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Abstract 
 

This paper describes a strategy for structural estimation of economic models that I will 

refer to as SML based on FOCs. In this approach, one uses simulated maximum likelihood 

(SML) to estimate the structural parameters that appear in the Euler or first order conditions 

(FOCs) solved by an optimizing economic agent.  

I will argue that the SML based on FOCs approach has certain advantages over the 

generalized method of moments (GMM) approach to structural estimation based on FOCs. Most 

importantly, the SML based on FOCs approach can easily handle economic models that involve 

multiple structural sources of error. In contrast, GMM requires that all the structural sources of 

error enter the FOCs additively, so that a single composite additive error term may be obtained. 

In models with multiple sources of error, very strong assumptions on functional form or on 

information structure are often necessary in order to put FOCs in this form. Thus, the SML based 

on FOCs approach gives the econometrician much more flexibility in terms of how he/she can 

specify utility functions and/or production functions, particularly in terms of how these functions 

may be heterogeneous across agents. 

Implementation of the SML based on FOCs approach requires the development of a 

number of new simulation algorithms that I develop here. These include two new recursive 

importance sampling algorithms that are the discrete/continuous and purely continuous data 

analogues the GHK algorithm for discrete data. These algorithms should have wide applicability 

to a range of econometric problems beyond the specific issues discussed here.    

I illustrate the SML based on FOCs approach by using it to estimate a structural model of 

the behavior of U.S. MNCs with affiliates in Canada. The model is estimated on confidential 

BEA firm level data on the activities of U.S. MNCs over the period 1983-96. The method 

appears to work well in practice. That is, the computation time was manageable, and the 

algorithm converged steadily to stable estimates that were not very sensitive to starting values or 

simulation size. The estimated model fits the data reasonably well, and there appeared to be little 

evidence against the distributional assumptions that were required to implement the SML 

approach.
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I. Introduction 
This paper describes a strategy for structural estimation of economic models that I will 

refer to as SML based on FOCs. In this approach, one uses simulated maximum likelihood 
(SML) to estimate the structural parameters that appear in the Euler or first order conditions 
(FOCs) solved by an optimizing economic agent. I will argue that the SML based on FOCs 
approach has certain advantages over the generalized method of moments (GMM) approach to 
structural estimation based on FOCs.   

The GMM approach of Hansen (1982) and Hansen and Singleton (1982)) has been 
popular (at least in part) because it is widely perceived as having one key advantage over a full 
information maximum likelihood (FIML) approach. Namely, in the GMM approach the 
econometrician does not need to completely specify the economic model in order to obtain 
estimates. There are two common ways in which a complete specification is avoided. First, if the 
FOCs involve expectation terms, it is common to substitute realized quantities for expected 
quantities, invoke a rational expectations assumption, and then assert that the forecast errors are 
orthogonal to the elements of agents’ information sets at the time forecasts were made (see 
McCallum (1976)). Second, if the model structure is such that expectation errors and other 
structural sources of error (e.g., taste shocks, productivity shocks, etc.) enter the FOCs in a 
linearly additive fashion, then it is not necessary for the econometrician to specify their joint 
distribution parametrically. Rather, it is only necessary to assume that the composite error term 
(obtained by summing the structural errors) is mean independent of a specified set of 
instruments. One can then obtain moment conditions on which a GMM estimator is based. 
 I would argue however, that the assumptions necessary to put economic models into a 
form amenable to GMM estimation are often quite strong. Specifically, plausible economic 
models often involve multiple structural sources of error. In such cases, very strong assumptions 
on functional form or on information structure may be necessary in order to obtain FOCs where 
all the structural sources of error enter additively, so that a single composite additive error term 
may be obtained.  
 A prime example of this problem is provided in the recent paper by Krusell, Ohanian, 
Rios-Rull and Violante (2000). They estimate a production function with quality of skilled and 
unskilled labor as two latent stochastic inputs. The FOCs of their model also contain an 
unmeasured expectation of next period’s price of capital. Thus, three stochastic terms enter 
nonlinearly, so the FOCs cannot be written in terms of a single additive error. Thus, Krusell et el. 
cannot use GMM. To deal with this problem, they developed a simulated pseudo-ML procedure 
for estimation based on FOCs. In this procedure, they assume that the forecast errors and the two 



 2

shocks to the quality of skilled and unskilled labor are normally distributed. 
 The present paper is very closely related to Krusell, Ohanian, Rios-Rull and Violante 
(2000). However, I further extend and develop their approach in a number of ways. First, I show 
how to implement maximum likelihood as opposed to a pseudo-maximum likelihood procedure. 
Second, I show how to relax normality (via the Box-Cox transformation). Third, I show how to 
simulate the posterior distributions of the stochastic terms (conditional on the estimated model 
and the data) of the model. Given draws from the posterior distributions, one can test the 
distributional assumptions that underlie the SML approach. Testing distributional assumptions is 
particularly important here, given that the main reason for preferring GMM over a likelihood 
based procedure is concern over violation of distributional assumptions. 
 The SML based on FOCs approach developed here represents a compromise between a 
FIML approach and a GMM approach. As in GMM, one does not need a completely specified 
model. That is, one can avoid having to specify stochastic processes for all of the exogenous 
forcing variables that impact the environment of the agents. For instance, one can substitute 
realizations for expectations terms, and invoke a rational expectations assumption to deal with 
the resulting error terms. But, as in FIML, one must specify the joint distribution of all the 
structural sources of error (e.g., taste and technology shocks as well as forecast errors).  
 In my view, the SML based on FOCs approach has a number of potential advantages over 
GMM. A key advantage is that the SML approach can easily handle multiple structural sources 
of error entering the FOCs in a highly nonlinear way. This gives the econometrician the ability to 
be much more flexible in terms of how he/she specifies utility functions and/or production 
functions, particularly in terms of how these functions may be heterogeneous across agents. In 
my view it is ironic that researchers often claim to be using GMM in order to avoid making 
distributional assumptions on stochastic terms, yet at the same time they are often willing to 
make extremely restrictive modeling assumptions in other dimensions (i.e., the functional forms 
of utility and production functions, how heterogeneity enters the model, etc.) in order to put a 
model in a form amenable to a GMM approach.1 

Another key advantage is that the researcher does obtain estimates of the distributions of 
the agent specific stochastic terms, and there are many contexts where these distributions are 
themselves of interest. This advantage is made clear by the particular illustrative application of 
the SML based on FOCs method that I present in this paper.     

It is difficult to describe the SML based on FOCs approach to structural estimation in a 
                                                
1 Ackerberg and Caves (2003) provide an interesting discussion of the restrictive implications of models of firm 
behavior in which the number of structural sources of error is less than the number of factor inputs.     
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fully general context, because many of the details of how to implement the procedure will 
necessarily be specific to the particular economic model being studied. Thus, in this paper I 
illustrate the SML based on FOC approach by showing how to use it to estimate a particular 
model of the production and trade decisions of U.S. MNCs with affiliates in Canada. This model 
has been developed by Feinberg and Keane (2003a), and it gives a good illustration of how the 
approach works.  

I should also stress that the SML based on FOCs approach is not a new estimation 
method. It is simply an application of SML, whose asymptotic properties have been developed, 
for example, in Lee (1992, 1995). Thus, I present no proofs of consistency and asymptotic 
normality for this method, since no new proofs are required. Rather, SML based on FOCs is a 
new strategy for structural estimation of economic models. That is, to my knowledge, SML has 
not previously been applied to estimate structural parameters using FOCs. It turns out that 
implementation of SML in this context is not at all straightforward. It requires the solution of a 
number of computational problems that do not arise in contexts where SML has previously been 
applied (such as estimation of discrete choice models), and therefore requires the development of 
a number of new simulation algorithms. Thus, to be clear, what is new in this paper is: (1) the 
suggestion of the SML based on FOCs strategy, and (2) the development of several new 
simulation algorithms necessary to implement that strategy. These new simulation algorithms are 
of independent interest, as they have broader applicability as well.     

The particular empirical application to MNC behavior that I present illustrates well the 
potential advantages of SML based on FOCs over either FIML or GMM. The structural model of 
firm behavior that I consider is dynamic, because it allows for labor force adjustment costs. 
Hence, estimation using FIML would require one to specify how firms form expectations of 
future labor force size. This in turn would depend on the stochastic processes for several 
exogenous forcing variables: demand shocks, technology shocks, factor input prices, tariffs, 
exchange rates, etc.. It is easy to see how a researcher might feel reasonably comfortable 
specifying functional forms for the MNC production function, as well as for the product demand 
functions that the MNC faces, while being very reluctant to specify stochastic processes for all 
these forcing processes. The ability to avoid such assumptions is an advantage over FIML. 

On the other hand, a researcher might well wish to specify a production function with 
several inputs, where the several parameters mapping these inputs into output are allowed to be 
heterogeneous across firms in a flexible way. As illustrated by the Krusell, Ohanian, Rios-Rull 
and Violante (2000) paper, allowing multiple production function parameters to be stochastic 
precludes putting the model in a form amenable to GMM estimation. However, this poses no 
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problem for the SML based on FOCs approach. This is its main advantage over GMM.          
A key feature of the model is that the stochastic terms are all continuous, yet they must 

fall in certain sub-regions of a high dimensional space in order for firm behavior to be 
rationalizable by the model. In other words, the FOCs cannot be satisfied if certain subsets of the 
vector of stochastic terms fall in certain regions of the error space. As a result, a high 
dimensional integral must be evaluated to construct the joint density of a firm’s stochastic terms. 
In order to evaluate such integrals, I present a new recursive probability simulator that is the 
discrete/continuous analogue to the GHK method for simulation of discrete choice probabilities 
(see Keane (1994)). 

This new simulator should have wide applicability in discrete/continuous simulation 
problems, just as GHK has been useful in a wide range of discrete choice problems. For instance, 
it could be useful in any situation where, in certain regions of the space of stochastic terms, a 
corner solution is induced where a firm would shut down, discontinue certain products or 
activities, etc., and where one wants to simulate the density of observed marginal decisions 
conditional on the firm being active, engaging in certain activities, etc. 

