliary model #1 is the same one that we use in the Monte Carlo experiments for

Models 1 and 2: q = 1 and the regressors in the linear probability model are given by:

zit = (1, xit, yi,t−1), t = s + 1, . . . , T , where the unobserved yi0 is set equal to 0. In auxiliary

model #2, q = 4 and the regressors in the linear probability models are defined as follows:

zi,s+1 = (1, xi,s+1, xis)

zit = (1, xit, yi,t−1, xi,t−1), t = s + 2, . . . , T

This auxiliary model has a total of 19 parameters (note that the exogenous variables are

observed in the first s time periods even though the choices are not). In auxiliary model #3,

q = 4 and there are 27 parameters:

zi,s+1 = (1, xi,s+1, x
3
i,s+1, xis, xi,s−1)

zi,s+2 = (1, xi,s+2, yi,s+1, xi,s+1, xis)

zi,s+3 = (1, xi,s+3, yi,s+2, xi,s+2, yi,s+1, xi,s+1)

zit = (1, xit, yi,t−1, xi,t−1, yi,t−2, xi,t−2, yi,t−3), t = s + 4, . . . , T

Finally, in auxiliary model #4, q = 5 and there are 41 parameters:

zi,s+1 = (1, xi,s+1, x
3
i,s+1, xis, xi,s−1, xi,s−2)

zi,s+2 = (1, xi,s+2, yi,s+1, xi,s+1, xis, xi,s−1)

zi,s+3 = (1, xi,s+3, yi,s+2, xi,s+2, yi,s+1, xi,s+1, xis)

zi,s+4 = (1, xi,s+4, yi,s+3, xi,s+3, yi,s+2, xi,s+2, yi,s+1, xi,s+1)

zit = (1, xit, yi,t−1, xi,t−1, yi,t−2, xi,t−2, yi,t−3, xi,t−3, yi,t−4), t = s + 5, . . . , T

Table 3 presents the results of four sets of Monte Carlo experiments, each with 1000 repli-

cations. Because SML is not feasible in this model (due to the initial conditions problem),

we estimate Model 3 using only generalized indirect inference, where GII #i refers to gener-

alized indirect inference using auxiliary model #i. Table 3 contains two key findings. First,
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as for Models 1 and 2, GII generates estimates with very little bias. Second, increasing the

“richness” of the auxiliary model leads to large efficiency gains relative to auxiliary model

#1, particularly when the errors are persistent. As for Models 1 and 2, however, auxiliary

model #4 provides few efficiency gains relative to auxiliary model #3.11

4.4 Results for Model 4

As described in greater detail in Section 2, Model 4 is a (static) three-alternative probit model

with eight unknown parameters: three coefficients in each of the two equations for the latent

utilities ({γ1i}2
i=0} and {γ2i}2

i=0) and two parameters governing the covariance matrix of the

errors in these equations (c1 and c2). We set γ10 = γ20 = 0, γ11 = γ12 = γ21 = γ22 = 1,

c2 = 1, and we consider two values for c1: 0 (implying that the errors in the equations for the

latent utilities are independent) and 4/3 (implying that the errors have a correlation of 0.8).

In the Monte Carlo experiments for this model, we set the number of individuals N = 2000.

When implementing generalized indirect inference, we use the two-step approach described

in Section 3.3 and summarized in Proposition 2. When computing the first-step estimates of

the structural parameters, the smoothing parameter λ = 0.03 and the number of simulated

data sets M = 10. When computing the second-step estimates, λ = 0.003 and M = 300.

The exogenous variables (the xij’s) are i.i.d. draws from a N(0, 1) distribution; each Monte

Carlo replication has a new set of draws.

The auxiliary model is a pair of linear probability models, one for each of the first two

alternatives:

yi1 = z′iα1 + νi1

yi2 = z′iα2 + νi2,

where the vector zi consists of polynomial functions of the exogenous variables {xij}3
j=1

and {(νi1, νi2)}N
i=1 is an i.i.d. sequence of normally distributed random vectors with mean

0 and variance Σ. The auxiliary model, then, is characterized by a set of parameters θ =

(α1, α2, Σ). The likelihood function associated with the auxiliary model is: L(y; x, θ) =

ΠN
i=1 L(yi1, yi2; zi, α1, α2, Σ), where L is a bivariate normal density with mean (z′iα1, z

′
iα2)

and variance Σ. Since the auxiliary model forms a system of seemingly unrelated regression

equations with the same right-hand side variables in both equations, its parameters θ can

be estimated via ordinary least squares.

