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We solve and estimate a dynamic model that allows agents to optimally choose
their labor hours and consumption and that allows for both human capital accu-
mulation and savings. Estimation results and simulation exercises indicate that
the intertemporal elasticity of substitution is much higher than the conventional
estimates and the downward bias comes from the omission of the human capital
accumulation effect. The human capital accumulation effect renders the life-cycle
path of the shadow wage relatively flat, even though wages increase with age.
Hence, a rather flat life-cycle labor supply path can be reconciled with a high
intertemporal elasticity of substitution.

1. INTRODUCTION

The intertemporal elasticity of substitution in labor supply (i.e.s.) has been a
topic of considerable interest in both labor and macroeconomics for at least the
past 30 years (see, e.g., Lucas and Rapping, 1969). Recently, there have been sev-
eral studies that address the question using micropanel data. Classic examples are
MaCurdy (1981), Browning et al. (1985), and Altonji (1986). They focus on esti-
mating the intertemporal elasticity of substitution in labor supply, using marginal
utility of wealth constant labor supply functions. In their work they assume that
the utility function is time separable and wages are exogenous.

But if current labor supply leads to human capital accumulation (i.e., learning
by doing), then estimates of the i.e.s. under a false assumption of no human capital
accumulation are likely to be biased towards zero. The reason is as follows: As the
wage increases over the life cycle, the substitution effect induces labor supply to
increase, thus providing an incentive for people to supply more labor in older age.
On the other hand, both concavity of the value function with respect to human
capital and the approaching retirement period lower the marginal rate of return to
human capital investment, thus reducing the incentive to supply labor. If these two
factors roughly cancel, then even if wages increase over the life cycle, labor supply
will be little changed (see Figure 1). If we only allow for the substitution effect and
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FIGURE 1

OPTIMAL LIFE CYCLE LABOR SUPPLY

not the human capital effect, the i.e.s. is identified primarily from the covariation
of the wages and hours over the life cycle. Then, we will falsely conclude that the
i.e.s. is low, simply because labor supply remains roughly constant over the life
cycle even though wages increase.2

In this article, we address the issue of human capital accumulation in two steps.
First, we estimate the life cycle labor supply model using maximum likelihood
(ML) estimation based on a full solution of agents’ dynamic programming problem
that allows human capital accumulation. In the estimation, we use the white male
sample in the NLSY79 data (see Section 5). Our estimate of the disutility of

2 Heckman (1973) makes a similar point in the context of a model where workers choose the fraction
of time on the job to devote to investment in human capital (in contrast to our learning-by-doing setup).
Since workers are only paid for time spent in production, “measured wage rates obtained by dividing
weekly income by weekly reported hours on the job systematically understate the true wage rate.”
This understatement of the “true wage rate” (or opportunity cost of time) is greatest at younger ages.
Thus, over the life cycle the opportunity cost of time is flatter than the wage rate.
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labor parameter implies that the i.e.s. is 3.82, which is quite comparable to results
obtained and used in the macroliterature. What drives this result is that once
human capital is included in the model, the i.e.s. is identified off the covariation
of hours with the opportunity cost of time (not just the wage rate). Since the life
cycle pattern of the opportunity cost of time is fairly flat, the i.e.s. is identified
primarily off of short-run covariation between hours and wages.

In the second step, we simulate data from the estimated model. Using the simu-
lated data, we estimate consumption and labor supply Euler equations like those
in MaCurdy (1981) and Altonji (1986), which do not allow for human capital ac-
cumulation. The elasticity estimates we obtain from the simulated data using the
MaCurdy estimation method range from 0.3 to 1.1 when we use all the simulated
data, and from 0.1 to 1.7 after we remove the outliers from the simulated data
using a similar procedure to MaCurdy (1981). The elasticity estimates obtained
using the consumption and labor supply data as in Altonji (1986) range from −0.2
to 2.8. These estimates are significantly lower than the ML estimate. OLS and IV
results from the NLSY97 data are also reported and the i.e.s. is again estimated to
be low.

The high elasticity obtained by full solution estimation, and the contrasting
low elasticities implied by the conventional estimation methods imply that the
latter are significantly biased towards zero, and that one of the main reasons
behind this is the omission of human capital accumulation. Thus, our results may
explain the apparent contradiction between the macro- and microliterature noted
above.

Notice that in conventional methods of estimation such as MaCurdy (1981) or
Altonji (1986), the i.e.s. is defined and estimated as the elasticity of substitution
when workers change labor supply along the anticipated life cycle wage path. But
in macroeconomics, the discussion is typically about how labor supply responds
to unanticipated business cycle shocks. In our analysis, we explicitly solve the
dynamic programming model including unanticipated wage shocks. Therefore, our
estimate is more relevant in providing microevidence for use in calibrating real
business cycle models. After the estimation, we also simulate the hours response
to a temporary 2% increase in the rental rate on human capital. There, we show
that even though the elasticity of labor supply is 3.82, this does not imply that
hours increase by roughly 4 times the percentage amount of the wage increase.
Rather, although such a large response is observed for older workers, the response
for young workers is much smaller. This is because of the role of human capital
accumulation, which we discuss more later.3

3 Recently, several authors, such as Cooper and Johri (2000) or Chang et al. (2002), have introduced
learning by doing (LBD) into the standard real business cycle model as an internal propagation
mechanism. Cooper and Johri (2000) assume LBD in organizational capital at the plant level and
Chang et al. (2002) assume LBD in the human capital accumulation of workers over the life cycle. Their
models succeed in generating persistence in macroeconomic variables even though their underlying
technology shocks are set to be uncorrelated over time. Furthermore, their calibrated impulse–response
function of output has the familiar hump-shaped form seen in the U.S. GDP time series data. Since
the agents in our model are very similar to those assumed by Chang et al. (2002), our article provides
some empirical evidence supporting the above line of research.



604 IMAI AND KEANE

The theory of optimal life-cycle consumption and labor supply with human
capital accumulation has been developed by Heckman (1973, 1976), Ben-Porath
(1967), Blinder and Weiss (1976), and others. They provide a neoclassical theo-
retical framework to explain the life-cycle profiles of wages, schooling, and work
hours. Shaw (1989) was among the first to estimate a dynamic labor supply model
that includes human capital accumulation. Shaw (1989) estimated Euler equations
of optimal consumption and labor supply using the nonlinear GMM method. But
in her work, she used the translog utility function for consumption and labor sup-
ply hours. Hence, she did not explicitly estimate the i.e.s. parameter. Altug and
Miller (1998) also estimate a dynamic labor supply model for females.

Eckstein and Wolpin (1989) also include human capital in a life cycle labor
supply model that they estimate by ML. But they restrict labor hours to two
categories: zero hours or full time. If people intertemporally substitute labor but
still stay within the same broad hours classification, their estimate of the i.e.s. may
be downwardly biased. But if most people work around the borders of the two
categories, then small changes in labor supply will be classified as changes between
two categories; thus the i.e.s. will be overestimated. Since the former case seems
to be more likely in a discrete choice model of labor supply, we suspect that one is
likely to get downwardly biased estimates of the i.e.s.. Also, since they use a linear
utility function for consumption, there is no wealth effect in their model, even
though the wealth effect may be an important factor linking peoples’ decisions
intertemporally. Keane and Wolpin (2001) estimate a model with human capital
accumulation and saving, but hours are also discrete in their model (e.g., full time,
part time, and zero hours work).

The major obstacle to ML estimation of the dynamic labor supply model with
continuous hours and human capital accumulation is that the full solution of the
continuous variable dynamic programming problem implied by this model is ex-
tremely computationally demanding. There are two reasons. First, the state space
of the dynamic programming problem is now infinite. Even in a discrete choice dy-
namic programming problem, where there is only a finite state space, researchers
are usually plagued with the problem of having too many state space points to eval-
uate the value function (see, e.g., Geweke and Keane, 2001; Keane and Wolpin,
1994). In the continuous choice case, explicit evaluation of the value function at
each state space point is impossible. Second, in contrast to a discrete choice dy-
namic programming problem where solving for the control variables is a trivial
optimization over a finite set of choices, in the continuous choice problem, solving
for the control variables is the main source of computational burden. It requires a
two-dimensional nonlinear Newton search algorithm to find optimal consumption
and labor supply at each state space point.

Here we develop an algorithm that approximates the solution to the DP prob-
lem. The algorithm successively solves the Bellman equation backwards from the
last period. First, we choose a finite set of grid points over assets and human cap-
ital at which to evaluate the expected value function (emax function). The emax
function derived above is used for the next Bellman backward iteration. The main
feature of the algorithm is that we avoid two-dimensional quadrature integra-
tion over both taste shocks and wage shocks by exploiting the fact that there is a
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one-to-one mapping from human capital to wages. Reducing the dimensionality
of quadrature integration decreases the number of computationally demanding
Newton searches by an order of magnitude. Also, by reducing the range of human
capital points at which the value functions must be evaluated, it makes the Newton
search algorithm itself easier and more accurate.

We apply our model to white males from the 1979 youth cohort of the National
Longitudinal Survey of Labor Market Experience (NLSY79). Among the features
of the NLSY79, which distinguishes it from the commonly used Panel Study of
Income Dynamics (PSID), is detailed asset data for individuals from 1985. Instead
of using food consumption to derive the marginal value of wealth at some period,
which is commonly done by researchers using the PSID, we use asset data directly.
We then derive total consumption by using the asset data and the intertemporal
budget constraint.

The organization of the article is as follows. Section 2 presents the model, Sec-
tion 3 describes the algorithm for solving the DP problem, and Section 4 de-
scribes the algorithm for forming the likelihood function. Section 5 describes the
data, and Section 6 discusses the estimates and some model simulations. Section 7
concludes.

2. THE MODEL SPECIFICATION

In this section, we present a life-cycle model for an individual agent who ra-
tionally chooses his optimal life-cycle path for consumption and hours of labor
supply.

At a given calendar time period s and age t, the agent’s period utility of con-
sumption is a concave function of the consumption of market goods, C, and the
disutility of labor is a convex function of the hours of labor supply h and the taste
shock ε2. Preferences are additively separable over time. Agents choose optimal
consumption and labor supply by maximizing their discounted expected life-cycle
utility over the working horizon T, which is

Et

T∑
τ=t

βτ [u(Cτ , τ ) − v(hτ , ε2,τ )](1)

Agents also face an intertemporal budget constraint and a human capital produc-
tion constraint.

The intertemporal budget constraint is

At+1 = (1 + r)At + Wt,sht − Ct(2)

where At is the agent’s asset holdings at age t and r is the interest rate. The observed
wage Wt,s at age t, time s is defined as the product of the human capital stock Kt

times the rental rate on a unit of human capital, Rs

Wt,s = Rs Kt(3)
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The rental rate Rs is the market price of services of a unit of human capital. We
assume a perfect market for human capital. Hence, at any time s, all agents face
the same rental rate Rs.