Another aspect of the model, which is generic to situations where multiple stochastic 
terms enter the FOCs nonlinearly, is that the Jacobian of the transformation from the stochastic 
terms to the data is intractably complex. Thus, since the likelihood is the density of the stochastic 
terms times this Jacobian, one cannot even writer down the likelihood analytically. Nevertheless, 
I show how to construct a simulated numerical approximation to the Jacobian. This is what 
makes it possible to implement a likelihood based estimator (as opposed to the pseudo-ML 
estimator in Krusell et al.). 

Finally, the illustrative model that I estimate here has 14 stochastic terms, yet it is 
estimated based on 12 FOCs. Models that allow for flexible patterns of heterogeneity in the agent 
specific parameters will typically have more stochastic terms than there are FOCs. For instance, 
the MNC production function I estimate here has a stochastic term associated with each input, 
and the number of FOCs is equal to the number of inputs. But then there are additional stochastic 
terms associated with expectation errors. 

Thus, in order to generate the posterior distribution of the stochastic terms in the model 
conditional on the data, we need to simulate a J×1 vector of continuous random variables subject 
to the constraint that it lies in a K×1 dimensional space (where K<J). In order to this I develop a 
new recursive simulator for purely continuous distributions that is the continuous data analogue 
of the GHK method (Obviously this is a rather general problem that may arise in many contexts). 

When I test the distributional assumptions of the model of MNC behavior by simulating 
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the posterior distributions of the stochastic terms, I find that the distributions of the forecast 
errors appear strikingly close to normal. Statistical tests do not reject normality even at very low 
levels of significance. One argument for favoring GMM for the estimation of dynamic structural 
models based on FOCs is that we have no basis in theory for imposing distributional assumptions 
on forecast errors. Thus, the finding here that normality is not rejected is quite interesting. 

The outline of the remainder of the paper is as follows. Sections II and III present the 
model of MNC behavior that I will use to illustrate the SML based on FOCs approach. Section 
IV shows how this model can be estimated using the SML based on FOCs approach. Section V 
presents the recursive simulation algorithm for simulating from the posterior distribution of the 
model parameters. Section VI describes the estimation results, including the tests of 
distributional assumptions. Section VII concludes. 
 
II. The Illustrative Model 
II.1. Overview  

This section presents a model of the marginal production and trade decisions of a U.S. 
MNC with an affiliate in Canada, conditioning on the MNC’s decision to place an affiliate in 
Canada. Each period, the MNC chooses the levels of factor inputs to utilize in both the U.S. and 
Canada. In addition, it chooses the levels of four types of trade flows: arms-length imports and 
exports, and intra-firm trade in intermediates from parent to affiliate and vice versa. Feinberg and 
Keane (2003a) develop and estimate a model of MNC behavior, and I will use that model to 
illustrate the SML based on FOCs approach.   

The key assumptions of the Feinberg and Keane (2003a) model are as follows:  
1) The parent and affiliate each produce a different good. 
2) The good produced by the affiliate may serve a dual purpose: it can be sold as a final 

good to third parties (in Canada or the U.S.), or it may be used as an intermediate input by the 
parent. We make a symmetric assumption for the good produced by the parent. 

3) Both the parent and affiliate have market power in final goods markets. They each 
produce a variety of a differentiated product. These products are non-rival (i.e., not substitutes). 

4) The parent and affiliate both produce output using a CRTS Cobb-Douglas production 
function that takes labor, capital and materials as inputs. In addition, intermediates produced by 
the affiliate may be a required input in the parent’s production process, and intermediates 
produced by the parent may be a required input in the affiliate’s production process. 

5) The affiliate and the parent both face iso-elastic demand functions in both the U.S. and 
Canadian final goods markets.   
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6) The parent and affiliate both face labor force adjustment costs.  
7) The MNC maximizes the expected present value of profits in U.S. dollars, converting 

Canadian earnings to U.S. dollars using the nominal exchange rate. 
8) The expected rate of profit is equalized across firms. 
9) Parameters of technology and of demand are allowed to be heterogeneous both across 

firms and within firms over time. 
Feinberg and Keane (2003a) estimate this model using the Benchmark and Annual 

Surveys of U.S. Direct Investment Abroad administered by the Bureau of Economic Analysis 
(BEA) for the 1983-1996 period. A key data problem that influences the set up of the model is 
that the BEA data do not contain separate information on quantities of production and prices. 
This problem plagues most production function estimation. It has been typical in the literature on 
production function estimation to simply use industry level price indices to deflate nominal sales 
revenue data in order to construct real output. But Griliches and Mairesse (1995) and Klette and 
Griliches (1996) have pointed out that this procedure is only valid in perfectly competitive 
industries, so that price is exogenous to the firms. This condition is obviously violated for 
MNCs, since they have market power. This problem has received a great deal of attention 
recently in the IO literature (see, e.g., Katayama, Lu and Tybout (2003) and Levinsohn and 
Melitz (2002)).  

The only general solution to the problem of endogenous output prices is to estimate the 
production function jointly with an assumed demand system. But in the present case the problem 
is further exacerbated by the fact that, while the BEA data reports nominal values of intra-firm 
flows, imports and exports – the prices and quantities for these flows cannot be observed 
separately. Nor can we separate price and quantity for capital and materials inputs, or for 
intermediate inputs shipped intra-firm. Furthermore, the price of such intermediate inputs is 
endogenous, since it depends on the MNC’s other input and trade decisions. 

The only general solution to the problems created by the inability to observe prices and 
quantities of outputs or intermediate inputs separately is to assume: 1) constant returns to scale 
(CRTS) Cobb-Douglas production functions for both the parent and affiliate, and 2) that both 
parent and affiliate face isoelastic demand in the market for final goods. These two assumptions 
enable one to identify the price elasticities of demand faced by parents and affiliates using only 
information on revenues and costs (i.e., by exploiting Lerner type conditions). Then, given the 
elasticities of demand, one can pin down the Cobb-Douglas share parameters using only 
information on factor shares of revenues (appropriately modified to account for market power).  

The solutions proposed by Katayama, Lu and Tybout (2003) and Levinsohn and Melitz 
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(2002) allow estimation of more general production functions, but these solutions assume that 
real input quantities are observed. In the present case, generalizations of Cobb-Douglas seem 
infeasible, because one does not observe input price variation that identifies substitution 
elasticities. This is what motivates the Cobb-Douglas production and isoelastic demand 
assumptions in the Feinberg and Keane (2003a) model.    

Data limitations also motivate assumption 8. The BEA capital stock data is rather 
imprecise (i.e., PPE at historical cost). This is of course a very general problem not limited to the 
BEA data. As we discuss below, the assumption of an equalized (expected) profit rate across 
firms will enable us to dispense with the capital stock data entirely, and to instead construct 
payments to capital as a residual using the other available cost and revenue data. The theoretical 
justification for this assumption, as well as the issue of how the profit rate is identified, is 
discussed further below. We refer the reader to Feinberg and Keane (2003a) for further 
discussion of the modeling assumptions. 

 
II.2. Basic Structure of the Model 

In this section I present the equations of the model in the most general case in which a 
single MNC exhibits all four of the potential trade flows (arms-length imports and exports and 
bilateral intra-firm trade). Instances where an MNC has only a subset of these four flows are 
special cases.2 Let Qd and Qf denote total output of the parent and affiliate, respectively. Let Nd 
denote the part of affiliate output shipped to the parent for use as intermediate. Similarly, let Nf 
denote intermediates transferred from the parent to the affiliate. I (imports) denotes the quantity 
of goods sold arms-length by the Canadian affiliate to consumers in the U.S., and E (exports) 
denotes arms-length exports from the U.S. parent to consumers in Canada. Thus, Sd ≡ (Qd -Nf -E) 
is the quantity of its output the parent sells in the U.S., and Sf ≡ (Qf -Nd -I) is the quantity of its 
output the affiliate sells in Canada. 

Finally, let P denote prices, with the superscript j=1,2 denoting the good (i.e., that 
produced by the parent or the affiliate) and the subscript c=d,f denoting the point of sale. Since 
we do not observe prices and quantities separately in the data, we will work with the six MNC 
firm-level trade and domestic sales flows, which are IPd

2 , EPf
1 , fd NP1 , df NP2 , d

1
d SP , and f

2
f SP .  

The MNC’s domestic and Canadian production functions are Cobb-Douglas, given by: 

                                                
2 If MNC decisions about whether to utilize each of the 4 potential trade flows are correlated with firm specific 
unobservables, then treating these decisions as exogenous could create bias in estimates of the structural model. To 
deal with this problem, the model presented in this section was actually estimated jointly with reduced from decision 
rules for whether an MNC chose to engage in each of the 4 potential trade activities. Estimates of that reduced form 
model are discussed in Feinberg and Keane (2003b).   
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(1)   
MdNdLdKd

dddddd MNLKHQ αααα=  

(2)   
MfNfLfKf

ffffff MNLKHQ αααα=  

Note that there are four factor inputs: capital (K), labor (L), intermediate goods (N) and materials 
(M). I assume that the share parameters α sum to one for both the parent and affiliate (CRTS). I 
will allow the constants Hd and Hf to follow time trends in order to capture TFP growth.  

For the domestically produced good (good 1), the MNC faces the following iso-elastic 
demand functions in the U.S. and Canada: 
(3) 1g

d
1
d0

1
d SPP −=    1g1

f0
1
f EPP −=   0<g1<1 

Similarly, for the good produced in Canada (good 2), the MNC faces the demand functions: 

(4) 2g
f

2
f0

2
f SPP −=   2g2

d0
2

d IPP −=    0<g2<1  

Recall that Sd denotes the quantity of the U.S. produced good sold in the U.S., and Sf denotes the 
quantity of affiliate sales in Canada. The g1 and g2 are the (negative) inverses of the price 
elasticities of demand for the domestic and foreign produced good, respectively.  