11For generalized indirect inference, we also compute estimated asymptotic standard errors. As for Models
1 and 2, in all cases the averages of these standard errors are close to the actual standard deviations of the
estimates.
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We conduct Monte Carlo experiments using four nested versions of the auxiliary model.

In auxiliary model #1, the vector zi = (1, xi1, xi2, xi3), i.e., the two linear probability models

depend linearly on the three exogenous variables. Auxiliary model #1 has a total of 11

parameters. Auxiliary model #2 adds all second-order terms as well as one third-order term

to zi, i.e.,

zi = (1, xi1, xi2, xi3, x
2
i1, x

2
i2, x

2
i3, xi1xi2, xi1xi3, xi2xi3, xi1xi2xi3),

for a total of 25 parameters. In auxiliary model #3, zi contains all terms up to third order

(for a total of 43 parameters) and in auxiliary model #4, zi contains all terms up to fourth

order (for a total of 67 parameters).

Tables 4 and 5 presents the results of six sets of Monte Carlo experiments, each with

1000 replications. The first two sets of experiments report the results for simulated maxi-

mum likelihood, using 25 draws (SML #1) and 50 draws (SML #2) in the GHK probability

simulator. The remaining four sets of experiments report the results for generalized indi-

rect inference, where GII #i refers to generalized indirect inference using auxiliary model

#i. Table 4 shows the results for the case where the correlation between the errors in the

structural model is 0 and Table 5 shows the results for the case where this correlation is 0.8.

Tables 4 and 5 contain several key findings. These findings are qualitatively similar to

those for Models 1, 2, and 3 described previously. First, both SML and GII generate estimates

with very little bias (provided that at least 50 draws are used with SML, particularly when

the correlation between the errors in the structural model is large). Second, auxiliary model

#1, which contains only linear terms, leads to large efficiency losses relative to SML (as large

as 50%). Auxiliary model #2, which contains terms up to second order, reduces the efficiency

losses substantially (to no more than 15% when the errors are uncorrelated and to no more

than 26% when the errors have a correlation of 0.8). Auxiliary model #3, which contains

terms up to third order, provides additional small efficiency gains (the largest efficiency loss

is reduced to 20%), while auxiliary model #4, which contains fourth-order terms, provides

few, if any, efficiency gains relative to auxiliary model #3. Finally, computing estimates

using GII with auxiliary model #3 takes about 30% less time than computing estimates

using SML with 50 draws.12

12As for Models 1, 2, and 3, we also compute estimated asymptotic standard errors for the GII estimates.
Once again, in all cases the averages of these standard errors are close to the actual standard deviations of
the estimates.
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5 A Selection Model with Both Discrete and Continu-

ous Outcomes

In this section, we discuss how to apply generalized indirect inference to a model with

both discrete and continuous outcomes. As an example, consider a selection model with

two equations, the first of which determines an individual’s wage and the second of which

determines the individual’s latent utility from working at the given wage:

wi = γ10 + γ11x1i + η1i

ui = γ20 + γ21x2i + γ22wi + η2i,

where x1i and x2i are exogenous regressors and {(ηi1, ηi2)}N
i=1 is an i.i.d. sequence of normally

distributed random vectors with mean 0 and covariance matrix Ω. The econometrician does

not observe the latent utility ui, but observes instead whether the individual works, i.e.,

the econometrician observes yi ≡ I(ui ≥ 0). In addition, the econometrician observes the

individual’s wage wi if and only if he works (i.e., if yi = 1).