Human capital evolves according to the human capital production function,
which is a deterministic function of current labor supply hours ht, current human
capital Kt, and age t, along with the multiplicative wage shock, εt . That is,

Kt+1 = g(ht , Kt , t)ε1,t+1(4)

Kt+1 is the age t + 1 human capital after the wage shock ε1,t+1 is realized.
At age t, time period s, the agent’s decision process can be described by the

following maximization of the value function.

Vt,s(At , Kt , ε2,t ) = maxCt ,ht {u(Ct , t) − v(ht , ε2,t )

+ βEt Vt+1,s+1[(1 + r)At + Rs Kt ht

− Ct , g(ht , Kt , t)ε1,t+1, ε2,t+1]}

(5)

For the utility function for consumption Ct, we choose a CRRA form augmented
to include age effects

u(Ct , t) = A(t)
Ca1

t

a1

where A(t) is a spline in age, and a1 < 1 is a constant.4

The disutility of labor, which is a function of hours h, is assumed to have the
following functional form:

v(ht , ε2t ) = ε2t b
ha2

t

a2
(6)

4 The reason that age effects are needed to explain observed consumption behavior is as follows:
In the data, wages and labor supply are both relatively small on average when people are young
compared to when they are at prime age. Hence, annual labor income is low when people are young.
Therefore, if people smooth consumption, they should be in debt when young, and repay it in later
years of the life cycle. But this is not the case in the data. (See Table 3 for mean age profiles of wage,
hours, and assets.) Thus, age effects in consumption are necessary to explain the positive asset holdings
for youths observed in the data. To capture this, the utility of consumption should be smaller when
young, so that consumption rises over time, and individuals would not go heavily into debt early in
life. Alternative mechanisms to explain the observed asset pattern would be liquidity constraints, as in
Keane and Wolpin (2001), or a more general utility function with a very strong precautionary saving
motive.

The age effect A(t) starts at C0C1 at age 20, then gradually changes to C0C2 at age 25 and to C0 at
age 33. Thereafter, A(t) stays constant at the value C0. That is, A(t) is a linear spline with kinks at age
25 and 33. Agents in our model attempt to equate the marginal utility of consumption across time. If
they place less value on consumption when young, this would be reflected in C1 < 1 and C1 + C2 < 1.
Then, at younger ages, less consumption is necessary to reduce the marginal utility of consumption to
a given level.



INTERTEMPORAL LABOR SUPPLY 607

where b > 0 and a2 > 1 are constants. Except for the added age effects in the
marginal utility of consumption, the functional forms are adopted from MaCurdy
(1981) and Altonji (1986).5 That will enable us to compare our results and theirs in
later estimation and simulation exercises. Furthermore, in this parameter specifi-
cation, the degree of intertemporal substitution of labor supply can be summarized
by a single parameter, which is

i.e.s. ≡ b2 ≡ 1
a2 − 1

Many empirical articles analyzing intertemporal labor supply behavior, such
as Shaw (1989) or Hotz et al. (1988), use a translog function of consumption
and leisure as the utility function. Although this approach has the advantage of
being locally flexible, none of the parameters can be straightforwardly interpreted
as describing the intertemporal elasticity of substitution in labor supply. Hence,
from their estimation results, it is difficult to draw any conclusions about how
much people substitute labor intertemporally, unless one simulates their estimated
models.6

We assume the human capital production function in Equation (4) to be as
follows:

g(K, h, t) = k0 + δK + G(K, h, t)(4a)

where G(·) is a function of current human capital, labor hours, and age t. Figure 2
gives some evidence on the shape of the human capital production function from
the NLSY79 data. The figure shows the relationship between current labor supply
hours and the next period hourly wage rate, within different cells for the current

5 By introducing intratemporal nonseparability of consumption and labor supply, one could explain
the consumption profiles in the data without resorting to the age effects in consumption. But that
would make the results of the estimation and simulation exercises less comparable to the results by
MaCurdy (1981) and Altonji (1986).

6 Furthermore, in contrast to our full solution method, they use an Euler equation GMM method
of estimation. There are some shortcomings of GMM estimation that are particularly related to the
estimation of an intertemporal labor supply model that explicitly incorporates human capital accumu-
lation, such as Shaw (1989). That is, potential nonconcavities in agents’ problem as a result of human
capital investment may create problems for GMM. If we think of labor supply as an input to income
production, then an increase in labor supply by 
 percent in every period results in an increase in wage
income of more than 
 percent. That is because an increase in labor supply also raises future wages
via human capital accumulation. Hence, there are increasing returns to scale in the income-generating
process and potential nonconvexities in the model. In such a case, just looking at the first-order con-
ditions may not be sufficient to claim that agents are solving the intertemporal optimal labor supply
problem. In our estimation process, we explicitly solve for the continuous variable dynamic program-
ming problem and embed the solution in the ML estimation. Hence, our solution truly assumes that
individuals choose optimal labor supply and consumption over the life cycle. Furthermore, the full so-
lution method leads to straightforward simulation of the model after the estimation. The main goal of
this research is to simulate the intertemporal labor supply model to conduct some estimation exercises
to highlight the potential bias of the conventional estimation methods.
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FIGURE 2

HUMAN CAPITAL PRODUCTION FUNCTION

wage. Each cell has length 2 dollars. In light of this evidence, the G(·) component
of the human capital production function is specified as follows:

G(K, h, t) = A0(1 + A1(t − 19))(B1 + K)[(h + d1)α − B2(h + d1)](4b)

This is designed to take account of the following features of the relationship
between current hours, current wage rate, and the next period wage rate:

1. The relation of future wages to current labor hours has a higher slope when
the current wage is higher. That implies there is a significant complemen-
tarity between current wages and current hours in terms of learning by
doing, which is captured by the multiplicative term (B1 + K).

2. The derivative of the human capital production function with respect to
hours around h= 0 appears to be bounded. We capture that by introducing
the intercept term d1.

3. For very large hours, the slopes of the relation between future wages and
current hours seems to be close to zero or even negative. Thus, there is
a possibility that for very large hours, increase in hours have no effect
on future human capital or even decrease future human capital. We can
account for this possibility by adding the term −B2(h + d1).
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For estimation, we also include a pure age effect in the human capital production
function, similar to the age effect included in the human capital earnings function
by Keane and Wolpin (1997), which corresponds to the term A1(t − 19). The wage
and taste shocks are assumed to have i.i.d. mean one log normal distributions.
That is,

ln(εi ) ∼ N
(− 1

2σ 2
i , σi

)
, i = 1, 2(7)

We also allow for the measurement errors in wages, labor supply hours, and assets.
We defer the discussion of the measurement error functional forms until Section 4.

We set the working horizon T at age 65. At the terminal period, we assume
that agents get positive values from holding assets. This would arise, for example,
because they are able to enjoy consumption until their death, and possibly can
leave bequests to their heirs. We choose the following parameterization for the
terminal value function:

VT+1(AT+1) =
{

3 log(AT+1 + φ) − 1 − 3 log(φ) if AT+1 > 0( AT+1 − φ

φ

)3 otherwise
(8)

where φ is a parameter that determines the marginal value of assets (at T + 1)
at various asset levels. Higher values of φ imply that agents care less about the
terminal assets. We chose this specification because this function is continuously
differentiable in assets and the derivative is decreasing in assets.7 It turns out that
the coefficient φ is difficult to estimate (i.e., the likelihood is very flat over a wide

7 The function is continuous at At+1 = 0 since

lim
AT+1↓0

VT+1(AT+1) = 3 log(0 + φ) − 1 − 3 log φ = −1

and

lim
AT+1↑0

VT+1(AT+1) =
(

0 − φ

φ

)3

= −1

Furthermore, the function is continuously differentiable at At+1 = 0 since for AT+1 > 0,

∂VT+1(AT+1)
∂ AT+1

∣∣∣∣
AT+1>0

= 3
AT+1 + φ

−→ 3
φ

as AT+1 ↘ 0 and

∂VT+1(AT+1)
∂ AT+1

∣∣∣∣
AT+1≤0

= 3
(

1
φ

)3

(AT+1 − φ)2 → 3
φ

as AT+1 ↗ 0. Since both

∂VT+1(AT+1)
∂ AT+1

∣∣∣∣
AT+1>0

= 3
AT+1 + φ

and

∂VT+1(AT+1)
∂ AT+1

∣∣∣∣
AT+1≤0

= 3
(

1
φ

)3

(AT+1 − φ)2∣∣
AT+1≤0

are decreasing in AT+1, the derivative is decreasing in assets.
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range of φ), because the NLSY79 only has data on individuals until the age 36.
After some experimentation, we set φ to be 100,000.8

Now, to understand the effect of introducing human capital accumulation on
the hours response to wage changes, we consider the first-order conditions of the
above problem with respect to consumption and labor. These are:

Ct : uC(Ct , t) − βEt VA,t+1,s+1(At+1, Kt+1, ε2,t+1) = 0

ht : −vh(ht , ε2,t ) + Rs Kt uC(Ct , t)

+ βEt ghε1,t+1VK,t+1,s+1(At+1, Kt+1, ε2,t+1) = 0

(9)

Notice that the current marginal disutility of labor equals the wage (RsKt) times the
marginal utility of consumption, which is the marginal return to increases in cur-
rent wage income due to increases in labor supply, plus an extra term that captures
the marginal return to increases in future human capital. As the wage increases
over the life cycle, the substitution effect induces labor supply to increase, thus
providing an incentive for people to supply more labor in older age. This corre-
sponds to the term RsKtuC(Ct, t). On the other hand, both concavity of the value
function with respect to human capital and the approaching retirement period
lower the marginal rate of return to human capital investment, thus reducing the
incentive to supply labor. This comes from the term βEt ghε1,t+1VK,t+1,s+1(At+1,
Kt+1, ε2,t+1). If these two factors roughly cancel, then even if wages increase over
the life cycle, labor supply will be little changed (see Figure 1).

Observed heterogeneity is introduced into the model by allowing the param-
eters b, C0, C1, C2 in preferences, and K0, δ, A0, A, and α in the human capital
production function, to differ depending on whether an agent is a high school
dropout, high school graduate, has some college, or is a college graduate. Com-
pleted schooling is treated as exogenous. We do not allow for unobserved hetero-
geneity, but, as we discuss in Section 6.4, the model is nevertheless able to generate
substantial persistence in wages, hours, and assets due to the persistent nature of
shocks to the human capital production function.

At this point, readers who are not interested in the algorithms for solving the
dynamic programming problem and forming the likelihood can skip Sections 3
and 4 and go directly to the data description in Section 5.