Next, we assume the MNC faces labor force adjustment costs.  It is often assumed such 
costs are quadratic, e.g.: [ ]2

1, −−= tddtddt LLAC δ , where 0>dδ . However, Feinberg and Keane 
(2003a) found that a generalization of this function led to a substantial improvement in fit and 
could accommodate many reasonable adjustment cost processes3: 
(5)  ( )( ) ∆

− −
−=

1,

2
1, td

LLLAC tddtddt

µ
δ   where .0,0,0 ≥∆>> µδ d  

A similar adjustment cost function is specified for the affiliate, which will be allowed to have a 
different δ parameter (δf). The curvature parameters µ and ∆ are assumed to be common.  

We can write the MNC’s period specific profits (suppressing the time subscripts) as: 

(6) )CTI(EP)CT(NP)ENQ(P ff
1
ffff

1
dfd

1
d −−++−−−=Π  

    )CTI(IP)CT(NP)INQ(P dd
2
dddd

2
fdf

2
f −−++−−−+  

           )L,L(AC)L,L(ACKKMMLwLw )1(
fff

)1(
dddffddffddffdd

−− −−−−−−−− γγφφ  

Here, Tf and Cf are the ad valorem Canadian tariff and transportation costs the MNC faces when 
shipping products from the U.S. to Canada (and similarly for Td and Cd). Note that the use of an 
ad valorem transport cost is consistent with the common “iceberg” assumption.  
                                                
3 For example, setting 1=µ  and 0=∆  produces [ ]2

1, −− tddtd LLδ .  Similarly,  2
1=µ  and 1=∆  gives 

1,1, /)( −−− tdtddtd LLLδ  .   
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  The exchange rate enters (6) implicitly because Canadian affiliate costs and revenues are 
converted into U.S. dollars using the nominal exchange rate. Thus, the MNC cares about U.S. 
dollar profits (and hence U.S. dollar output and input prices). wd and wf are the domestic and 
foreign real wage rates respectively, and φd and φf are the domestic and foreign materials prices. 
γ  is the price of capital, which we assume is equal for the parent and the affiliate (γd = γf). 

The MNC’s problem is to maximize the expected present value of profits in real U.S. 
dollars ∑ Π

∞

=
+

1τ
τ

τβ tE by choice of eight control variables { }ft,ft,ft,ft,dt,dt,dt,dt NKMLNKML . The 
solution to this problem will generate shadow prices on intermediates shipped from the parent to 
affiliate and vice-versa.  

Finally, recall assumption 8, that the rate of profit, defined as R=Π/γK, is equalized (in 
expectation) across firms. This can be justified by assuming a world where capitalists (as 
residual claimants) decide how to allocate capital across industries (or varieties of differentiated 
products) based on expected profit rates. In equilibrium, the profit rate will be equalized across 
industries (as entry reduces R). The equilibrium R will be positive if there is a fixed cost of entry 
that is proportional to size of the capital stock.       

The virtue of assuming a particular profit rate is that one can back out the payments to 
capital from data on total revenues and payments to the other factors (rather than using PPE 
data).4 Thus, I treat the profit rate R as an unknown parameter to be estimated. I discuss the 
intuition for its identification in section IV.3.B. 

II.3. Solution of the Firm’s Problem and Derivation of the Estimable FOCs 
We can express the FOCs more compactly if we first define:  

     

A= 







−−

+−−−
)(

)()(
1

11

ENQP
CTNPENQP

fdd

fffdfdd = 






 +−

dd

fffddd

SP
CTNPSP

1

11 )(
 

                                                
4 The procedure works as follows. Denote domestic revenue by RD, domestic costs by CD* and domestic costs 
excluding capital costs by CD1. These quantities are given by:  

 )EP)(CT1(NPSPRD 1
ffff

1
dd

1
d −−++=  

 dddd
2
fdddddd

* AC)CT1(NPMKLwCD ++++++= φγ  

 dd KCD1CD γ−≡  
Now, let RK denote the fraction of operating profit that is pure profit, leaving (1-RK) as the fraction that is the 
payment to capital. This gives Πd = RK ⋅ [RD-CD1] and thus: 
 ]1CDRD[)R1(K Kdd −⋅−=γ  
Thus, the rate of profit for domestic operations is R = Πd / γdKd = RK/(1-RK). We treat R as a common parameter 
across firms and countries that we estimate (we also assume it is equal for the parent and the affiliate).  That is, for 
the affiliate we have the analogous equation: 

]1CFRF[)R1(K Kff −⋅−=γ  
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B= 







−−

+−−−
)(

)()(
2

22

INQP
CTNPINQP

dff

dddfdff = 






 +−

ff

dddfff

SP
CTNPSP

2

22 )(
 

and express the adjustment cost term in the FOC for domestic labor (Ld ) as E(FD), where: 
    FD = ∆µµ 1t,d1t,ddt

12
1t,ddt L)LL())LL(( −−

−
− −−∂  

   - ∆µβµ dtdt1dt
12

dt1dt L)LL())LL(( −− +
−

+ - 1
dtdt1dt

2
dt1dt L)LL())LL(( +

++ −− ∆µ∆β  

The adjustment cost term in the FOC for Canadian labor (Lf ) is E(FF), where FF is defined 

similarly.  

The first order conditions for parent factor inputs and parent’s exports to Canada are then: 

 0)FD(Ew)Ag1(:L d
d

d
1
d

1
Ld

d L
QP

=−−









−α  

0)Ag1(:K d
d

d
1
d

1
Kd

d K
QP

=−









− γα      

0)Ag1(:M d
d

d
1
d

1
Md

d M
QP

=−









− φα  

0P)CT1(BPg)Ag1(:N 2
fdd

2
f2

d

d
1
d

1
Nd

d N
QP

=++−+









−α  

0P)Ag1()CT1(P)g1(:E 1
d1ff

1
f1 =−−−−−  

For the affiliate, the first order conditions for Lf, Kf, Mf, Nf and I are similar. 
Note that the FOC for Nd, intermediates shipped from the affiliate to the parent, equates 

the marginal revenue product from increasing the input of Nd in domestic production to the 
effective cost of importing Nd. The effective cost (or shadow price) can be written 2

2 )1( fPBg−  
.)( 2

fdd PCT ++  The first term is the marginal revenue from selling Nd in Canada. The 
component g2BPf

2 arises because the affiliate has market power. The second term is the tariff and 
transport cost, which is based on the “transfer price” 2

fP . Thus, I assume that the transfer price is 
equal to price that the firm charges third parties in Canada.5 Note that the shadow price is a 
                                                
5 MNCs must set transfer prices for accounting purposes. It enables them to allocate profits to different countries for 

tax purposes, and it enables then to calculate tariffs. I assume that the transfer price is equal to 2
fP because both the 

U.S. and Canadian revenue services require a “third party standard” whereby the transfer price should be set equal to 
the price charged to unaffiliated buyers. Canada has lower tax rates on manufacturing than the U.S., so there is an 
incentive to manipulate the transfer price to shift profits to Canada. However, Eden (1998) finds no evidence that 
transfer price manipulation is significant in eth U.S.-Canada context. Given that the tax differential is small and 
enforcement is relatively strict, it may be easier to transfer profits using licensing fees on intangibles.   
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completely separate quantity from the transfer price, since obviously it is not optimal for the 
affiliate to charge the parent the same price it charges third parties.  

Since prices and quantities are not separately observed, one cannot take these FOCs 
directly to the data. They must first be manipulated to obtain estimable equations that contain 
only observed quantities and unknown model parameters. First, by multiplying each first order 
condition by the associated control variable, we obtain: 
 0L)FD(ELw)QP)(Ag1(:L ddddd

1
d1

Ld
d =−−− δα  

0K)QP)(Ag1(:K ddd
1

d1
Kd

d =γ−−α      

(7) 0M)QP)(Ag1(:M dd
1

d1
Md

d =φ−−α  

0)NP)(CT1(B)NP(g)QP)(Ag1(:N d
2
fddd

2
f2d

1
d1

Nd
d =++−+−α   

0)EP)(Ag1()CT1)(EP)(g1(:E 1
d1ff

1
f1 =−−−−−  

In the FOC for E, the quantity EPd
1  is not observable.6 However, one can exploit the fact that: 

 )EP( 1
d = )EP( 1

f1
f

1
d

P

P














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1g

1
f

d
1
d

1
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1
d0
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P

P
⋅




























−

 

to express the FOC for E in terms of observable quantities and the demand function intercepts  
( )1

0
1
0 fd PP , which are treated as unknown parameters, as follows: 

 

(8)  E: 0)EP()Ag1()CT1)(EP)(g1( 1
f

1g

1
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d
1
d

1
f0

1
d0

1ff
1
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P

P
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
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Similarly, in the FOCs for the factor inputs, the quantity )QP( d

1
d is also not observed. We  

can rewrite this quantity as ( ) )EP(PPNPSPQP 1
f

1
f

1
df

1
dd

1
dd

1
d ++=  but, again, EP1

d is not 

observed. I therefore repeat the same type of substitution to obtain, for domestic labor: 

 

(9)  0L)FD(ELw)EP(NPSP)Ag1(:L dddd
1
f

g

1
f

d
1
d

1
f0

1
d0

f
1
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1
d1
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1
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P

P
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
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


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




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
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




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δα  

The FOCs for Kd, Md and Nd, and for the affiliate, are obtained similarly. 