To illustrate how to estimate this structural model using generalized indirect inference,

consider the following auxiliary model:[
wi

yi

]
= z′iα + νi, νi ∼ iidN(0, Σ),

where zi is a polynomial function of the exogenous regressors and θ ≡ (α, Σ) is the vector of

auxiliary model parameters. To estimate the parameters of this model using the observed

data, use the observed wage for those individuals who work and set the wage to an arbitrary

constant, say, zero, for those individuals who do not work.13

Given a set of parameters β ≡ (γ10, γ11, γ20, γ21, γ22, Ω) for the structural parameters,

the simulated data consists of both simulated latent utilities ũm
i (β), each of which yields a

simulated choice ỹm
i (β), and simulated wages w̃m

i (β), where m denotes the mth simulated

data set given the observed exogenous regressors. When estimating the parameters of the

auxiliary model using the simulated data, use g(ũm
i (β); λ) in place of ỹm

i (β) (as in earlier

sections of the paper) and use g(ũm
i (β); λ)w̃m

i (β) in place of w̃m
i (β). Because the simulated

latent utilities and the simulated wages are smooth functions of β, the estimated parameters

of the auxiliary model using the simulated data are also smooth functions of β. Moreover,

as the smoothing parameter λ goes to 0, g(ũm
i (β); λ)w̃m

i (β) converges either to w̃m
i (β) (if

13One could also, for example, set the wage for those individuals who do not work to the average observed
wage.
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the simulated latent utility ũm
i (β) ≥ 0) or to 0 (if ũm

i (β) < 0). Thus, as λ goes to 0

at the same time that the sample size grows large, the estimates of the auxiliary model

parameters using either the observed data or the simulated data converge to the same vector

of pseudo true values (given that the simulated data is generated using the true vector

of structural parameters). As before, this result guarantees the consistency of generalized

indirect inference for the true structural parameter vector.

We are currently conducting Monte Carlo experiments that implement this approach to

estimating models with mixed discrete/continuous outcomes. We will report on the results

of these Monte Carlo experiments in subsequent versions of the paper. Since this model can

also be estimated using maximum likelihood, we intend to focus, as in earlier sections of

the paper, on a comparison between generalized indirect inference and maximum likelihood.

Finally, it is important to point out that, although maximum likelihood may be hard to

implement in richer versions of this model (say, ones in which the individual has more than

two alternatives from which to choose), it is straightforward to use generalized indirect

inference in such environments.

6 Conclusion

Discrete choice models play an important role in many fields of economics, from labor eco-

nomics to industrial organization to macroeconomics. In this paper we develop and im-

plement a new simulation-based method for estimating models with discrete or mixed dis-

crete/continuous outcomes. The method is a generalization of indirect inference. The key

innovation of this generalization is that, unlike in previous applications of indirect inference

to discrete choice models, the objective surface to be optimized is a smooth function of the

structural parameters. This smoothness renders indirect inference practical as a method for

estimating discrete choice models. We use a set of Monte Carlo experiments to illustrate

the practical usefulness of generalized indirect inference (GII). In addition to being robust

and fast, GII yields estimates with good properties in small samples. In particular, the es-

timates display very little bias and are nearly as efficient as maximum likelihood estimates

(in those cases where simulated versions of maximum likelihood can be used) provided that

the auxiliary model is chosen judiciously.

Although in the Monte Carlo experiments in this paper we do not estimate discrete choice

models derived from dynamic programming problems solved by forward-looking agents, GII

is sufficiently flexible to accommodate almost any conceivable model of discrete choice. We

hope that applied economists from a variety of fields find GII a useful and easy-to-implement
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method for estimating discrete choice models.
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Table 1
Monte Carlo Results for Model 1

Mean Std. dev. σGII/σSML Time
γ ρ γ ρ γ ρ (sec.)

γ = 1, ρ = 0
SML #1 1.000 −0.002 0.0387 0.0454 — — 0.76
SML #2 1.001 −0.000 0.0373 0.0468 — — 1.53
GII #1 0.998 0.002 0.0390 0.0645 1.05 1.37 0.67
GII #2 0.993 0.001 0.0386 0.0490 1.03 1.05 0.72
GII #3 0.992 0.001 0.0393 0.0490 1.05 1.05 0.91
GII #4 0.988 0.001 0.0390 0.0485 1.05 1.04 0.99

γ = 1, ρ = 0.4
SML #1 0.995 0.385 0.0400 0.0413 — — 0.78
SML #2 0.999 0.392 0.0390 0.0410 — — 1.54
GII #1 0.998 0.399 0.0454 0.0616 1.16 1.50 0.70
GII #2 0.993 0.396 0.0410 0.0456 1.05 1.11 0.72
GII #3 0.991 0.395 0.0417 0.0432 1.07 1.05 0.91
GII #4 0.987 0.392 0.0416 0.0432 1.07 1.05 0.97