3. SOLVING THE CONTINUOUS STOCHASTIC DYNAMIC

PROGRAMMING PROBLEM

As discussed before, the problem agents solve in each period is as follows:

Vt,s(At , Kt , ε2,t ) = max
Ct ,ht

{u(Ct , t) − v(ht , ε2,t )

+ βEt Vt+1,s+1(At+1, Kt+1, ε2,t+1)}

(5′)

8 Since we only have data until the age 36, and the final period is at age 65, our experimentation
indicated that the likelihood function is very flat for a wide range of φ values around 100,000. But if
φ is larger than 200,000, the lack of concavity of the final period value function causes the continuous
variable DP solution algorithm to break down.
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subject to the intertemporal budget constraint

At+1 = (1 + r)At + Wt,sht − Ct(2)

and human capital production function

Kt+1 = g(ht , Kt , t)ε1,t+1(4)

where ε1,t+1 is the human capital shock realized at age t + 1.
Notice that the next period’s human capital Kt+1 is not known to the individual

at age t. Let us rewrite the Bellman equation in terms of variables that the agent
knows at age t. Define K̃t+1 to be the next period human capital before the human
capital shock is realized. That is,

K̃t+1 = g(ht , Kt , t)

Kt+1 = K̃t+1ε1,t+1

Define the value function in terms of K̃t as follows:

Vt,s(At , K̃t , ε1,t , ε2,t ) = max
Ct ,ht

(u(Ct , t) − v(ht , ε2,t )

+ βEt Vt+1,s+1(At+1, K̃t+1, ε1,t+1, ε2,t+1))

Also, define the emax function VE as follows:

VE
t+1,s+1(At+1, K̃t+1) = Et Vt+1,s+1(At+1, K̃t+1, ε1,t+1, ε2,t+1)

Then, the above problem can be rewritten as follows:

Vt,s(At , K̃t , ε1,t , ε2,t ) = max
Ct ,ht

{u(Ct , t) − v(ht , ε2,t ) + βVE
t+1,s+1(At+1, K̃t+1)}

subject to the intertemporal budget constraint (2), and human capital production
function K̃t+1 = g(ht , Kt , t) where Kt = K̃tε1,t .

There are several computational obstacles to solving the continuous stochastic
dynamic programming problem that we assume the agents are facing. In order to
numerically solve the above problem, in general, we have to start at the terminal
period, T, and backsolve to t = t0, where t0 is the start of the planning period
(assumed to be age 20).

Now, let the state space for the emax function be (At , K̃t ). Suppose we have
already solved for the emax function for age t + 1. That is, we have already
calculated the emax function

VE
t+1,s+1(At+1, K̃t+1) = Et Vt+1,s+1(At+1, K̃t+1, ε1,t+1, ε2,t+1)
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for all possible values of At+1 and K̃t+1. The next step in the backsolving process
is to find the VE

t,s(At , K̃t ). Given the state space point, (At , K̃t ), we need to derive
the integral of Vt,s(At , K̃t , ε1,t , ε2,t ) with respect to ε1,t and ε2,t . Furthermore, in
integrating for each value of the shock vector (ε1, ε2), we need to find the optimal
consumption and labor supply to derive the value Vt,s(At , K̃t , ε1,t , ε2,t ).

To get an idea of the magnitude of the computational problem involved in solv-
ing this model, assume that agents only have two possible choices of consumption
and labor supply, that is, a total of four discrete choices in each period. Also, sup-
pose that there is no taste shock or human capital shock that we need to integrate
over. Then, because the state variables in future periods depend on past choices,
for a discrete choice dynamic programming problem with T − 20 time periods, we
need to evaluate the value function at least 4(T−20) state space points. For exam-
ple, if we assume there are 20 time periods, this amounts to at least 1.099511D+12
points. Suppose on the other hand, we discretize the state space of assets and
human capital into nA × nK grid points. Further suppose that at each grid point,
we evaluate the value function with respect to n1 × n2 combinations of human
capital shocks and taste shocks, and integrate over the shocks to get the emax
function. Then the required number of evaluations of the value function is at least
nA × nK × n1 × n2 × (T − 20) × 4, which is again extremely computationally de-
manding even with modest numbers of grid and quadrature points. In continuous
choice dynamic programming problems, the state space is continuous, and hence
the number of state space points is infinite. Therefore, explicit evaluation of the
value function at each state space point (At , K̃t ) is impossible.

Furthermore, compared to discrete choice dynamic programming models,
where optimization over the control variable only involves maximizing over a
discrete set of choices, in the continuous choice problem we examine here, find-
ing optimal consumption and labor supply requires a two-dimensional nonlinear
search at each state space point.

In order to cope with the computational problem discussed above, we will use a
set of approximation and interpolation methods. First, we only explicitly solve for
the expected value functions at a finite set of asset and human capital grid points.
The expected value functions at the remaining points are derived by Chebychev
polynomial least squares interpolation. To solve for the expected value function
at each state variable grid point, we need to integrate the value function over both
the taste shock and the human capital shock. To avoid the quadrature integration
with respect to the human capital shock, we add another interpolation and ap-
proximation step that exploits the fact that there is a one-to-one mapping from
human capital to wages. We explain the algorithm in detail in the Appendix.

4. MAXIMUM LIKELIHOOD ESTIMATION

We use NLSY79 data to estimate the parameters of the model. There are several
features of the data that we need to consider when we estimate the model. First,
as in most other panel data, variables such as wages, labor supply, and assets
are measured with error. Hence, the estimation procedure should incorporate a
measurement error component in those variables. Second, there are periods where
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assets are missing. Hence, during the estimation process, we need to account for
the missing asset data. In our likelihood function, we take into account both of
these problems.

Suppose that for age t, period s, the true wage Wt,s = RsKt, labor supply, and
assets (Wt,s , ht, At) are all observed with measurement error. Denote by ξ t = (ξ 1,t ,
ξ 2,t , ξ 3,t ) the vector of the measurement errors in observed labor income, hours of
labor supply, and assets, respectively. Assume that the labor income measurement
error is log normally distributed with mean 1. That is,

Yd
t = Ytξ1,t

ln (ξ1,t ) ∼ N
(− 1

2σ 2
ξ,1, σξ,1

)
where Yt is the true labor income at period t (which equals Wtht) and Yd

t is the
observed labor income in the data.

Assume that the hours measurement error is normally distributed. That is,

hD
t = ht + ξ2,t

ξ2,t ∼ N(0, σξ,2)

where ht is the true labor income at period t and hd
t is the observed labor income

in the data.
Furthermore, for the measurement error in assets, we assume the following:

AD
t = At + ξ3,t

ξ3,t ∼ N(0, σξ,3)

σξ,3 = σξ,3,1 + σξ,3,2(t − 19)

where At is the true labor income at period t and Ad
t is the observed labor income

in the data.
And in order to fill in the missing first period assets, we assume they are dis-

tributed as follows:

At0 ∼ N(Ā, VĀ)

We let Ā differ depending on whether the first period is at age 20 or later. Also,
we assume that

Rs = 1

for all periods s. Hence,

Wt,s = Rs Kt = Wt = Kt
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We denote KD
t = WD

t , to be the observed human capital, which we derive by
dividing the annual labor income by the annual hours worked, i.e.,

KD
t = YD

t

hD
t

This is different from the true human capital Kt by a measurement error compo-
nent. That is, for observations after the initial period t0,

KD
t = Kt ht

ξ1,t

hD
t

Finally, for the initial period wage, we assume the following measurement error:

KD
t0 = Kt0ξ0

where

ln ξ0 ∼ N
(− 1

2σ 2
ξ0
, σ 2

ξ0

)
Also, the interest rate r is set to be 5%.

Here, we adopt the simulated ML method. Denote by {Km
t , hm

t , Cm
t , Am

t }T
t=t0 the

sequence of the true human capital, true labor supply, true consumption, and true
assets at the mth simulation draw. We repeat the simulation M times and derive
the likelihood in the steps described in the Appendix.

As discussed earlier, the major obstacle to the ML estimation of the continuous
choice dynamic programming problem is the iterative solution of the Bellman
equation, which requires a Newton search routine for optimal consumption and
labor supply at each asset and human capital grid point and quadrature point of
the taste shock. In a standard ML routine, a single iteration requires evaluation of
the likelihood and its partial derivatives with respect to all the model parameters.

The usual practice is to calculate the derivatives of the likelihood function nu-
merically as follows: Suppose that the parameter vector is θ = (θ1, θ2, . . . , θn).
Then, one solves the entire DP problem to evaluate the log likelihood for θ , l(θ ,
XD), which is a function of parameters θ and data XD. Then, for each i = 1, . . . , n,
one solves the DP problem and evaluates the likelihood at parameter values (θ1,
θ2, . . . , θ i + 
i , . . . , θn) where 
i is a small positive number. Then, the numerical
derivative is

∂l(θ, XD)
∂θi

= l(θ1, θ2, . . . , θi + 
i , . . . , θn, XD) − l(θ, XD)

i

Now, the effect on the value function of a marginal change in outside conditions
can be decomposed into two components. The first component results from the
change in the value function with the choice variables held constant, and the
second component results from the change in the value function due to changes
in the choice variables. From the envelope theorem, we know that the magnitude
of the second component is of second order. Hence, as long as changes in the
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parameters are small, a valid approximation for the likelihood function under the
parameter value

θ ′i = (θ1, θ2, . . . , θi + 
i , . . . , θn)

is obtained by constructing the value functions and the likelihood with the con-
sumption and labor supply choices held fixed at the values derived under the
parameter value θ . Because the approximation error in the value functions is of
second order, the approximation error in the likelihood function evaluation is also
of second order. Hence, for one evaluation of likelihood and all its partial deriva-
tives, the Newton search algorithm over optimal consumption and labor supply
at each grid point and quadrature point only needs to be done once. Since the
Newton search algorithm is the most computationally demanding part of the whole
likelihood evaluation, this significantly reduces the computational burden. In fact,
this approach makes the computational cost of estimating the continuous choice
model comparable to that of estimating discrete choice dynamic programming
models.

5. DATA

The data are from the 1979 youth cohort of the National Longitudinal Survey
of Labor Market Experience (NLSY79). The NLSY79 consists of 12,686 individ-
uals, approximately half of them men, who were 14–21 years old as of January 1,
1979. The sample consists of a core random sample and an oversample of blacks,
Hispanics, poor whites, and the military. One unique characteristic of the NLSY79
is that from 1985, it has comprehensive asset information for each respondent. In
any intertemporal labor supply model, the shadow price of assets, or marginal
utility of wealth, plays an important role as linking period-by-period decisions
intertemporally. In the past, the Panel Study of Income Dynamics (PSID) was
frequently used to estimate such models, and researchers either first differenced
away the shadow price of assets, as in MaCurdy (1981), or used the marginal utility
of food consumption as a proxy for the shadow price of assets, as in Altonji (1986)
or Shaw (1989). It was necessary for researchers analyzing the PSID to use food
consumption data because that is the only consumption data it contains. Here we
use the asset data directly to either measure the shadow price of assets, or, using
the intertemporal budget constraint, back out total consumption.