                                                
6 Note: Pd

1E is the physical quantity of exports times their domestic (not foreign) price – an object we cannot 
construct since we do not observe prices and quantities separately 
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III.  Stochastic Specification 
The model contains eight parameters (R, β, δd, δf, µ, ∆, Hd and Hf) that are common 

across firms. The model also contains eight technology parameters (αKd, αLd, αNd, αMd, αKf, αLf, 
αNf, αMf) and six demand function parameters (g1, 1

d0P , 1
f0P , g2, 2

d0P and 2
f0P ) that are allowed to 

be heterogeneous both across firms and within firms over time. Given CRTS, two of the Cobb-
Douglas share parameters (α) are determined by the other six. Thus, there are 12 fundamental 
parameters that can vary independently. In addition, the two unobserved expectation terms 
E(FD) and E(FF) that appear in the FOCs for U.S. and Canadian labor must also be dealt with.  
III.1. Production Function Parameters 

Allowing the Cobb-Douglas share parameters to be stochastic, while also imposing that 
they are positive and sum to one (CRTS), is challenging. To impose these constraints, I use a 
logistic-type transformation, treating the share parameters as analogous to choice probabilities in 
a multinomial logit (MNL) model. For instance, for the domestic labor share parameter, we have, 
suppressing firm and time subscripts: 

   Kd
R

Md
R

Ld
R

Ld
RLd

ααα
αα

+++
=

1
)10( { }

{ } { } { }KdKdMdMdLdLd

LdLd

xGxGxG
xG

εαεαεα
εα

++++++
+=

1
  

where G(⋅)>0 is a positive function, the vector xit includes all firm characteristics that shift the 
share parameters, and Ldα is a corresponding vector of parameters. 

The expressions for αKd and αMd are similar. Note the expression for αNd is: 

(11) { } { } { }KdKdMdMdLdLd
Nd

xGxGxG εαεαεα
α

++++++
=

1
1  

So Ndα  plays the role of the “base alternative” in a multinomial logit model. This specification 
insures that, given any values for the xit and any values for the stochastic terms εit, the Cobb-
Douglas share parameters are guaranteed to be positive and sum to 1.  

Note that in (10) the quantities Ld
Rα , Md

Rα and Kd
Rα are simply latent variables that map 

into the firm specific share parameters. If we specify that G(a) =exp(a) and that the ε are normal 
we obtain a specification where Ld

Rα , Md
Rα and Kd

Rα are log normal. Then, for example, the 
stochastic term Ld

Rα would be given by: 
 LdLdLd

R x εαα +=ln   Ldε ~ ),0(N 2
Ldσ    

and similar equations could be specified for Md
Rα , Kd

Rα . 
We can easily generalize log normality by using a Box-Cox transformation, given by 
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G(a)=(abc–1)/bc, where bc is the Box-Cox parameter.7 Using a Box-Cox transformation with 
parameter bc(1), we obtain: 
  

(12) ( ) LdLd
bcLd

R x
bc

εαα +=−
)1(

1
)1(

   Ldε ~ ),0(N 2
Ldσ  

Expressions similar to (12) hold for the parameters Md
Rα , Kd

Rα and also for the affiliate 
parameters. I will denote the Box-Cox parameters in these equations as bc(2) through bc(6). 

Next, consider the specification of xit, the vector of firm characteristics that shift the share 
parameters. In the empirical application I allow xit to include an intercept and a time trend t (t=0 
in 1983). I also allow these intercepts and time trends to differ for parents (affiliates) that do and 
do not use intermediate inputs from affiliates (parents). 

If the U.S. parent is not structured to use intermediate inputs from the affiliate, then 
αNd=0, and we must constrain the remaining three share parameters, αLd,  αMd and αKd, to sum to 
one. This is done just as above, except that now we let αKd play the role of the base alternative. A 
similar construct is used for affiliates that do not use intermediates from the parent. Because the 
scale of the coefficients in a MNL model with three alternatives is quite different from that of a 
MNL model with four alternatives, I also introduce a scaling parameter, denoted SCd, that scales 
down the error terms in the three alternative case. 

Thus, for the αR
Ld equation, we have: 

 

(13) 
( )

)1(
1

)1(

bc

bcLd
R −α

 = α0
Ld + αshift

Ld I[Nd>0] + αTime
Ld ⋅ t⋅ I[Nd>0] + αTime

Ld ⋅ t⋅ I[Nd=0]⋅ SCd  

+ εLd { I[Nd>0] +  SCd⋅ I[Nd=0]} 
 
Similar equations hold for αR

Md and αR
Kd, except that we simply have αR

Kd=1 in the Nd=0 case.8 
The same scaling parameter, SCd, applies in the αR

Md equation in the Nd=0 case. The equations 
for the affiliate share parameters are similar.  
                                                
7 The model was originally estimated assuming log normality, but this was severely rejected for some of the 
stochastic terms. Thus, I turned to a Box-Cox transformation. Strictly speaking, this Box-Cox transformation does 
not impose positivity on the share parameters.  But, given my estimates of the Box-Cox parameters and the 
variances of the stochastic terms, negative outcomes would be extreme outliers. 
8 Note that we only have an equation for Kd

Rα in the case of Nd > 0, because if Nd = 0 we normalize Kd
Rα = 1 and if 

Nf = 0 we normalize αR
Kf = 1. Thus, for illustration, the equation for Kd

Rα is just: 

( ) Kd
d

Kd
time

Kd
0

)3(bcKd
R SCtaa

)3(bc

1
ε

α
⋅+⋅+=

−
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  Turning to the correlations of the ε, I specify that: 

(14) ( )′NdMdLd εεε  ~ ( )dN Σ,0 ,  

where Σd is unrestricted. Similarly, for affiliates, Σf is unrestricted. But, in order to conserve on 
parameters, I do not allow for covariances between the parent and affiliate share parameters.9 
 Finally, consider the TFP parameters Hd and Hf in equations (1) and (2). Since we do not 
observe output prices and quantities separately, we cannot identify the scale of the H (either 
absolutely or for the affiliate relative to the parent). However, we can identify technical progress.  
Thus I normalize Hd = Hf = 1 at t=0 (1983) and let each have a time trend: 

(15) Hjt = (1 + hj )t   for j=d,f.   

A specification with equal time trends could not be rejected, so I set hd = hf = h. 

III.2. Demand Function Parameters   
Now I turn to the stochastic specification for the demand function parameters. For the  

inverse price elasticity of demand, or market power, parameter g1 we have:  
( )

1
,110

7
1

)7(
1

)16( g
shift1,time

bc
0]·I[Ndgtgg

bc
g

ε+>+⋅+=
−

 

A similar equation holds for g2, and the Box–Cox parameter in that equation is bc(8). 

For the demand function intercepts for good 1 in the domestic market, I specify:10 

1
01

,0
1

0,0

)9(1
0

)9(
1)(

)17( dP1
 shift0d,timedd

bc
d 0]·I[NdPtPP
bc

P ε+>+⋅+=
−

 

Similar equations hold for 2
0 fP , 1

0 fP and 2
0dP , and the Box-Cox parameters in these equations are 

denoted by bc(10), bc(11) and bc(12), respectively. 
      Preliminary results suggested that cross correlations between the three groups of parameters 
(technology, price elasticities, and demand function intercepts), were not important. Allowing for 
such correlations leads to a severe proliferation of parameters. Thus, I assume 1gε and 2gε are 
independent of other stochastic terms. I let the ),,,(

2
d0

1
f0

2
f0

1
d0 PPPP εεεε vector be correlated 

within itself with covariance matrix ΣP, but it is independent of the other stochastic terms. 

                                                
9 Interpretation of the Σd and Σf terms is rather subtle. The logistic transformation already incorporates the negative 
correlation among the share parameters that is generated by the CRTS assumption.  If Σd = I, we have an “IIA” 
setup, where if one domestic share parameter increases, the other share parameters decrease proportionately.  The 
correlations in Σd and Σf allow firms to depart from this IIA situation.  For example, if Σd

12 is very large, then we get 
a pattern where firms with large domestic labor shares also have large domestic materials shares. 
10 Technically, we should impose that g1 and g2 are positive and less than 1, and that the Po terms are positive. 
Equations (16)-(17) do not impose these constraints. But, given the estimates, violations would be extreme outliers. 
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III.3 Labor Force Adjustment Cost Parameters 
Recall that labor force adjustment costs are given by equation (5). The parameters δd and 

δf are allowed to vary across firms as follows:   
(18) { }]0N[Itwexp dtdddtd0,1ddt >⋅+⋅++= δδδδδ  
 { }]0N[Itwexp ftffftf0,1fft >⋅+⋅++= δδδδδ  
As with the other structural parameters, I allow for the possibility that adjustment costs vary over 
time, and between firms that do and do not have intra-firm flows. I also allow the δ  to be 
functions of the wage rate, since search and severance costs for high skilled labor are higher.  
III.4. Serial Correlation 

I model serial correlation of the errors for each firm using a random effects structure. For 
example, for the stochastic part of the parent labor share parameter εLd we have:   

)()()( itLdiLditLd νµε +=   for t=1,…Ti 

and similarly for the other eleven parameters. Let µi ∼ N(0, Σµ) denote the 12×1 vector of random 
effects for firm i, and let νit ∼ N(0, Σν) denote the 12×1 vector of firm/time specific error 
components. Then, Vt ≡ Var(εit) = Σµ + Σν  and Ct-j, t ≡ Cov(εit, εi,t-j) = Σµ . Note that Σµ and Σν 
each contain 78 unique elements, but these are restricted as described earlier. For instance, the 
non-zero elements of Σµ + Σν consist entirely of elements of Pfd , ΣΣΣ and along 
with 2

1gσ and 2
2gσ . Other cross-correlations are set to zero. Defining ),....,(

iiT1ii εεε = we have: 

(19) 
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
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


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So far, I have only considered the most general case where a firm has all 4 potential trade flows. 
If a firm has Ndt=0 (or Nft=0) at time t, then there is no value for εKd(it)  (or εKf(it)). Similarly, if 
Et=0, there is no value for )it(1

f0P , and if It=0 there is no value for )it(2
d0P . Additionally, some 

firms are not observed for consecutive years. In such cases Var(εi) is  collapsed in the obvious 
way (by removing the relevant rows and columns).  
III.5. Unobserved Expectation Terms   
 I deal with the unobserved expectation term E(FD)Ld in (9) by invoking a rational 
expectations assumption: 

(20) d
itdititdititt LFDL)FD(E η−=  

where d
itη is a forecast error assumed orthogonal to all information available at time t. A similar 

expression is specified for E(FF)Lf. The distributions of d
itη  and ηit

f are discussed Section IV.   
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IV. Estimation using the SML Based on FOCs Approach 
IV. 1. Motivation  
 If we substituting (20) into (9), we see that the FOC for domestic labor will contain five 
firm specific stochastic terms (αit

Ld, g1it, 1
d0P , 1

f0P and d
itη ) that enter non-linearly. Hence, it is not 

possible to express the equation as a moment condition with a single additive error term.11 The 
same is true of all 12 FOCs of the model, since they all involve multiple stochastic terms that 
enter nonlinearly. Thus, GMM estimation is infeasible. 
 One alternative to GMM would be a full information ML approach (FIML). This would 
require the econometrician to specify how firms form expectations of future labor inputs. This in 
turn would require that one specify how firms forecast future demand and technology shocks, 
tariffs, exchange rates, etc. This means completely specifying the stochastic processes for all 
these forcing variables. Thus, a FIML approach would force a researcher to make assumptions 
about a wide range of issues that go well beyond the nature of the firm’s technology and the 
structure of demand.     
 The SML based on FOCs approach is another alternative. The fact that multiple 
stochastic terms enter the FOCs in (8)-(9) in a highly nonlinear way creates no problems for this 
approach. SML based on FOCs can be thought of as a compromise between FIML and GMM. 
As in a FIML approach, the econometrician must specify parametric distributions for the demand 
and technology shocks. But, rather than specify stochastic processes for all the forcing variables 
(e.g., tariffs, wages, etc.), one simply substitutes realizations of the t+1 labor demand terms for 
their expectations, as in a typical GMM approach. However, the SML based on FOCs approach 
requires that we specify a distribution for the forecast errors ηit

d and ηit
f. 