γ = 1, ρ = 0.85
SML #1 0.984 0.833 0.0452 0.0333 — — 0.74
SML #2 0.993 0.842 0.0432 0.0316 — — 1.47
GII #1 0.994 0.846 0.0791 0.0672 1.83 2.13 0.71
GII #2 0.991 0.845 0.0511 0.0412 1.18 1.30 0.74
GII #3 0.992 0.846 0.0492 0.0357 1.14 1.13 0.93
GII #4 0.988 0.841 0.0490 0.0357 1.13 1.13 1.00
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Table 2
Monte Carlo Results for Model 2

Mean Std. dev. σGII/σSML Time
γ1 ρ γ2 γ1 ρ γ2 γ1 ρ γ2 (sec.)

γ1 = 1, ρ = 0, γ2 = 0.2
SML #1 1.000 0.001 0.200 0.0274 0.0357 0.0355 — — — 2.47
SML #2 1.002 0.002 0.199 0.0273 0.0362 0.0365 — — — 4.89
GII #1 0.999 0.001 0.199 0.0267 0.0571 0.0437 0.98 1.58 1.20 2.72
GII #2 0.996 0.000 0.199 0.0267 0.0379 0.0379 0.98 1.05 1.04 2.80
GII #3 0.995 0.001 0.199 0.0269 0.0377 0.0376 0.99 1.04 1.03 3.66
GII #4 0.993 0.000 0.198 0.0270 0.0377 0.0375 0.99 1.04 1.03 4.06

γ1 = 1, ρ = 0.4, γ2 = 0.2
SML #1 0.994 0.379 0.214 0.0278 0.0314 0.0397 — — — 2.42
SML #2 0.999 0.389 0.206 0.0287 0.0316 0.0397 — — — 4.82
GII #1 0.997 0.397 0.198 0.0339 0.0587 0.0544 1.18 1.86 1.37 2.73
GII #2 0.994 0.396 0.198 0.0293 0.0386 0.0462 1.02 1.22 1.16 2.82
GII #3 0.993 0.396 0.197 0.0289 0.0343 0.0431 1.01 1.09 1.09 3.64
GII #4 0.991 0.395 0.196 0.0289 0.0348 0.0434 1.01 1.10 1.09 4.02

γ1 = 1, ρ = 0.85, γ2 = 0.2
SML #1 0.974 0.831 0.220 0.0321 0.0174 0.0505 — — — 2.78
SML #2 0.987 0.840 0.208 0.0327 0.0159 0.0507 — — — 5.47
GII #1 1.000 0.854 0.183 0.0952 0.0633 0.1185 2.91 3.98 2.34 3.01
GII #2 0.992 0.852 0.190 0.0417 0.0266 0.0721 1.28 1.67 1.42 2.92
GII #3 0.992 0.851 0.191 0.0383 0.0179 0.0547 1.17 1.13 1.08 3.68
GII #4 0.990 0.850 0.188 0.0379 0.0175 0.0548 1.15 1.10 1.09 4.06
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Table 3
Monte Carlo Results for Model 3

Mean Std. dev. Time
γ1 ρ γ2 γ1 ρ γ2 (sec.)

γ1 = 1, ρ = 0, γ2 = 0.2
GII #1 0.997 −0.000 0.200 0.0272 0.0532 0.0387 3.91
GII #2 0.994 −0.001 0.200 0.0271 0.0387 0.0347 4.01
GII #3 0.993 −0.001 0.199 0.0272 0.0385 0.0345 4.81
GII #4 0.991 −0.001 0.199 0.0275 0.0389 0.0347 5.38

γ1 = 1, ρ = 0.4, γ2 = 0.2
GII #1 0.994 0.397 0.198 0.0361 0.0518 0.0493 3.99
GII #2 0.991 0.397 0.197 0.0309 0.0363 0.0430 4.00
GII #3 0.990 0.396 0.196 0.0306 0.0317 0.0399 4.80
GII #4 0.987 0.395 0.196 0.0302 0.0318 0.0400 5.35

γ1 = 1, ρ = 0.85, γ2 = 0.2
GII #1 0.993 0.851 0.184 0.0936 0.0403 0.1289 4.41
GII #2 0.986 0.851 0.191 0.0546 0.0249 0.0905 4.37
GII #3 0.987 0.850 0.189 0.0430 0.0140 0.0598 4.93
GII #4 0.984 0.849 0.185 0.0411 0.0136 0.0597 5.56
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Table 4
Monte Carlo Results for Model 4