We use the white male sample of the NLSY79 data. We only use males who
are at least 20 years old and have completed schooling. In our analysis, we treat
schooling as exogenous. Since people can either accumulate human capital by
on the job experience or schooling, omission of the schooling decision can be an
important source of bias. By only using data beginning from the year after the
respondent last attended school, we hope to minimize the potential bias.9 Also,

9 The failure to treat school attendance as a choice variable potentially creates two types of biases.
Suppose that once people leave school they rarely return. If people decide when to leave school based
on the wage draws they receive (i.e., the shock to human capital ε1,t+1 in Equation (4)), then people
will tend to have relatively high levels of wages (human capital) in the first period after leaving school.
If the wage process exhibits any subsequent mean reversion, this may lead to understatement of the
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TABLE 1
MEAN AGE PROFILES

Age Hourly Wage Hours Total Wealth

20 5.785 (2763) 1531.7 (2837) 6334.8 (207)
21 5.998 (3220) 1578.6 (3348) 6178.5 (568)
22 6.697 (3396) 1725.7 (3536) 8933.0 (956)
23 7.120 (3420) 1866.7 (3557) 9163.0 (1361)
24 7.342 (3308) 1989.4 (3480) 2889.9 (1751)
25 7.990 (3187) 2042.0 (3360) −9276.6 (1885)
26 9.294 (2987) 2101.6 (3160) 1205.6 (2189)
27 9.098 (2871) 2134.7 (3048) 4651.3 (2504)
28 10.10 (2785) 2182.1 (2976) −29,888 (2538)
29 9.426 (2499) 2200.7 (2670) −37,101 (2235)
30 12.36 (2028) 2224.3 (2188) −25,726 (1903)
31 15.24 (1649) 2243.9 (1785) −12,168 (1614)
32 13.60 (1206) 2238.1 (1307) 19,201 (1313)
33 22.98 (851) 2253.1 (922) 27,379 (1098)
34 11.39 (554) 2246.7 (608) 55,264 (649)
35 11.57 (291) 2294.2 (325) 84,001 (299)
36 10.01 (65) 2283.5 (71) 58,172 (67)

NOTE: Sample sizes are in parentheses.

we censor anybody who served in the military from the sample. Appendix A.3
describes in more detail how we constructed the data.

Since the NLSY79 only has asset data beginning in 1985, and the asset data
in 1991 is missing, we recover the missing assets using the intertemporal budget
constraint as discussed in the previous section.

Table 1 gives the sample means of wages, hours of labor supply, and total wealth
of individuals. Also, Table 2 gives the quantiles of the wage and labor supply
distribution. Notice that the sample mean of the wages far exceeds the median.
This indicates that there are some very high wage values. In order to remove
the effect of outliers, we removed the top and bottom 2.5% of the wage and
hours distributions. Also, following Keane and Wolpin (2001), who also used the
NLSY79 data, we only used assets that satisfy the following formula:

−2500 × (t − 10) ≤ A(t) ≤ 10,000 × (t − 15)

gradient of wages with respect to experience in the early postschool years. This would, in turn, cause
us to underestimate the return to human capital investment in the early postschool years, which would
cause us to underestimate the i.e.s. Suppose on the other hand, that people often return to school in
periods when they receive very low wage draws. Failure to account for this is analogous to ignoring
corner solutions in labor supply, which we have argued would be likely to bias estimates of the i.e.s.
toward zero. In any case, omitting the schooling choice, as well as omitting the choice of working
zero hours, may result in bias in our estimated parameters. We left those choices out of the model
because (1) it imposes even more computational burden in the estimation routine, and (2) most of the
labor supply literature, such as MaCurdy (1982), Altonji (1986), and Shaw (1989) focus exclusively
on workers with positive hours and omit schooling choices from their models as well. But estimating
intertemporal labor supply models with corner solutions and schooling choices would be a promising
future line of research. Keane and Wolpin (2001) estimate such a model, but they discretize the hours
choices.
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TABLE 2
QUANTILE AGE PROFILES

Wage Quantiles Hours Quantiles

Age 25% 50% 75% 25% 50% 75%

20 3.260 4.752 6.641 800 1640 2080
21 3.509 5.138 7.188 892 1694 2095
22 3.912 5.645 7.980 1127 1948 2185
23 4.140 6.096 8.623 1402 2080 2294
24 4.527 6.533 9.203 1640 2080 2357
25 4.739 7.000 9.833 1760 2080 2395
26 5.079 7.404 10.38 1880 2080 2438
27 5.389 7.754 10.84 1925 2080 2486
28 5.633 8.142 11.35 2000 2120 2531
29 5.673 8.318 11.65 2016 2145 2560
30 5.851 8.611 12.02 2060 2162 2580
31 5.989 8.760 12.43 2051 2170 2600
32 6.077 8.983 12.98 2068 2134 2600
33 6.166 8.917 12.66 2080 2165 2600
34 6.737 9.378 13.24 2080 2161 2600
35 6.581 9.316 13.72 2080 2200 2619
36 6.388 10.18 12.37 2080 2151 2667

where t is the age of the individual. This was necessary because there were some
assets whose values were either extremely high or low. After censoring the data,
the sample means are closer to the medians (see Table 3). In the estimation, we
treat outliers as missing values.

In the data, the percentage of the individuals with zero hours supplied is 17% at
age 20, falls below 10% at age 25, and is 9.6% overall. Hence, for the estimation of
this article, we adopt the conventional approach of the prime age male labor supply
literature and assume only interior solutions. We start estimating the model on
individuals after they finish schooling and when they start working positive hours,
and we exclude individuals who have a year of zero hours of work after that. The
estimation of the intertemporal labor supply model with corner solutions using
the dynamic programming ML approach is left for future research.

Because of the computational burden of the dynamic programming and estima-
tion routine, we restrict the heterogeneity to be only on the observed educational
outcome. That is, we divide individuals into four educational types: type 1 indi-
viduals are those who did not graduate from high school (final grade less than
12 years), type 2 are those who graduated from high school (final grade equal
to 12 years), type 3 are those who attended some college (final grade less than
16 years), type 4 are those who graduated from college (final grade more than or
equal to 16 years).10

10 While we do not include unobserved heterogeneity in the model, persistence in wages is captured
by the persistent nature of the shocks to human capital.
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TABLE 3
MEAN AGE PROFILES AFTER CENSORING

Mean Sample Mean Sample Zero Mean Sample
Age Wage Size Hours Size Hours Assets Size

20 5.147 2624 1567.5 2769 17.14 3478.9 202
21 5.582 3059 1616.3 3266 14.94 4633.2 561
22 6.090 3227 1766.5 3451 13.63 5404.6 931
23 6.603 3249 1910.9 3470 11.74 6676.6 1337
24 7.070 3143 2034.3 3398 10.24 8501.6 1706
25 7.500 3028 2089.9 3277 8.37 10,333 1831
26 7.965 2837 2146.1 3088 6.81 11,195 2128
27 8.340 2728 2183.0 2973 5.95 12,312 2434
28 8.748 2646 2231.2 2903 5.97 13,818 2439
29 8.943 2374 2250.5 2605 5.42 15,733 2143
30 9.349 1927 2272.1 2135 6.09 14,695 1818
31 9.656 1566 2289.9 1744 5.10 14,431 1530
32 10.04 1145 2284.6 1276 6.24 13,029 1265
33 9.866 808 2300.3 900 6.49 14,730 1060
34 10.51 527 2292.1 594 7.03 24,411 604
35 10.81 276 2337.0 318 8.19 32,658 252
36 9.768 62 2283.5 71 7.79 22,175 59

The total sample of white males who are at least 20, have completed schooling,
are not in the military, and whose schooling record is known is 4418 individu-
als. Among them, 718 individuals are high school dropouts, 1980 individuals are
high school graduates, 869 individuals attended some college, and 851 individuals
are college graduates. Among them, we only use the individuals who completed
schooling before age 25 and whose wage and hours data are available for at least
6 years. The total sample size of those left is 2143 individuals. Then, we remove
those people that have zero hours at some point after the starting age. After that,
the remaining sample is 1972 individuals.

Finally, we restricted the sample size for the estimation by randomly choosing
1000 people out of 1972 individuals. The total number of person year observa-
tions is 7465. The total number of wage observations is 7465, that of the hours
observations is 7465, and that of the asset observations is 4323. Notice that people
with missing data for several periods are still carried forward (as described in the
Appendix).

6. ESTIMATION RESULTS AND SIMULATION EXPERIMENTS

6.1. Main Estimation Results. We report the parameter estimates in Table 4.
The key result is the estimate of the disutility of labor parameter, which is 1.262.
The implied elasticity of intertemporal substitution is

i.e.s. ≡ b2 ≡ 1
a2 − 1

= 3.820
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TABLE 4
ESTIMATION RESULTS

Utility Function Parameters
Disutility of labor

a2 Disutility of labor curvature 1.2618 (8.504 × 10−4)

b bn Non-high school 1.831 × 10−5 (1.891 × 10−7)
bh High school graduate 1.651 × 10−5 (6.801 × 10−8)
bc Some college 1.623 × 10−5 (1.041 × 10−7)
bcg College graduate 1.745 × 10−5 (2.041 × 10−7)

σ 1 Std. error of disutility shock 0.01156 (6.748 × 10−4)

Consumption utility
a1 Consumption CRRA 0.2617 (5.728 × 10−4)

C0 Constant 0.01700 (5.968 × 10−5)
C1 C1n Non-high school 0.5859 (0.01080)

C1h High school graduate 0.5241 (0.003821)
C1c Some college 0.5175 (0.01022)
C1cg College graduate 0.5460 (0.01967)

C2 C2n Non-high school 0.2259 (0.005984)
C2h High school graduate 0.1672 (0.001954)
C2c Some college 0.1294 (0.007231)
C2cg College graduate 0.1517 (0.006270)

β Discount factor 0.9529 (2.472 × 10−4)

Production Function Parametersa

δ δn Non-high school 0.4040 (0.002633)
δh High school graduate 0.3458 (9.707 × 10−4)
δc Some college 0.3189 (0.002413)
δcg College graduate 0.3434 (0.002145)

k0 k0n Non-high school 0.01588 (0.002521)
k0h High school graduate 0.02843 (0.002224)
k0c Some college 0.05387 (0.001278)
k0cg College graduate 0.05719 (0.002262)