 In terms of what one can do with the model once it is estimated, SML based on FOCs 
also represents a compromise between FIML and GMM approach. Since we estimate the 
complete distribution of technology and demand parameters for the MNCs, we can do steady 
state simulations of the responses of the whole population of firms to changes in the tariffs and 
other features of the environment.12 But, since we do not model the evolution over time of all the 
forcing processes, we cannot simulate transition paths to a new steady state.13 

                                                
11 Even if we could linearize (9), finding valid instruments is difficult. Usual candidates like input prices would be 
correlated with firm specific technology parameters if technology changes over time in response to price changes.  
12 Note that, even if GMM estimation were feasible for our model, it would not be adequate for this purpose. The 
usual argument for GMM over ML is that one avoids making distributional assumptions on the stochastic terms, and 
thereby obtains more robust estimates of model parameters. But we must estimate the distributions of the firm 
specific parameters if we want to simulate the response of the population of firms to changes in the environment. 
13 It is worth emphasizing that the key difficulty in estimation arises not from dynamics, but rather because multiple 
stochastic terms enter the FOCs. This problem would be present in a static model without labor adjustment costs.  
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IV.2  The Stochastic Process for Forecast Errors  

 Without loss of generality I rewrite (20), the equation for forecast errors, as follows: 

(21) *)( dtdtdititditit LFDLFDE ησ+=  

where *
dtη is standard normal. Of course, there is no reason one could not specify a more flexible 

parametric distribution. For instance, Feinberg and Keane (2003a) estimated a generalized 
version of this model where *

dtη was assumed to be normal subject to a Box-Cox transform. But 
the estimated Box-Cox parameter was extremely close to one, implying that the distributions of 
the forecast errors are indeed well described by normality in this model. 

It is plausible that that σdt, the standard deviation of the labor adjustment cost forecast 
error, will be increasing in Ldit, so I write: 

(22) { }dt10ddt Lexp ττσ += ,  { }ft10fft Lexp τσ τ +=  

Regarding serial correlation, I assume that the forecast errors are independent over time, as  
implied by rational expectations. But I allow parent and affiliate forecast errors to be correlated 
within a period, as must be the case if their production processes are integrated, or if they face 
common shocks. Thus, I let ( )′fd ηη ∼  N(0 , Ση). I also let Ση = CC′ , where C is the lower  

triangular Cholesky decomposition 








2212

11

CC
0C

. Finally, let τ = (τd0, τf0, τ1). 

IV.3.  Construction of the Simulated Likelihood Function 
IV.3.A.  Overview  
 Let θ  denote the vector of all model parameters. It includes values for the common (or 
non-stochastic) parameters of the model, which are R, β, δd, δf, µ, ∆, τ and h, as well as the 
parameters of the joint distribution of the 12 firm specific stochastic terms (see section III). 
Given a value of θ, simulation of a firm’s likelihood contribution involves the following steps:  

 Step 1: Take a draw from the joint distribution of the forecast errors, ηd and η f.  

 Step 2: Use the ten first FOCs for Ld, Kd, Md, Nd, Lf, Kf, Mf, Nf, E, and I (see eqns. 8-9), 
and the production functions (1) and (2) as a system of 12 equations to solve for the 12 stochastic 
terms that rationalize the firm’s behavior in each time period.  
 Step 3: Calculate the joint density of the stochastic terms, using the multivariate normal 
distribution with covariance matrix given by (19). 
 Step 4: Multiply by the Jacobian to obtain the data density. 
 
Repeating this process at independent draws for ηd and η f, and averaging the data densities so 
obtained, we obtain a simulation consistent estimate of the likelihood contribution for the firm. 



 18

 While this process is conceptually straightforward, some aspects of the computation 
require new simulation methods that will be developed below. In step 2, solving the system of 12 
nonlinear equations for the 12 stochastic terms in the model is cumbersome. But it is not 
computationally difficult. However, there are some draws for ηd and η f in step 1 such that the 
system in step 2 has no solution. That is, there are regions of the space of forecast errors such 
that firm behavior is not rationalizable, and the boundaries of these regions depend on θ. 
 Thus, in order to simulate the likelihood, it is not advisable to naively take draws from 
the unconditional distribution of ηd and η f in step 1. We have a model where all the stochastic 
terms are continuous, yet they must fall in certain sub-regions of a high dimensional space in 
order for firm behavior to be rationalizable by the model. As a result, a high dimensional integral 
must be evaluated to construct the joint density of a firm’s stochastic terms. Section IV.3.E 
presents a recursive importance sampling algorithm that can deal effectively with this integration 
problem. The algorithm is the discrete/continuous analogue of the GHK algorithm. 
 The second problem is that the Jacobian required for step 4 is analytically intractable. But 
in sections IV.3.C and IV.3.E I show how it can be approximated using simulation methods and 
numerical derivatives. 
 
IV.3.B. Solving for the Error Terms (and Identification of the Model Parameters) 
 Solving the system of 12 nonlinear equations for the 12 stochastic parameters in the 
model is cumbersome. I relegate the details to Appendix 1, but here I give an overview of the 
process. Understanding this process is important both for understanding the simulation methods 
that are developed later, as well as for understanding how the model parameters are identified. In 
this section, assume for the moment that we have already obtained a valid draw for the forecast 
errors, ηd and η f, and that we seek to solve for the remaining 12 stochastic terms of the model. 
 The market power parameters g1 and g2 are identified by simple markup relationships 
(i.e., Lerner conditions), which we can construct using data on sales revenues and costs. These 
relationships are modified slightly to account for labor force adjustment costs, and also for the 
complication that the MNC has an incentive to hold down prices of final goods it ships intra-firm 
as intermediates (in order to avoid tariff costs). (See equation A1.11). The U.S./Canadian price 
ratios for goods 1 and 2, denoted PR1 and PR2, are determined by the tariff and transport cost 
wedge, again modified by the incentive to hold down prices of intra-firm intermediates. Since the 
strength of this incentive depends only on g1 and g2, we can solve for PR1 and PR2 once g1 and g2 
are obtained (see equation A1.12). Also, given g1 and g2, the Cobb-Douglas share parameters are 
identified by cost shares of modified revenues (see equation A1.13).  
 Finally, given g1 and PR1, we can infer the ratio of the U.S. to Canadian demand function 
intercepts for good 1 (i.e., P0d

1/P0f
1) by observing the ratio of U.S. to Canadian sales for good 1. 
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Similarly, by comparing affiliate sales in Canada vs. imports to the U.S., we can infer the ratio of 
domestic to foreign demand function intercepts for good 2 (i.e., P0f

2/P0d
2). 

 Thus, without separate data on prices and quantities (except wages and employment, 
which we need only to identify the labor force adjustment cost function), we can identify the  
market power parameters, the Cobb-Douglas share parameters, and the ratios of the demand 
function intercepts for goods 1 and 2. To identify the levels of the demand intercepts, we need  
capital and materials price indices. Then, we can construct real capital and materials inputs, and 
use the production functions (1)-(2) as additional equations to determine quantities of output. 

The preceding discussion assumes that we are solving for the stochastic terms at a given 
value of θ, which means at a given value of the profit rate R. Knowledge of R enables us to 
construct total costs, which enables us in turn to construct g1 and g2 using markups inferred from 
revenue and cost data. A key issue is how R is identified. As I show in Appendix 2, the model 
implies a relation g/(1-g) = αK ⋅ R between market power and capital share. Thus, if the profit 
rate is low (high), there is a strong (weak) tendency for firms with more market power to also 
have larger capital shares, so that profits accrue to a larger (smaller) stock of capital. In other 
words, the larger is R, the greater the extent to which firms with larger capital shares also have 
larger markups (i.e., face more inelastic demand).  

Thus, to the extent that firms with larger capital shares act as if they face less elastic 
demand (in terms of how they respond to changes in the forcing variables), we will infer a higher 
value of R. At first this may seem like a strange argument for identification, since the capital 
share is not observed. However, given the assumption that R is equal for all firms, the capital 
share is perfectly negatively correlated with the sum of the labor, materials and intermediate 
shares. Thus, the greater the extent to which firms with larger labor plus materials plus 
intermediate shares act as if they face more elastic demand, the larger the implied R.14    

Having solved for all the firm specific parameters, we use the equations of the stochastic 
specification (see section III) to construct the vector of error terms for the firm. Let εit denote the 
vector of (up to) 12 error terms for firm i in period t (or, as few as 8 if Nd = Nf = E = I = 0): 

εit ≡ ( εit
Ld, εit

Md, εit
Nd, εit

Lf, εit
Mf, εit

Nf, εit
g1, εit

g2, ),,,
2
d0

1
f0

2
f0

1
d0 P

it
P

it
P

it
P

it εεεε         
Finally, I construct the joint multivariate normal density of the error vector for firm i, which I 
denote by εi ≡ (εi1 , … , εiT(i)), where T(i) is the number of time periods that firm i is observed, 
using the covariance structure given by equation (19).   