(γ10 = 0, γ11 = 1, γ12 = 1, γ20 = 0, γ21 = 1, γ22 = 1, c1 = 0, c2 = 1)

SML GII σGII/σSML

#1 #2 #1 #2 #3 #4 #1 #2 #3 #4

Mean
γ10 0.007 0.005 0.003 0.002 0.002 0.002 — — — —
γ11 1.000 1.001 0.995 0.994 0.992 0.990 — — — —
γ12 1.000 1.003 0.998 0.997 0.995 0.992 — — — —
γ20 −0.001 −0.003 −0.006 −0.004 −0.004 0.004 — — — —
γ21 1.006 1.007 1.001 0.999 0.997 0.996 — — — —
γ22 1.005 1.007 1.004 1.000 0.998 0.996 — — — —
c1 0.020 0.010 0.007 0.005 0.005 0.006 — — — —
c2 1.004 1.003 1.006 1.001 1.001 1.002 — — — —

Std. dev.
γ10 0.0630 0.0628 0.0720 0.0666 0.0656 0.0665 1.15 1.06 1.04 1.06
γ11 0.0686 0.0686 0.0872 0.0764 0.0741 0.0743 1.27 1.11 1.08 1.08
γ12 0.0572 0.0574 0.0719 0.0667 0.0632 0.0646 1.25 1.16 1.10 1.13
γ20 0.0663 0.0657 0.0745 0.0686 0.0677 0.0676 1.13 1.04 1.04 1.03
γ21 0.1065 0.1050 0.1395 0.1128 0.1095 0.1099 1.33 1.07 1.04 1.05
γ22 0.1190 0.1174 0.1593 0.1285 0.1249 0.1244 1.36 1.09 1.06 1.06
c1 0.1091 0.1107 0.1303 0.1276 0.1224 0.1265 1.18 1.15 1.11 1.14
c2 0.1352 0.1325 0.1991 0.1509 0.1439 0.1421 1.50 1.14 1.09 1.07

Time 11.5 23.1 7.1 10.4 16.4 34.1 — — — —
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Table 5
Monte Carlo Results for Model 4

(γ10 = 0, γ11 = 1, γ12 = 1, γ20 = 0, γ21 = 1, γ22 = 1, c1 = 1.33, c2 = 1)

SML GII σGII/σSML

#1 #2 #1 #2 #3 #4 #1 #2 #3 #4

Mean
γ10 −0.031 −0.017 0.000 −0.001 −0.000 −0.001 — — — —
γ11 0.998 1.000 0.993 0.993 0.991 0.989 — — — —
γ12 1.016 1.011 0.998 0.998 0.996 0.994 — — — —
γ20 −0.011 −0.010 −0.011 −0.007 −0.007 −0.006 — — — —
γ21 0.992 0.999 1.000 0.997 0.995 0.991 — — — —
γ22 1.004 1.008 1.006 1.001 0.999 0.995 — — — —
c1 1.269 1.306 1.347 1.338 1.335 1.330 — — — —
c2 1.025 1.011 0.993 0.993 0.995 0.997 — — — —

Std. dev.
γ10 0.0693 0.0698 0.0789 0.0776 0.0758 0.0757 1.13 1.11 1.09 1.08
γ11 0.0587 0.0588 0.0696 0.0658 0.0632 0.0636 1.18 1.12 1.07 1.08
γ12 0.0745 0.0737 0.0883 0.0801 0.0781 0.0782 1.20 1.09 1.06 1.06
γ20 0.0766 0.0764 0.0900 0.0801 0.0786 0.0780 1.18 1.05 1.03 1.02
γ21 0.0884 0.0886 0.1140 0.0969 0.0952 0.0943 1.29 1.09 1.07 1.06
γ22 0.1106 0.1103 0.1471 0.1204 0.1176 0.1153 1.34 1.09 1.07 1.05
c1 0.1641 0.1707 0.2454 0.2152 0.2049 0.2041 1.44 1.26 1.20 1.20
c2 0.1229 0.1206 0.1599 0.1387 0.1338 0.1311 1.33 1.15 1.11 1.09

Time 12.7 25.6 7.4 10.8 17.1 34.4 — — — —
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