A0 A0n Non-high school 0.1304 (6.911 × 10−4)
A0h High school graduate 0.1513 (3.154 × 10−4)
A0c Some college 0.1536 (6.592 × 10−4)
A0cg College graduate 0.1463 (5.117 × 10−4)

A1 A1n Non-high school −0.002139 (1.825 × 10−5)
A1h High school graduate −0.003420 (1.616 × 10−5)
A1c Some college −0.002915 (7.110 × 10−5)
A1cg College graduate −0.003329 (6.938 × 10−5)

α αn Non-high school 0.2279 (4.144 × 10−4)
αh High school 0.2243 (1.359 × 10−4)
αn Some college 0.2258 (3.309 × 10−4)
αh College graduate 0.2275 (3.307 × 10−4)
B2 −B2(h + d1) 4.047 × 10−4 (7.294 × 10−7)
B1 Additive constant in capital term B1 + K 0.04021 (7.293 × 10−4)

σ 0 Std. error of wage shock 0.05781 (6.052 × 10−4)
d1 Additive constant in hours term h + d1 367.2 (6.035)

(continued)
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TABLE 4
CONTINUED

Mean Initial Assets
Ā Mean initial assets when the starting age is 20 3250.8 (458.6)
Ā Mean initial assets when the starting age is after 20 7190.4 (631.1)
VĀ Std. error, initial assets 2218.7 (241.3)

Measurement Error Parameters
σ ξ0 Initial period wageb 0.4909 (0.003626)
σ ξ1 Wagec 0.4643 (0.001333)
σ ξ2 Hoursd 590.7 (2.156)
σ ξ31 Assete 2623.5 (178.5)
σ ξ32 Asset 948.8 (11.98)

NOTES: Standard errors are in parentheses.
ag(K, h, t) = A0(1 + A1(t − 19))(B1 + K)[(h + d1)α − B2(h + d1)] + δK + k0.
b KD

t0 = Kt0 ξ0, ln(ξ0) ∼ N(0, σξ,0).
c KD

t = Kt ht
ξ1,t

hD
t

, ln(ξ1,t ) ∼ N(0, σξ,1).
dhD

t = ht + ξ2,t , ξ2,t ∼ N(0, σξ,2).
e AD

t = At + ξ3,t , ξ3,t ∼ N(0, σξ,3), σξ,3 = σξ,3,1 + σξ,3,2(t − 19).

This elasticity estimate is reasonably close to the elasticity parameter macro-
economists typically use to calibrate real business cycle models (e.g., Eichenbaum
et al., 1988, obtain an elasticity estimate that is around 5, and Prescott, 1986, uses
2 in his calibration exercise).

Another key parameter of interest is a1, the CRRA parameter, which we esti-
mate to be 0.262. Thus, the intertemporal elasticity of substitution in consumption
(i.e.s.-c) is

1
a1 − 1

= −1.354

This is quite different from conventional estimates. Typically, a1 is estimated to
be around −2, which implies that the i.e.s.-c is around −1/3 (see Hubbard et al.,
1994). Keane and Wolpin (2001) also estimate a dynamic model of labor supply,
human capital accumulation, and saving, and they obtain an estimate of the i.e.s.-c,
which is around −2 (i.e., a1 ≈ 0.5), which is more similar to our estimate of i.e.s.-c =
−1.354 than most of the prior literature. Keane and Wolpin (2001, p. 1078) argue
that prior estimates of this i.e.s.-c had to imply a high degree of prudence (2 − a1)
in order to rationalize the fact that youths with steep age–earnings profiles do not
borrow substantially against future income. They argue that their estimate of a1

is larger than the values of about −2 typically estimated in the literature because
their model incorporates borrowing constraints. Similarly, we use age effects in
the marginal utility of consumption to help explain the failure of youths to borrow
against future income. This may account for our larger estimate of a1. Recently,
Goeree et al. (2000) have argued that experimental evidence is consistent with
a1 ≈ 0.50.
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AGE–WAGE PROFILES

6.2. Model Fit. To evaluate the fit of the model, we artificially generated 1000
individual life-cycle paths from ages 20 to 65 using the estimated parameters.
The various age profiles in the simulated data are reported in Table 5. Figures 3–
5 compare simulated age profiles of wages, labor supply, and assets with those
of the data. The simulated profiles resemble the actual profiles reasonably well.
Notice that the age–hours profile before retirement is rather flat compared to the
significant humped shape of the simulated age–wage profile. The model is able
to reconcile this fact with a large i.e.s. because of the human capital effect, as we
have discussed earlier.

The simulated asset paths indicate that, even though labor income is small when
people are young, individuals do not go into sizeable debt early in their life. In a
model with perfect capital markets, this implies that, for the same consumption
level, the value of consumption is smaller when people are young. As noted
earlier, alternative explanations could be the existence of some finance constraints
(see Keane and Wolpin, 2001) or some nonseparability between consumption
and labor. We did not pursue these explanations in this article. The out-of-sample
predictions of the model for wages, hours, and assets look quite reasonable. The
simulated age–hours path predicts retirement behavior of the agents at older ages,
although that occurs somewhat sooner in the simulation than has been the case in
the United States. On the other hand, later cohorts have been retiring at younger
ages, so we cannot rule out that this prediction may be accurate for the cohort



622 IMAI AND KEANE

TABLE 5
SIMULATED MEAN AGE PROFILES

Age Mean Wage Mean Hours Mean Assets [(1 + r)β ]t−20uC(t)

20 5.517 1899.4 3239.2 1.26 × 10−5

21 5.754 1943.0 4031.4 1.27 × 10−5

22 6.088 1993.7 4614.1 1.26 × 10−5

23 6.464 2040.5 5942.4 1.25 × 10−5

24 6.799 2087.6 6784.4 1.24 × 10−5

25 7.114 2132.9 7977.7 1.24 × 10−5

26 7.437 2176.8 9182.3 1.24 × 10−5

27 7.754 2219.3 10,389 1.24 × 10−5

28 8.066 2260.5 11,582 1.24 × 10−5

29 8.378 2300.1 12,744 1.24 × 10−5

30 8.685 2337.3 13,842 1.24 × 10−5

31 8.974 2372.9 14,834 1.24 × 10−5

32 9.256 2406.6 15,674 1.25 × 10−5

33 9.526 2437.8 16,300 1.25 × 10−5

34 9.784 2466.4 17,820 1.25 × 10−5

35 10.03 2492.0 20,230 1.25 × 10−5

36 10.25 2515.1 23,517 1.25 × 10−5

37 10.45 2534.7 27,656 1.25 × 10−5

38 10.63 2551.0 32,615 1.25 × 10−5

39 10.79 2562.3 38,344 1.25 × 10−5

40 10.92 2569.5 44,772 1.25 × 10−5

41 11.04 2572.6 51,828 1.25 × 10−5

42 11.14 2569.8 59,432 1.25 × 10−5

43 11.20 2560.2 67,494 1.25 × 10−5

44 11.24 2545.0 75,890 1.25 × 10−5

45 11.27 2522.1 84,519 1.25 × 10−5

46 11.25 2491.4 93,256 1.25 × 10−5

47 11.21 2452.0 101,973 1.25 × 10−5

48 11.14 2402.2 110,531 1.25 × 10−5

49 11.06 2342.0 118,779 1.25 × 10−5

50 10.94 2271.1 126,622 1.25 × 10−5

51 10.79 2189.6 133,972 1.26 × 10−5

52 10.60 2096.7 140,751 1.26 × 10−5

53 10.38 1990.8 146,866 1.27 × 10−5

54 10.13 1872.9 152,228 1.27 × 10−5

55 9.849 1742.5 156,759 1.28 × 10−5

56 9.530 1597.5 160,371 1.30 × 10−5

57 9.161 1441.1 162,959 1.31 × 10−5

58 8.755 1274.1 164,440 1.32 × 10−5

59 8.309 1102.0 164,709 1.33 × 10−5

60 7.799 933.21 163,702 1.34 × 10−5

61 7.250 777.70 161,383 1.35 × 10−5

62 6.669 633.47 157,795 1.36 × 10−5

63 6.070 488.99 153,096 1.38 × 10−5

64 5.452 434.42 147,231 1.45 × 10−5

65 4.877 251.58 141,247 1.36 × 10−5
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used here. It is also worthwhile to notice that the model predicts large asset ac-
cumulation between ages 40 and 60, and dissaving afterwards, which is the actual
pattern of savings and dissavings (see Carroll, 1997).

The performance of the approximate DP solution can be indirectly inferred
from the age profile of the discounted marginal utility of consumption. In Table 5,
we report the simulated mean age profile of [(1.0 + r)β ]t−20uC(Ct, t), which should
be constant over age.11 The profile is roughly constant, except it rises a bit in the
late 50s and 60s. This gives indirect evidence that the solution algorithm seems to
work fairly well overall.

6.3. Using Simulation Exercises to Assess the Bias in Conventional Elasticity
Estimates. Using the simulated data, we conduct OLS and IV exercises to esti-
mate the elasticity of intertemporal substitution using the methods of MaCurdy
and Altonji. That is, we estimate the following equation via OLS and IV:


 ln(ht ) = Const + b2
 ln(Wt ) + ςt

where ς t is the error term. From the values of estimated coefficient b2, we also
recover the disutility of labor parameter a2 as follows:

a2 = 1
b2

+ 1

In Table 6, we report the results of estimation on simulated data, and in Table 7,
we report the results of estimation on the simulated data that we cleaned by
using an outlier elimination procedure that is similar to MaCurdy (1981).12 The
instruments for our IV exercise include a constant term, experience, experience
squared, and the twice lagged wage. All the OLS and IV results are the average
of 10 repetitions with independently simulated data. We used various age groups
for the exercise, starting with simulation from age 20 to 64. Then, in Table 8 we
obtained results with ages from 20 to 56, 20 to 46, and 20 to 36, which is the age
group in the NLSY79.

Note that in Tables 6 and 7, the elasticity estimates obtained from the simulated
data using conventional methods are low, compared to the true value used to
generate the data (3.820). This is true regardless of whether we remove outliers or

11 The model allows the value that agents place on consumption to vary with age, as determined by
the A(t) term in U(ct , t). According to our estimates, for a high school graduate, A(t) is equal to C0
times 0.524 (=C1) at age 20, it rises to C0 times 0.6913 (=C1 + C2) at age 25, and then rises to C0 times
1.0 at age 33 and above. Results for other education categories are similar. Thus, at younger ages, less
consumption is needed to reduce the marginal utility of consumption to any given level.