                                                
14 Appendix 2 also gives an intuitive explanation of how the time trends in TFP (h) and in the demand function 
intercepts (the P0) are separately identified. Briefly, to the extent that growth is more than proportionately slower for 
firms with more market power, it implies that growth is induced by TFP rather than growth in demand.  
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IV.3.C. The Jacobian of the Transformation from the Error to the Data Density    
Of course, the likelihood is the joint density of the data, not of the stochastic terms. I now 

turn to the construction of the Jacobian. If yi denotes the vector of data elements for firm i, then 
)(||)( iiii fyyf εε ∂∂= , where ii y∂∂ε is the Jacobian of the transformation from the data to 

the stochastic terms. In the present case, the 12 data items observed for the firm (or as few as 8 if 
Nd = Nf = E = I = 0) at time t are: 
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Observe that the Jacobian is not block diagonal by period t, because εit is affected by Ld,t-1, Lf,t-1, 
Ld,t+1 and Lf,t+1. It is not possible (as far as I can determine) to obtain an analytic expression for 
the Jacobian, because the mapping from the data to the stochastic terms is so highly nonlinear. 
Furthermore, the mapping depends on the values of the forecast errors (which we condition on 
here, but which must be integrated out). Therefore, I construct the Jacobian numerically. 

To calculate the numerical Jacobian, I bump the elements of the data vector (y) one at a 
time. When a data element is bumped, I recalculate all the elements of εi, and form numerical 
derivatives of εi with respect to that element of y. I then use these numerical derivatives to fill in 
the column of the Jacobian that corresponds to the bumped element of y. We have: 
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where yitk denotes the kth element of the data vector for firm i in year t. For instance, if we bump 
yi11= )1i(d

1
d SP , and form numerical derivatives of the εi elements, we obtain the first column of 

the Jacobian. I denote the Jacobian by J(ηi, yi) to highlight that it depends on the forecast errors. 
 Since the Jacobian depends on ηi, it must be simulated. However, to form the likelihood, 
it is not correct to simulate the Jacobian separately and then multiply by the error density. Rather, 
the product of the Jacobian and data density must be averaged over draws for ηi, as I discuss 
below. I will not comment further on the fact that the simulated Jacobian is based on numerical 
derivatives. Numerical procedures are generally used to construct even “exact” likelihood 
functions (e.g., exponentials are calculated via series expansions), so I don’t feel that the use of a 
numerical procedure here warrants special comment.     
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IV.3.D. Simulating the Likelihood Function: Naïve Approach 
I form the likelihood by integrating the data density over the forecast error distribution: 
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Here, ,),.....,,( f
iiT

d
iiT

f
1i

d
1ii ηηηηη ≡  f(ηi) denotes the joint density of forecast errors for firm i, and 

θ denotes the vector of model parameters. The notation εi (ηi , yi) emphasizes that the mapping 

from the data to the stochastic terms for a firm depends on the vector of forecast errors ηi.      
Naively, one could simulate the likelihood function by taking iid draws from the 

distribution of ηi. An important complication arises here, however. Firm behavior cannot be 
rationalized by any arbitrary values for the forecast errors. Conditional on a particular draw for 
(ηd, ηf ), firm behavior is only rationalizable if, when we solve the mapping from the data to the 
model parameters, we obtain 1>g1 > 0 , 1>g2 > 0, all technology parameters positive, and all 
demand shift parameters positive. But this will not be the case for all possible (ηd, ηf ) draws. 

In Appendix 1, I derive the following equation relating g1 and the forecasts E(FD)Ld : 
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In the data, the term BVI/)NP)(NP(ABAYE d

2
ff

1
d− is always positive.15 So, the right-hand 

side of (23) must be positive in order for g1 to be positive. But if the forecasted adjustment costs 
E(FD) = FD - ηd or E(FF) = FF - η f are too large, the right-hand side will be driven negative. 
Thus, observed firm behavior implies bounds on the forecast errors. I derive the exact bounds on 
(ηd, η f ) in Appendix 3.   

For any draw (ηd, η f ) that does not satisfy the bounds, no values of the firm specific 
parameters can rationalize firm behavior. Let BDi denote the region of the space of forecast 
errors such that behavior of firm i is rationalizable. Then, we can rewrite the likelihood as:     
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15 A and B are usually close to 1. Therefore, AYE is close to sales of good 1, and BVI is close to sales of good 2 (see 
Appendix 1 for definitions). Thus, the second term includes (Pf

2Nd  / BVI ), a number < 1, times Pd
1Nf , which is just 

one component of sales of good 1. So the whole term in brackets is roughly sales of good 1 minus a fraction thereof. 
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where I[ηit ∈ BDit] is an event indicator. Then, given M iid draws from the unconditional 
distribution of the forecast errors, the likelihood contribution for firm i can be approximated 
using a simple frequency simulator as follows: 
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There are two fundamental problems with this approach, however: 
1) For some draws m, the likelihood contribution is zero. For example, suppose P(ηit ∈ BDit) = 

.95 ∀ t and there are 11 periods. Then only 56% of draws would belong to BDi on average. 
This creates a serious numerical inefficiency, since many draws are useless for evaluating the 
|J(ηi ,yi )| f(εi(ηi ,yi)|θ ) term. They are only used (implicitly) to evaluate event probabilities 
P(ηi ∈ ΒDi), which could be much more accurately evaluated by other means (see below).   

2) The simulated likelihood in (24) is not a smooth function of the model parameters θ. It takes 
discrete jumps at θ values such that one of the draws m

iη is exactly on the boundary of ΒDi. 
This means that gradient-based search algorithms cannot be used to maximize the likelihood 
function, and derivatives are not available to calculate standard errors of parameter estimates. 
Without derivatives, estimation is practically impossible for a model with many parameters     

 
IV.3.E. A Recursive Importance Sampling Approach  

In this section I present a more efficient smooth simulator of the likelihood using a 
recursive importance sampling algorithm that is a discrete/continuous data analogue of the GHK 
algorithm for simulating event probabilities in discrete choice models. As in GHK, the idea is to 
draw the ηi from the “wrong” density, chosen so that all ηi with positive mass under this density 
are consistent with firm behavior. The likelihood is then simulated using a weighted average 
over these draws, where the weights are ratios of the draw’s likelihood under the correct density 
f(ηi) to its likelihood under the incorrect density f(ηi|ηi∈ΒDi).  

Consider first the simulation for firm i in period t. Define ηt ≡ (ηd
t, ηf

t). From (A3.11), 
the constraints on ηt are (suppressing firm subscripts): 
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where σdt and σft are the standard deviations of ηdt and ηft, and *
dtη and *

ftη  are standard normal.  
Recall that I allow the forecast errors to be correlated across the parent and affiliate within a 
period. This makes sense because, given the structure of the model, any shock that affects Ld,t+1 
would also potentially affect Lf,t+1. Then, employing a lower triangular Cholesky decomposition, 
we have: 
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where dζ and fζ are iid N(0,1) and .12

22
2
12 =+ aa  Let F(⋅) denote the standard normal distribution 

function. The simulation algorithm proceeds as follows: 
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Step 2:  Draw a uniform random variable on [0,1].  Denote it by m
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  Or, rearranging terms: 

   











ζ−

σ
<ζ<












ζ−

σ
m
d12

ft

f
t

22
f

m
d12

ft

f
t

22
a

BU
a
1a

BL
a
1  

  We write these bounds more compactly as )(BU)(BL m
df

m
d ζ<ζ<ζ .              

Step 6:  Draw a uniform random variable on [0,1].  Denote it by m
t2u . 
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Repeat Steps 1 through 8 for m=1...M draws and t=1...T periods.  Save the following: 
1) The uniform draws )u,u( m

t2
m
t1  m=1, M ; t = 1, Ti 

2) The forecast error draws ),( m
ft

m
dt ηη  m=1, M ; t = 1, Ti 



 24

3) The event probabilities: 
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where BDt denotes the region in which (ηt
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f
 ) must fall in order for firm behavior to be 

rationalizable in year t. 
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likelihood contribution of firm i is:      
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Since many economic models have a structure where certain stochastic terms must be in 

particular ranges in order for a continuous outcome to be observed (e.g., a productivity shock 
must be in a certain range in order for a firm to operate), the basic approach used here can be 
useful in many contexts. Since the simulator is recursive it can be extended trivially to 
accommodate serial correlation in the ηt. The bounds for η2 would then be a function of m

1η , and 
so on. I rule out such correlation here because of the forecast error interpretation of η. 
 
V. Simulation from the Posterior Distribution of Model Parameters  

In this section I present a recursive importance sampling algorithm for drawing from the 
posterior distribution of firm specific parameters (conditional on the firm’s observed history). 
This is a non-trivial problem, for the following reason: The model contains a 14×1 vector of 
stochastic terms for each firm and time period (i.e., 12 firm specific parameters, and two forecast 
errors). Even though this vector is multivariate normal unconditionally, its posterior distribution 
conditional on firm behavior is very complex. This is because the 12×1 vector of data elements 
places complex constraints on the 14×1 vector of stochastic terms. Thus, I need a way to draw a 
K×1 vector of random variables that lie in a J×1 dimensional space, where J<K due to the 
constraints imposed by the data and model. I do this using a recursive algorithm that is a 
continuous data analogue to the GHK algorithm.      