12 The outlier elimination rules are:

1. Annual hours worked must be less than 4680 hours.
2. For the calculation of changes in log earnings, the absolute value of the difference in a

person’s average hourly earnings in adjacent years cannot exceed $16 or a change of 200%.
3. For the calculation of the changes in log hours, the absolute value of the difference in the

annual hours of work in adjacent years cannot exceed 3000 hours or a change of 190%.
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TABLE 6
ML, OLS, IV RESULTS

Age b2 a2

20–36 ML 3.82 (0.0124) 1.26 (0.000850)

Simulated data
20–64 OLS −0.444 (0.00248) −1.25 (0.0126)

3SLS 0.971 (0.0941) 2.03 (0.0999)
20–56 OLS −0.301 (0.00247) −2.33 (0.0273)

3SLS 1.13 (0.259) 1.89 (0.204)
20–46 OLS −0.270 (0.00280) −2.70 (0.0382)

3SLS 0.537 (0.217) 2.86 (0.753)
20–36 OLS −0.293 (0.00366) −2.41 (0.0426)

3SLS 0.325 (0.256) 4.08 (2.42)

NLSY79 data
20–36 OLS −0.231 (0.00659) −3.33 (0.124)

3SLS 0.260 (0.0769) 4.85 (1.14)

NOTE: Delta method is used to calculate the standard errors for b2 for
ML and a2 for OLS and 3SLS results.
Std. errors are in parentheses. Instruments: const, experience (which
is age-19), experience squared, twice lagged wage.

TABLE 7
OLS, IV RESULTS WITH CLEANED DATA

Age b2 a2

20–36 ML 3.82 (0.0124) 1.26 (0.000850)

Simulated data
20–64 OLS −0.168 (0.0299) −4.94 (1.056)

3SLS 1.21 (0.196) 1.83 (0.134)
20–56 OLS −0.171 (0.0895) −4.85 (3.067)

3SLS 1.68 (0.569) 1.60 (0.202)
20–46 OLS −0.171 (0.00590) −4.87 (0.203)

3SLS 0.655 (0.521) 2.53 (1.22)
20–36 OLS −0.177 (0.00775) −4.65 (0.248)

3SLS 0.0750 (0.576) 14.3 (102)

NLSY79 data
20–36 OLS −0.232 (0.00607) −3.31 (0.113)

3SLS 0.142 (0.0731) 8.03 (3.61)

NOTE: Delta method is used to calculate the standard errors for b2 for
ML and a2 for OLS and 3SLS results.
Std. errors are in parentheses. Instruments: const, experience (which
is age-19), experience squared, twice lagged wage.

not, which indicates that the downward bias does not depend much on the outliers.
That is, the true i.e.s. in the simulated data is much higher than the estimates
obtained using conventional IV methods. These results confirm the point that we
get biased (toward 0) estimates of the i.e.s. if we do not explicitly allow for human
capital accumulation in the model.
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TABLE 8
ML, OLS, IV RESULTS OF ALTONJI ESTIMATION

Age b2 a2

20–36 ML 3.82 (0.0124) 1.26 (0.000850)

Simulated data
20–64 OLS −0.206 (0.00459) −3.85 (0.108)

3SLS 2.81 (0.0804) 1.36 (0.0102)
20–56 OLS −0.272 (0.00274) −2.68 (0.0371)

3SLS −0.218 (0.0306) −3.59 (0.646)
20–46 OLS −0.246 (0.00299) −3.07 (0.0494)

3SLS 0.322 (0.0467) 4.11 (0.451)
20–36 OLS −0.281 (0.00380) −2.56 (0.0481)

3SLS 0.476 (0.182) 3.10 (0.803)

NOTE: Delta method is used to calculate the standard errors for b2 for
ML and a2 for OLS and 3SLS results.
Std. errors are in parentheses. Instruments: const, experience (which
is age-19), experience squared, experience cubed.

Also note that the OLS estimates of the intertemporal elasticity b2 are much
smaller than the IV estimates. The theory implies that in the OLS case, there is
another reason for downward bias because, in this case, the error term is correlated
with the regressor due to the income effect. This is confirmed in our numerical
example.

It is also interesting to examine how the IV estimates vary with the age composi-
tion of the simulated data. It seems that if older individuals are heavily represented
in the data, then the elasticity estimates tend to increase, with the maximum elas-
ticity estimates being on average those obtained using the 20–56 age group. In
particular, for that age group, we obtain 1.13 using the raw simulated data, and
1.68 using the simulated data without outliers. For younger age groups, the elas-
ticity estimates are much lower, for example, for the 20–36 age group using all the
simulated data, we obtain 0.325, which drops to 0.0750 when outliers are removed.
Those results underscore the fact that the human capital component of the return
to labor supply is much greater for the young.

We also report (in the bottom panel of Tables 6 and 7) the IV results obtained
from the NLSY79 data that were used to obtain the ML estimates. The elasticity
estimates are: 0.260 for the original NLSY79 data and 0.142 for the cleaned data.
These estimates of the i.e.s. are much smaller than the one derived from the ML es-
timation, again suggesting that failure to account for human capital accumulation
leads to downward bias.

6.4. More on Model Fit. A comparison of OLS estimation results on the
NLSY79 and on the simulated data is another method of assessing the fit of the
model. Notice that for the age group 20–36, the OLS estimates of a regression
of the log hours change on the log wage change produces similar results for the
simulated and NLSY79 data. The OLS estimate from the simulated data is −0.293
whereas that from the NLSY79 data is −0.231 (see Table 6, bottom 2 panels).
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Thus, the model seems to reproduce not only the average age profiles of the data,
but also the negative raw correlation between log wage changes and log hours
changes observed in the data.

It is also interesting to compare the persistence of wages, hours, and assets in the
simulated versus the actual data. In Table 9, we report results where we regress the
log wage, log hours, and assets from the simulated and NLSY79 data on a constant

TABLE 9
WAGE, HOURS, AND ASSET REGRESSIONS

Simulated Data

Dependent Variable Log Wage Log Wage

Intercept 0.309 (0.0117) 0.210 (0.0182)
Age — 0.00137 (0.00438)
Age squared — 0.000103 (0.000234)
Lagged log wage 0.836 (0.00594) 0.823 (0.00616)
Standard error 0.357 0.356
R2 0.700 0.702
F-statistic 19,817 6668
Sample size 8515 8515

Dependent Variable Asset Asset

Intercept 5507 (145) 2685 (5642)
Age — −345 (410)
Age squared — 16.1 (7.29)
Lagged asset 0.591 (0.00736) 0.551 (0.00758)
Standard error 14,978 14,799
R2 0.302 0.318
F-statistic 6452 2325
Sample size 14,949 14,949

Dependent Variable Log Hoursa Log Hoursa

Intercept 4.53 (0.0740) 4.34 (0.139)
Age — 0.0312 (0.00876)
Age squared — −0.000364 (0.000155)
Lagged log hours 0.413 (0.00962) 0.362 (0.00992)
Standard error 0.241 0.236
R2 0.178 0.206
F-statistic 1846 735
Sample size 8515 8515

Dependent Variable Log Hoursb Log Hoursb

Intercept 0.476 (0.0158) 0.459 (0.0221)
Age — 0.00201 (0.000878)
Age squared — −3.51 × 10−5(1.55 × 10−5)
Lagged log hours 0.941 (0.00187) 0.939 (0.00279)
Standard error 0.0261 0.0261
R2 0.953 0.953
F-Statistic 210,082 70,051
Sample size 10,462 10,462

(continued)
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TABLE 9
CONTINUED

NLSY79 Data

Dependent Variable Log Wage Log Wage

Intercept 0.274 (0.00803) 0.263 (0.00955)
Age — 0.00449 (0.00208)
Age squared — −0.000285 (0.000138)
Lagged log wage 0.879 (0.00393) 0.878 (0.00414)
Standard error 0.227 0.227
R2 0.769 0.769
F-statistic 50,134 16,716
Sample size 15,030 15,030

Dependent Variable Asset Asset

Intercept 10,206 (284.8) 387 (1227)
Age — 734 (321)
Age squared — 66.4 (19.2)
Lagged asset 0.662 (10.9) 0.616 (0.0126)
Standard error 21,312 20,526
R2 0.254 0.308
F-statistic 2625 1145
Sample size 7732 7732

Dependent Variable Log Hours Log Hours

Intercept 2.26 (0.0428) 2.27 (0.0430)
Age — 0.00277 (0.00151)
Age squared — −1.27 × 10−4(1.01 × 10−4)
Lagged log hours 0.708 (0.00556) 0.705 (0.00565)
Standard error 0.166 0.166
R2 0.519 0.519
F-Statistic 16,217 5410
Sample size 15,030 15,030

NOTE: Std. errors are in parenthesis.
aSimulated hours include measurement error.
bSimulated hours do not include measurement error.

term, lagged values and age variables. For both the simulated and NLSY79 data,
we removed outliers. The results show that the estimated model captures well the
persistence of the log wages and assets in the data. For the regression using the
simulated wage data, the coefficient of the lagged log wage is 0.836 if age variables
are not included, and 0.823 if the age variables are included. In the regression
using the NLSY79 data, these coefficients are 0.879 and 0.878, respectively. In
the regression using simulated assets, the coefficient on lagged assets is 0.591 if
the age variables are not included, and 0.551 if the age variables are included.
In the regression using the NLSY79 data, these coefficients are 0.662 and 0.616,
respectively.

On the other hand, in the hours regressions, there are some discrepancies in
the persistence coefficients between the simulated and NLSY79 data. For the
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regression using simulated hours data, the persistence coefficients are 0.413 with-
out age effects and 0.362 with the age effects. These coefficients are much lower
than those using the NLSY data, i.e., 0.708 and 0.705, respectively. One potential
reason for the discrepancy may be the assumption made in the model that the
measurement error of hours is i.i.d. normally distributed, which may have been
overly simplistic. In order to examine the effect of this assumption, we report
results of another regression using the simulated data of log hours that does not
include any measurement error. In this regression, the coefficient of the lagged log
hours is 0.941 without age effects and 0.939 with age effects. These results imply
that it is the measurement error that reduces the persistence of the simulated log
hours in the original regression. An estimation exercise using a model that allows
for a richer specification of measurement error is left for future research.

6.5. How Human Capital Accumulation Affects Estimated and Actual Labor
Supply Elasticities. To assess the importance of human capital accumulation for
the labor supply decision, we also report in Table 10 the age profile of the mean
marginal rate of substitution between consumption and labor supply, and the
marginal rate of substitution divided by the wage. The latter is also shown in
Figure 6. Note that the marginal rate of substitution is significantly higher than
the real wage early in life. At age 20 it is 2.0 times greater than the real wage.
Then, the marginal rate of substitution becomes closer to the actual wage rate at

TABLE 10
SIMULATED MRS OVER THE LIFE CYCLE

Age MRS MRS/Wage Age MRS MRS/Wage

20 11.22 2.032 43 13.01 1.164
21 11.22 1.948 44 13.03 1.162
22 11.39 1.871 45 13.02 1.159
23 11.63 1.799 46 13.01 1.158
24 11.76 1.730 47 12.97 1.159
25 11.86 1.668 48 12.92 1.161
26 11.95 1.608 49 12.84 1.162
27 12.03 1.554 50 12.71 1.164
28 12.12 1.506 51 12.54 1.163
29 12.21 1.461 52 12.32 1.164
30 12.28 1.419 53 12.06 1.163
31 12.36 1.382 54 11.75 1.160
32 12.43 1.348 55 11.39 1.157
33 12.51 1.318 56 10.97 1.151
34 12.58 1.291 57 10.49 1.146
35 12.65 1.266 58 9.968 1.139
36 12.71 1.245 59 9.371 1.128
37 12.76 1.226 60 8.732 1.120
38 12.82 1.211 61 8.078 1.115
39 12.86 1.196 62 7.373 1.107
40 12.90 1.186 63 6.583 1.086
41 12.95 1.178 64 6.044 1.110
42 12.98 1.169 65 4.943 1.015
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SIMULATED MRS/WAGE PROFILES

later stages of the career. The bias in the MaCurdy and Altonji estimation method
arises from the fact that they do not recover the marginal rate of substitution, or
the “effective wage,” which is higher than the observed wage when there is human
capital accumulation.

This brings us to an important point, which is that IV methods cannot be used
to solve the problem of bias in estimates of the substitution elasticity created
by human capital accumulation. The reason that standard IV results are biased
can best be described as follows. Define W̃t as the marginal rate of substitution
between labor supply and consumption in period t. Also, define

ηt = ln(W̃t ) − ln(Wt )

Then, from the definition of the marginal rate of substitution,

ln W̃t = ln b − ln A(t) + (a2 − 1) ln ht − (a1 − 1) ln Ct + ln ε2,t

If we first difference away the consumption term, we get the following expression:


 ln(ht ) = Const + 1
a2 − 1


 ln(W̃t ) + ςt

= Const + 1
a2 − 1


 ln(Wt ) + 1
a2 − 1


ηt + ςt
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where ςt is a function of the error term ut in the log linearized consumption Euler
equation and of 
 ln ε2,t :

ςt = − 1
a2 − 1

(ut + 
 ln ε2,t ).

Note that, using Equation (9), ηt can be expressed as follows:

ηt = ln(W̃t ) − ln(Wt ) ≈ ln
ghβEε1,t+1VK,t+1

ucWt

The problem is that conventional instruments for 
ln(Wt) are correlated with

ηt . For example, age is correlated with the expected marginal value of human
capital, EVK,t+1. The older the individual, the closer he is to the retirement period,
hence the less the number of possible future periods where human capital is used.
Therefore, the older the individual, the less the marginal value of human capital.
Table 10 shows how 
ηt is negatively correlated with age, because the human
capital effect decreases with age. In this case, the elasticity estimates from IV
estimation using age as one of the instruments will likely be negatively biased.
More generally, any variable that helps to predict wage growth (
ln(Wt)) is likely
to be correlated with VK(t + 1) and UC.

To further illustrate how conventional methods of estimation are biased, we
also report the results based on the Altonji (1986) method of IV estimation, where
consumption is used as a proxy for marginal utility of wealth. That is, we use the
simulated data to estimate the equation

ln(ht ) = Const + 1
a2 − 1

ln(Wt ) + a1 − 1
a2 − 1

ln Ct − 1
a2 − 1

ln ε2,t

As we did not simulate measurement error in consumption, we used the sim-
ulated consumption value without measurement error as the regressor, together
with simulated wage with measurement error. The intertemporal elasticity is again
estimated to be much lower than the true value, confirming our claim that omission
of human capital effects biases the elasticity estimates downwards.

In Figure 7, we plot the age–wage profile, which corresponds to the substitution
effect, or the marginal return to labor supply from increasing wage income (which,
in this case, is the real wage). We also plot the age–human capital effect profile,
which is the real value of the marginal return to labor supply from increasing hu-
man capital (which, in this case, is βEt ghε1,t+1VK,t+1(At+1, Kt+1, ε2,t+1)/uc(Ct, t)).
We can see that until the age 50, the increase in substitution effect cancels out with
the human capital effect, resulting in their sum (which is the total shadow value
of labor supply) being roughly flat. As discussed earlier, this explains the flat age–
hours profile until the age 50. Afterwards, both the substitution effect and the
human capital effect decrease as individuals start to retire.

Finally, we consider the implications of our model for the elasticity of hours
with respect to wages. In Figure 8, we plot the change in age t hours due to a
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2% temporary increase in the age t wage payment, holding human capital fixed.
This experiment can be interpreted as a temporary increase in rental rate for
human capital by 2%. For a person at age 20, it only increases hours by around
0.6%. But the elasticity of hours with respect to the current wage becomes larger
with age. At around age 60, hours increase by more than 4%. That is, with age,
hours become more responsive to wage changes. This supports the claim that
when young, because of the high human capital investment returns, labor supply
is insensitive to the wage change. But when old, since the human capital effect is
relatively insignificant, hours respond much more to wage changes. Shaw (1989)
noted that the human capital model implies this pattern.

7. SUMMARY AND CONCLUSIONS

In this article, we use the NLSY79 data to estimate the intertemporal elastic-
ity of substitution in labor supply in a framework where people explicitly take
into account human capital accumulation when they make labor supply decisions.
We explicitly solve the continuous variable dynamic programming problem for
optimal consumption and labor supply decisions and use the derived emax func-
tion in a ML routine. Using the estimated parameters, we conduct simulation
experiments to generate age–wage, and age–labor hours profiles. We also use the
simulated data to estimate the i.e.s. parameter using the conventional OLS and
the IV methods.

The results indicate that the ML method based on the full solution of the con-
tinuous stochastic dynamic programming problem gives an estimated elasticity of
intertemporal substitution parameter of 3.820, which is comparable to the elas-
ticity results discussed in the macroliterature. In contrast, in the microliterature,
MaCurdy and Altonji have obtained IV estimates using the PSID that range from
roughly 0.37 to 0.88 . Using the NLSY79, and applying the same IV procedure
as MaCurdy and Altonji, we obtain elasticity estimates of 0.260 using the raw
data and 0.142 using data with outliers removed. We also find that if we simulate
data from the structural model, with the substitution elasticity set to 3.82, and use
conventional methods (IV) to estimate this parameter, we obtain estimates that
are severely biased towards zero. Thus, the main reason for our much higher esti-
mate of the intertemporal elasticity of substitution when we use the full solution
procedure is clearly our explicit inclusion of human capital accumulation in the
model.

The simulated age profiles of wages and the marginal rate of substitution be-
tween labor supply and consumption imply that in the early stage of the agents’
careers, the effective wage, which we define as the marginal rate of substitution, is
as much as 2.0 times higher than the real wage, implying that at younger ages, even
if observed wages are low, the high effective wage resulting from high returns to
human capital accumulation induces agents to have high labor supply. However,
as agents acquire experience and become older, the ratio of the marginal rate of
substitution to the wage falls. Through this mechanism, the labor supply model
with human capital accumulation is able to reconcile a high elasticity of substitu-
tion with the fact that wages have a pronounced hump shape over the life cycle
whereas the hump in hours is much more modest.
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Finally, a word of caution is in order when one interprets the above results.
Simulation results show that although the elasticity of intertemporal substitution
was estimated to be around 3.8, the model does not imply that individuals change
labor supply by a rate 3.8 times the rate of a wage change. On the contrary, the
simulated hours response to a temporary wage increase of 2% ranged from 0.6%
for young individuals to 4% for individuals near retirement. One reason is that
when young, human capital accumulation is an important factor in determining
labor supply, so temporary wage changes have little effect on labor supply. Sec-
ond, even temporary wage shocks in the model here have some persistence, as
increased labor supply leads to higher wages in the future through the human
capital production function. Hence, there is an income effect.

APPENDIX

A.1. Backward Solution of the Bellman Equations: Interpolation and Integra-
tion Steps. At each asset and human capital grid point (Ai , K̃ j ) the value function
is an integral over the taste shock and the wage shock. A straightforward way of
performing these integrations is to use two-dimensional quadrature. That means,
given the grid point (Ai , K̃ j ), calculate the quadrature points for the shocks,

(ε1,iq , ε2, jq ) iq = 1, . . . , nq, jq = 1, . . . , nq

and then, solve for the optimal consumption and labor supply to get
Vt,s(At , K̃t , ε1,iq , ε2, jq ). Then, we can use quadrature to integrate over the value
function to get the emax function. That is, form

VE
t,s(Ai , K̃ j ) =

∫ ∫
V(Ai , K̃ j , ε1, ε2) dε1 dε2 ≈

∑
iq, jq

Vt,s(Ai , K̃ j , εiq , ε jq )wiqw jq

where {wiq} are the weights for the quadrature integration.
But this approach is still computationally extremely demanding for several rea-

sons, which are mainly due to the difficulties of applying two-dimensional quadra-
ture integration. First, we still need to evaluate the value function over asset
and human capital grid points, and wage and taste shock quadrature points. That
means we need to conduct two-dimensional Newton search routines at nA × nK

× nq × nq × (T − 20) points, where nA, nK are the number of asset and human
capital grid points, and nq is the number of quadrature points for taste shocks and
human capital shocks. And it is the two-dimensional Newton search routine to
find optimal consumption and labor supply which is by far the most computation-
ally demanding part of the algorithm. Secondly, as we increase the dimension of
the quadrature integration, even if we keep the quadrature points per dimension
the same, we experience a decrease of the accuracy of the integration. Hence, if
we wish to integrate over two dimensions and still have comparable accuracy to
one-dimensional quadrature integration with nq quadrature points, it is in general
likely that we will need more than nq × nq quadrature points.
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But these difficulties are minor compared to the problem of controlling for the
range of K. Human capital K = K̃ε1,iq can take on very small values if both K̃
and ε1,iq are small, and can take on very large values if both K̃ and ε1,iq are large.
The Newton search routine at very low or high values of human capital is both
disproportionately time consuming and inaccurate compared to Newton search
at other points.