I want to construct the posterior distribution of the firm-specific parameters for two 
reasons. First, I want to test the model’s distributional assumptions. I assumed that (after Box-
Cox transformations) the stochastic parts of the firm specific parameters are jointly normal. If 
this assumption is valid, then we should not reject normality for their posteriors conditional on 
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the data. Second, I want to simulate the response of the population of firms to changes in the 
environment, and for this I need draws from the posteriors of the firm specific parameters. 
 The distribution of firm specific parameters conditional on the data cannot be expressed 
analytically, because the mapping from the data to the stochastic terms is highly nonlinear. 
(Contrast this with a linear random effects model, yit = αi + xiβ + εit where the distribution of the 
random effect αi for a firm i conditional on {yi1, ..., yiT} is simple to construct). But here I 
develop an importance sampling algorithm that can be used to obtain draws from f(εi, ηi | Di) 
where Di is the data observed for firm i. The basic principle of the algorithm is quite general, and 
it can be used to obtain draws from the posterior distribution of stochastic terms conditional on 
data in the general class of continuous nonlinear models where this distribution is not degenerate 
(e.g., random effects models, mixture models, factor models). 
 To describe the algorithm, it is useful to first explain implementation for a single time 
period (ignoring the panel aspect of the data). First I establish some definitions. Let D denote the 
vector of data elements for a particular firm, and let S denote the vector of stochastic terms for 
this firm (in the present case case D is 12x1 and S = (ε, η) where ε is 12x1 and η is 2x1, so S is 
14x1). Let M denote the mapping from S to D: D=M(S). Note that M is not invertible, since the  
dimension of S exceeds that of D. Let B(D) denote the set of S values that are consistent with D: 

 

B(D) = { S | D = M(S) } 

If we partition S into sub-vectors S = (S1, S2), then we can also define sets of values for the sub- 
vectors that are consistent with D: 
 
  B1(D) = { S1 | D = M(S1,S2) for some S2}  =   { S1 | ∃ S2 such that D=M(S1,S2)} 
        
We can construct these sets recursively: 

B2 (D | S1) = { S2 | D = M(S1 , S2) } 

Use P(X) to denote the measure of a set X and note that P(B(D))=0 under the unconditional 
distribution of S.  The fact that P(B(D))=0 means that not only is acceptance/rejection sampling 
impractical, it is impossible in this case. A recursive algorithm is essential. 

Since D = M(S) we have f( S , D ) = f(S), and therefore: 
 

 f(S | D) =     
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)D(B  Sif  f(S)/f(D)
∉

∈
 

 



 26

It is worth noting that: 
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Thus, we have that f(S | D) ∝ f(S) if S ∈ B(D). But this is not immediately useful, because we 
cannot draw directly from f(S) subject to the constraint that S ∈ B(D), since P(B(D)) = 0. 

Feasible methods to obtain draws from B(D) will generally involve drawing from an 
incorrect “source” density φ(S) chosen so that Pφ(B(D)) > 0, or ideally, Pφ(B(D)) = 1, and φ(S) 
>0 for all  S∈ B(D) subject to f(S) > 0. Thus, the general problem is to simulate draws from the 
target density f(S | D) given that we only have access to draws from the source density φ(S). 

The solution is an importance sampling algorithm in which the draws {Sm}m=1, M from 
φ(S) are weighted using weights wm such that wm ∝ f(Sm)/φ(Sm) for Sm∈ B(D) and wm = 0  
otherwise. Since weights must sum to 1, we have: 
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Maximal efficiency of an importance sampling algorithm is achieved by choosing a φ(S) as 
“close” as possible to f(S | D), e.g., using Kullback–Liebler distance. Note that if φ(S) is very 
close to f(S | D), then the wm will be close to 1/M. 

I now describe the application of this algorithm to the model of this paper. Consider a 
single period of data for a firm. The data vector D is 12x1. The vector of stochastic terms S is 
14x1. It consists of ε which is 12x1, and η which is 2x1. We have that D = M(ε , η) and consider 
a partition:  

B(D)         = { (ε , η) | D = M(ε , η) } 
B1(D)       =  { η | ∃ ε s.t. D = M(ε , η) } 
B2(D | η)  = {ε  | D= M(ε , η) } 

Given our model and distributional assumptions, we have seen that P(B(D)) = 0, 0<P(B1(D))<1, 
and P(B2(D| η))=0. It is not feasible to draw directly from the joint distribution f(ε, η | D).  
Rather, we draw sequentially, first obtaining ηm ∈ B1(D) and then constructing the implied εm 
using the relation D= M(εm , ηm), which is given by the nonlinear system of equations described  
in Appendix 1. Given this procedure, we obtain the source density: 
 

       φ(ε , η) =   
otherwise0

)D(Bif)g( 1∈ηη  

where g(η) is the density from which we draw the ηm. 
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I emphasize that g(η) is not the “correct” density of η, given by f(η |η∈ B1(D)). Rather, 
g(η) is the density induced by the procedure of drawing η =(ηd, ηf) sequentially, rather than 
drawing directly from the correct joint density f(ηd , ηf  | η ∈ B1(D)). Specifically, we 
sequentially partition the set B1(D) as follows: 

 
B1d(D)        =  { ηd  | ∃ ηf  s.t. (ηd , ηf ) ∈ B1(D) } 
B1f(D, ηd)  =  { ηf | (ηd , ηf ) ∈ B1(D) } 

We first draw ηd
  ∈ B1d(D) and then, conditional on the draw ηd,m, we draw ηf,m ∈ B1f(D, ηd,m). 

Given this sequential procedure, we have that g(η) is given by: 
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 Thus we have that our source density is: 
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Therefore, the importance sampling weights wm = f(εm, ηm)/φ(εm , ηm) are: 

  wm =     
otherwise0

)D(B),(if)B(P)B(P)(fK 1
mm

d
m

f1d1
m ),D()D( ∈εηηε  

where:  
1M

1m
)d

m,D(f1)D(d1
m )B(P)B(P)(fK

−

= 










= ∑ ηε  

Since we have chosen the source density φ(·) so that all draws (εm, ηm) ∈ B(D), and since 
P(B1d(D)) appears in the numerator and denominator of wm, we can simplify to: 
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The sequential construction of the importance sampling weight for draw sequence m is exactly 
analogous to the construction of sequence weights in the GHK algorithm. The sequence that 
begins with d

mη is given more (less) weight to the extent that d
mη makes a valid draw for ηf more 

(less) likely. And a sequence that begins with ),( f
m

d
m ηη is given more (less) weight if the implied 

εm is more (less) likely. In fact, the algorithm described here is the continuous data analogue to 
the algorithm for constructing and weighting draw sequences that underlies the GHK algorithm.   
 Given the recursive structure of the sequence weights, extension to the multi-period case 
is obvious – but notationally burdensome – so I omit the specific expressions. 
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VI.  Empirical Results 
VI.A.  Parameter Estimates for the Structural Model 

The smooth SML algorithm described in section IV.3 was used to estimate the model of 
MNC described in sections II-III, using the BEA data on U.S. MNCs and their Canadian 
affiliates for the period 1983-1996 described in Feinberg and Keane (2003a). The recursive 
importance sampling algorithm described in section IV.3.E was implemented using 50 draws. 
The algorithm was numerically very well behaved and converged without difficulties in about 
300 iterations (that required several minutes each on a Pentium II processor). Results were not 
significantly affected by use of alternative starting values, or changing the number of draws.  

Table 1 reports the estimates of the structural model of MNCs’ marginal production and 
trade decisions.16 Feinberg and Keane (2003a) discuss these estimates in detail, so I will only 
highlight a few main results. The first panel of Table 1 reports estimates of parameters related to 
the labor share in the parent’s Cobb-Douglas production technology. Recall that these parameters 
map into the share parameter itself through the transformation given by equations (10) and (13). 
The estimates in Table 1 are for the parameters in equations like (13).  

The first term is the intercept (α0
Ld). The second term, αshift

Ld, is a shift parameter that 
allows the labor share to differ for the subset of firms with positive intra-firm flows (i.e., it 
multiplies I[Nd>0]). The third and fourth terms are time trends, which are relevant for parents 
that do and do not use intermediate inputs from the affiliate, respectively. Finally, the fifth term 
is the Box-Cox parameter, bc(1). This captures departures of the stochastic term in the labor 
share equation from log normality. 

The second and third panels of Table 1 report parameters relevant to the parent’s 
materials and capital shares, respectively. Note that the capital share equation has fewer 
parameters. When a parent does not utilize intermediates from the affiliate, it has only three 
inputs, so the capital share is just 1-αLd-αMd. Thus, the capital share equation is only relevant for 
parents that do use intermediates from the affiliate, and so it does not include the shift parameter 
or the extra time trend that are included in the labor and material share equations. The fourth 
through sixth panels of Table 1 contain exactly the same types of parameters, but for the affiliate. 

A key result is that the time trends on the share parameters are small and insignificant for 
parents and affiliates that do not use intermediates that are shipped intra-firm. That is, in Table 1, 

                                                
16 Recall that the structural model was actually estimated jointly with reduced form MNC decision rules for whether 
or not to engage in intra-firm and arms length trade. While we condition on the MNC configuration in estimating the 
model of marginal decisions, we did not wish to assume that configuration was exogenous. This could lead to bias in 
estimates of the structural model if the MNC configuration is influenced by firm specific unobservables. Feinberg 
and Keane (2003b) discuss the estimates of the reduced form decision rules. Most notably, these estimates imply 
that tariffs have a negligible influence of MNC’s decisions about whether to engage in intra-firm and arms length 
trade. The adjustment to tariff changes appears to be primarily on the intensive rather than the extensive margin. 



 29

the terms αTime
Ld⋅t ⋅ I[Nd=0], αTime

Md⋅t ⋅ I[Nd=0], αTime
L f⋅t ⋅ I[Nf=0] and αTime

Mf⋅t ⋅ I[Nf=0] are all 
insignificant and quantitatively small. Thus, the behavior of these parents and affiliates is well 
described by a CRTS Cobb-Douglas technology with fixed share parameters. 

In contrast, for the subset of MNC parents that do utilize intermediates from affiliates, 
and affiliates that use intermediates from parents, the time trends for the share parameters are all 
highly significant and negative. Recall that these trends feed into logistic transformations like 
(10). Thus, the fact that the time trends are negative for labor, capital and materials means the 
share of the omitted category (intermediates) must be rising. Thus, conditional on MNCs having 
had positive intra-firm flows initially, the estimates imply that “technical change” was driving up 
the share of intermediates.  