To avoid the quadrature integration with respect to the human capital shocks,
we add another interpolation and approximation step that exploits the fact that
there is a one-to-one mapping from human capital to wages. The basic logic is
that the value function Vt,s(At , K̃t , ε1,t , ε2,t ) is only a function of assets, At, human
capital, Kt, and the taste shock ε2,t . Once Kt is known, in order to calculate the
value function, we do not need to know the values of the wage shock. So we go
back to the original definition of the value function, in terms of At , Kt = K̃tε1,t

and ε2,t . The solution steps are as follows:

Step 1. Integrating the value function with respect to the taste shock. Assume
that the age t + 1 emax function

VE
t+1,s+1(At+1, K̃t+1) = Et [Vt+1,s+1(At+1, K̃t+1, ε1,t+1, ε2,t+1)]

is already calculated. We use Gauss–Hermite quadrature to integrate the ex-
pected value function over the taste shocks at asset and human capital grid
points (Ai, Kj). First, calculate the quadrature points and weights for the taste
shock ε2,t . Since ε2,t has a log normal distribution with parameters µ2 = − 1

2σ 2
2

and σ 2, log(ε2,t+1) is normally distributed with mean µ2 and standard error σ 2.
Let

xh,l , l = 1, . . . , n2

be the points for Gauss–Hermite quadrature. Then,

ε
q
2,l = exp(

√
2σ2xh,l + µ2), l = 1, . . . , n2

are the Gauss–Hermite quadrature points for the above log normal distribution.
Given (Ai, Kj, ε

q
2,l), and the next period emax function, calculate the value

function for each quadrature point of the taste shock ε
q
2,l as follows:

Vt,s
(

Ai , Kj , ε
q
2,l

) = max
{Ct ,ht }

{
u(Ct , t) − v(ht , ε2,l , t) + βVE

t+1,s+1(At+1, K̃t+1)
}

subject to the intertemporal budget constraint and human capital production
function. Notice that this step requires a two-dimensional Newton search for
optimal (Ct, ht) at only nA × nK × nq grid points, so the factor of nq arising from
the human capital shock is eliminated. Now, we can approximate the integration
as follows using the quadrature procedure, with wq being the weights for Gauss–
Hermite quadrature.
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Eε2 Vt+1,s+1(Ai , Kj · ε2)

=
∫ ∞

−∞
Vt+1,s+1(Ai , Kj , exp(z))

1√
2πσ1

exp

[
− 1

2σ 2
1

(z − µ1)2

]
dz

=
∫ ∞

−∞
Vt+1,s+1(Ai , Kj , exp(

√
2σ1x + µ1))

1√
π

exp[−x2] dx

≈
∑nq

i=1 Vt+1,s+1
(

Ai , Kj , ε
q
2,l

)
w

q
l√

π

Step 2. Integrating the value function with respect to wage shock. Next, we inte-
grate the value function with respect to the wage shocks to derive the emax
function at the grid points (Ai , K̃ j ). From step 1, for each grid point (Ai,
Kj), we already have the value function integrated with respect to the taste
shocks. Now, for each given asset grid value Ai, we fit Chebychev polynomials
of log human capital to n2 values of the integrated value function. That is, we
derive

Êε2 Vt,s(Ai , K, ε2,t ) =
nc∑

l=0

πl Tl(log(K))

where Tl(log(K)) is the lth order Chebychev polynomial of log human capi-
tal. The coefficients π are derived by least squares with dependent variables
being

Eε2 Vt,s(Ai , Kj , ε2,t ), j = 1, . . . , n2

Transform the Chebychev polynomials to the polynomials of log(K). Then,

Êε2 Vt,s(Ai , K, ε2,t ) =
nc∑

i=0

π ′
i log(K)i

Notice that for any realized human capital shock ε1,t , the value function inte-
grated over the taste shock is the sum of polynomials of the log wage shock and
log(K̃).

Êε2 Vt,s(Ai , K̃ε1,t , ε2,t ) =
nc∑

i=1

π ′
i [log(K̃) + log(ε1,t )]i

=
nc∑

i=1

π ′
i

i∑
j=0

(
nc

j

)
[log(ε1,t )] j [log(K̃)]i− j

Hence, we can integrate the value function with respect to the wage shock by
integrating each wage shock polynomial separately as the following equation
shows:
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E{Vt,s(Ai , K̃ε1,t , ε2,t )} = Eε1 Êε2 Vt,s(Ai , K̃ε1,t , ε2,t )

=
nc∑

i=1

π ′
i

i∑
j=0

(
nc

j

)
{Eε1 [log(ε1,t )] j }[log(K̃)]i− j

Here, since log(ε1,t ) is normally distributed, integration of [log(ε1,t )] j can be
done analytically.

Then, we again approximate the above equation over At , K̃t using Chebychev
polynomials to derive the emax function at age t, which we use for solving the age
t − 1 Bellman equation.

Notice that using the above algorithm, the problems of applying two-
dimensional quadrature are avoided. First, the Newton nonlinear search over
consumption and labor needs only be applied to nA × nK × nq × (T − 20) points,
hence reducing the computational time by a factor of nq. Also, since only one-
dimensional quadrature integration is involved, there is no accuracy loss due to
high-dimensional quadrature integration. Finally and most importantly, we only
need to calculate the value function at the Chebychev grid point values for human
capital and not at grid points for the human capital shock. Hence, we do not need
to calculate value functions at extremely low or high human capital levels.

A.2. Simulated Likelihood Calculation. In this section, we describe the sim-
ulation steps that are required to construct the simulated likelihood function.

Step 1. Simulate {Km
t , hm

t , Cm
t , Am

t }T
t=t0 starting from the initial period as follows:

(1) Draw the true initial human capital Km
t0 .

First, draw the initial period measurement error ς0 and then, derive

Km
t0 = KD

t0

ξ0

(2) Draw the true initial asset Am
t0 .

If the initial asset is observed, then draw the measurement error ξ3,t0 ,
and derive

Am
t0 = AD

t0 − ξ3,t0

If the initial asset is not observable, then draw Am
t0 from N(Ā, VĀ).

(3) Draw the taste shock

ln(ε2) ∼ N
( − 1

2σ 2
2 , σ2

)
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and solve for the optimal consumption and labor supply. That is,{
Cm

t0 , hm
t0

} = arg max
{Ct0 ,ht0 }

{
u(Ct0 , t0) − v(ht0 , ε2,t0 ) + βEt0 Vt0+1

[
(1 + r)At0

+ Km
t0 ht0 − Ct0 , K̂t0+1, εt0+1

]}
subject to

At0+1 = (1 + r)Am
t0 + Km

t0 ht0 − Ct0

K̂t0+1 = g
(
ht0 , Km

t0 , t0
)

Notice that we already have the polynomial approximation of the emax
function

VE(At0+1, K̃t0+1) = Et0Vt0+1(At0+1, K̃t0+1, ε1,t0+1, ε2,t0+1)

from the DP solution, which we will use in this case.
(4) Draw the human capital shock ε1,t0+1 and derive the next period state

variables.
That is,

Am
t0+1 = (1 + r)Am

t0 + Km
t0 hm

t0 − Cm
t0

K̂t0+1 = g
(
hm

t0 , Km
t0 , t0

)
Km

t0+1 = K̂t0ε1,t0+1

(5) Now, repeat (3) and (4) until the end period T to derive the sequence of
variables {Km

t , hm
t , Cm

t , Am
t }T

t=t0 .
Step 2. Given the simulated sequence of variables {Km

t , hm
t , Cm

t , Am
t }T

t=t0 , we then
derive the measurement error. Then, we calculate the log likelihood increment
for person i at the mth simulation draw as follows.

Let us denote

ξ̃m
0 = log KD

t0 − log Km
t0

ξ̃m
1,t = log KD

t + log hD
t − log Km

t − log hm
t

ξ̃m
2,t = hD

t − hm
t

ξ̃m
3,t = AD

t − Am
t

If the initial wage at period t0 is available in the data, then we construct the
initial wage measurement error ξ̃m

0 and the log density of ξ̃m
0 becomes part of

the log likelihood increment of person i. If wage and hours data for person i at
period t > t0 is available, then we derive the labor income measurement error
ξ̃m

1,t , and the log density of ξ̃m
1,t becomes part of the log likelihood increment

for person i at period t. On the other hand, if either wage or hours or both for
person i at period t > t0 are not available, then the log likelihood increment for
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person i at period t does not contain any wage data KD
t . Similarly, if hours data

for person i at period t is available, then we derive the hours measurement error
ξ̃m

2,t , and the log density of ξ̃m
2,t becomes part of the log likelihood increment for

person i at period t. On the other hand, if hours data are not available for person
i at period t, then the log likelihood increment for person i at period t does not
contain any hours information. Construction of the log likelihood increment
for assets for person i at period t is done similarly.

Then, the log likelihood increment for person i is

lm
i =

T∑
t=t0+1

[(
ξ̃m

1,t + 1
2σ1

)2

−2σ 2
1

− log σ1 − (
log KD

t + log hd
t

)]
I
(
KD

t , hD
t observable

)
+

T∑
t=t0

[(
ξ̃m

2,t

)2

−2σ 2
1

− log σ1

]
I
(
hD

t observable
)

+
T∑

t=t0+1

[(
ξ̃m

3,t

)2

−2σ 2
3

− log σ3

]
I
(

AD
t observable

)
+

[(
Am

t0 − Ā
)2

−2σ 2
Ā

− log σĀ

]
I
(

AD
t observable

)
+

[(
ξ̃m

0 + 1
2σ0

)2

−2σ 2
0

− log σ0 − log KD
t0

]
I
(
KD

t0 , hD
t0 observable

)
We set the starting time t0 such that both KD

t0 and hD
t0 are observable.

Step 3. We repeat the simulation and likelihood increment calculation for m =
1, . . . , M and derive the simulated log likelihood increment for individual i as
follows:

li = log

[
M∑

m=1

exp
(
lm
i

)]

The total log likelihood is

l =
N∑

i=1

li

A.3. Data Generation. We derived the wage, hours, and asset data from the
NLSY as follows:

hours data: We use the variable “Number of hours worked in past calendar year”
from 1979 to 1994.

wage data: We first get total wage income data from the variable “Total Income
from wages and salary income past calendar year” from 1979 to 1994. And after
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adjusting for inflation using the GDP deflator, we divide the income variable
by the hours variable to get the hourly wage rate.

asset data: We added up the following variables in the NLSY to construct total
positive assets: “Total market value of vehicles including automobiles r/spouse
own,” “Total market value of farm/business/other property r/spouse own,”
“Market value of residential property r/spouse own,” “Total market value of
stocks/bonds/mutual funds,” “Total amount of money assets like savings ac-
counts of r/spouse,” “Total market value of all other assets each worth more
than $500.”

We then added up the following variables to construct total negative assets:
“Total amount of money r/spouse owe on vehicles including automobiles,” “To-
tal amount of debts on farm/business/other property r/spouse owe,” “Amount of
mortgages and back taxes r/spouse owe on residential property,” “Total amount
of other debts over $500 r/spouse owe.”

The total amount of assets is calculated by subtracting the total amount of
negative assets from the total amount of positive assets.
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