Another way to state this result is that the model cannot explain the observed increase in 
intra-firm trade in intermediates based on the changes in the exogenous forcing variables, such as 
tariffs, transport costs, exchange rates, wages, materials prices, etc.. Thus, the model attributes 
the increase in intra-firm trade to technological change in the form of trends in the Cobb-Douglas 
share parameters. Feinberg and Keane (2003a) discuss this result at length and argue that it 
would be robust to various changes in the structural model that has been estimated here. They 
also argue that these “technical change” estimates may be picking up recent advances in logistics 
that have made it easier to ship intermediates intra-firm in a way that allows fragmented 
production processes to operate smoothly.        

The top four panels on the second page of Table 1 contain estimates of the labor cost 
adjustment cost function. In the top two panels note that time trends in the δd and δf equations 
(see equation 18) are both significant and positive, suggesting that labor force adjustment costs 
increased over time. The third panel contains estimates of the µ and ∆ parameters in the 
generalized labor force adjustment cost function (equation 5). These estimates imply that 
adjustment costs are not well described by the common linear-quadratic in levels specification, 
since they depart substantially from µ=1 and ∆=0. The fact that µ<1 and ∆>0 implies that the 
cost of a given absolute change in labor force size is smaller to the extent that the change 
represents a smaller fraction of the initial labor force.  

The fourth panel contains estimates of the parameters τ  that determine the variance of 
labor adjustment forecast errors (see equation 22). Not surprisingly, forecast error variance is 
increasing in labor force size. Interestingly, the domestic forecast error variance is higher (for 
given labor force size), and domestic and foreign forecast errors are positively correlated. 

The middle two panels on the second page of Table 1 contain estimates of the parameters 
that determine the (negative) inverse price elasticities of demand for the U.S. and Canadian 
produced good (g1 and g2). These are the parameters of equations like (16). Note that the Box-
Cox parameter for g1, which is .6084, implies that a transform close to the square root is needed 
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to induce normality of the residuals, while the transform for g2, which is .8424, is quite close to 
linear. Thus, the stochastic terms in the g equations depart dramatically from log normality.  

The last four panels on page 2 of Table 1 contain estimates of the parameters that 
determine the four demand function intercept parameters (i.e. U.S. and Canadian demand for the 
U.S. and Canadian produced goods). These are the parameters of equations like (17). Note that 
all four demand function intercepts exhibit significant negative time trends, implying falling 
demand at any given price level. At the same time, the estimate of TFP growth is 4.5% per year. 
As I discuss in Appendix 2, as g→1 (less elastic demand) TFP growth has no effect on 
employment. Thus, the fact that TFP is increasing while demand (at any given price) is falling 
implies that growth in employment is very concentrated among firms facing elastic demand. In 
fact, employment must be shrinking among high market power firms (see the discussion of Table 
5 in section VI.C for more on this point). 

Finally, I turn the estimates of the covariance matrix of the firm specific stochastic terms. 
Each of the 12 technology and demand function parameters is allowed to be heterogeneous 
across firms and over time. Recall from Section III.4 that I specify a stochastic structure where 
each of these 12 parameters has a firm/time specific component that consists of a random effect, 
µi, and a transitory error, νit. Table 2 reports estimates of the correlation matrices of these 
stochastic terms. Panel 1 presents the cross-sectional correlation matrix of the composite error 
µi+νit. Although all correlations are highly significant, the smallest (about 0.4) are for the 
country specific demand shifters across the two different goods (i.e., between 1

d0P and 2
d0P , and 

between 1
d0P and 2

f0P ). By contrast, the correlation between the U.S. and Canadian demand 
shifters for the domestically produced good (i.e., between 1

d0P and 1
f0P ) is 0.97!  That is, demand 

for the same good across the two countries is extremely highly correlated, while demand for the 
two different goods in the same country is not so highly correlated. 

The second panel of Table 2 reports the correlations of the firm specific parameters at 
times t and t+1. The random effects structure implies equal correlations at all leads and lags, all 
the way out to t+11. As we would expect, all the firm specific parameters are highly serially 
correlated. The technology and demand function intercept parameters show more persistence 
(i.e., correlations in the 0.72 to 0.80 range) than do the market power parameters (i.e., 
correlations of 0.46 and 0.53). 

 
VI.B. Fit of the Structural Model      

The SML based on FOCs estimation method requires that the researcher specify a joint 
parametric distribution for the vector of stochastic terms in the model. Thus, it is important to 
have a method to test the validity of the assumed parametric distribution. In the illustrative model 
of MNC behavior that I have estimated in this paper, I assumed that the vector of 12 firm 
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specific technology and demand parameters are jointly normally distributed, subject to a Box-
Cox transformation (as described in section III). In order to investigate the validity of this 
assumption, I use the recursive importance sampling algorithm developed in Section V to draw 
from the posterior distribution of the stochastic terms for each firm, conditional on the estimated 
model and the firm’s observed history. I then use these draws to test the joint normality 
assumption. 

Specifically, I use the algorithm developed in Section V to draw ten vectors of simulated 
residuals (and their associated importance sampling weights) for each observation in the data set. 
Tables 3 and 4 report two tests of the normality assumption based on these simulated residuals. 

Table 3 presents χ2 tests of normality based on the deciles of the normal distribution. 
These tests show that the normality assumption is substantially supported. Indeed, I reject 
normality at the 1% level for only one of the 12 residuals—the affiliate materials share—and at 
the 5% level, I reject normality only for one additional residual—the parent capital share.17 
 Table 4 presents the simulated deciles for each residual, and compares these to the deciles 
of the standard normal distribution. Starred entries in Table 4 denote deciles of the residuals that 
depart significantly from normality. Only the deciles for the parent capital and affiliate materials 
shares show any significant departures from the deciles of the normal distribution. I can reject 
normality for four of the deciles of the αKd residual and two of the deciles of the αMf residual. 
However, even in these worst cases, the departures from normality are not dramatic.  

Recall that a novel feature of SML based on FOCs approach when applied to dynamic 
models is the assumption that forecast errors are normal. This is also a feature of the pseudo-
SML based on FOCs approach developed in Krusell, Ohanian, Rios-Rull and Violante (2000). 
Traditionally, researchers have been reluctant to specify that forecast errors have any particular 
parametric distribution, such as normality, because there is no theoretical reason to expect them 
to have any particular distribution. Thus, it is important that we have a means of testing the 
normality assumption.   

The statistics in Table 4 indicate strong support for the normality assumption on the 
forecast errors. According to the results in Table 4 the deciles of the simulated distributions for 
the domestic and foreign labor force adjustment cost forecast errors, ηd and ηf are essentially 
indistinguishable from normality. This finding is particularly encouraging with regard to the 
potential usefulness of the SML based on FOCs approach. 

In summary, the model appears to fit the data quite well, in the sense that the parametric 
assumptions on the distributions of the stochastic terms appear (for the most part) to be strongly 
supported. 
                                                
17 The test statistic is χ2 (9), based upon the deciles of the normal distribution. I bootstrap the critical values to deal 
with the fact that residuals for a firm are highly serially correlated.   
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VI.C. Some Simulation Experiments 
 A key advantage of the SML based on FOCs approach over GMM is that, in conjunction 
with the sampling algorithm developed in section V, it enables one to draw from the posterior 
distribution of the firm specific parameters (conditional on the model and the data). Given such 
draws, we can simulate the behavior of individual firms, and/or the whole population of firms, to 
changes in the economic environment. The GMM approach does not allow this, because it does 
not deliver estimates of the distributions of the stochastic terms.  

On the other hand, in the SML based on FOCs approach the model is not completely 
specified. In the present case, I have not specified the stochastic processes for the forcing 
processes such as tariffs, exchange rates, wages, technical change, etc., nor have I specified how 
firms form expectations of future values of these quantities. Since I have not implemented a full-
solution algorithm, I cannot simulate the short-run outcomes generated by the dynamic model. 
To do the latter would require a complete model, which could be estimated using FIML. 
However, I can use a steady-state version of the model (which assumes no labor force adjustment 
costs) to simulate the long-run response of the population of firms to changes in the policy 
environment.  

In Table 5, I use simulations of the model to examine the effect of various changes in the 
economic environment on MNC behavior. The simulations are done using 543 vectors of 
technology and demand parameters drawn from the posterior distribution of the firm specific 
parameters of the model, using eth algorithm of Section V. Feinberg and Keane (2003a) discuss 
these simulations in detail, so here I just give some highlights. 

The first column of Table 5 reports the actual changes in several variables of interest that 
occurred from 1984-1995. The second column reports the predicted change from 1984 to 1995 in 
the steady state level of each variable, given all changes in the environment. The third, fourth 
and fifth columns report the predicted changes due to changes in tariffs, technology and wages, 
respectively. The last column reports the combined effect of all other factors in the model. 

Of course, the predicted change in steady state levels is not directly comparable to the 
change in actuals, since the latter include transition dynamics. However, from a face validity 
standpoint it is comforting that the predicted changes line up reasonably well with the actual 
changes. For example, the model predicts that all factors combined led to an increase of 99% in 
U.S. parent intra-firm sales to affiliates, and a 79% increase in U.S. parent arms-length sales to 
Canada. The actual changes were 73% and 75% respectively. And the model predicts that all 
factors combined lead to a 123% increase in affiliate intra-firm sales to parents, and a 9% 
increase in affiliates arms-length sales to the U.S.. The actual changes were 95% and 4% 
respectively. It is interesting that employment falls both in the data and according to the model. 
As I discussed in Section VI.A, this is consistent with the pattern we would expect for firms with 
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substantial market power, given that TFP increased while demand (and any given price) fell over 
the sample period.   

Now lets look at the model’s decomposition of how specific exogenous factors affected 
MNC behavior over the sample period. The model predicts that tariff reductions over the 1984-
1995 period increased U.S. parents’ arms length sales to Canada by 36% and affiliates’ arms-
length sales to the U.S. by 32.5%. Note, however, that affiliate arms-length sales to the U.S. only 
increase 4% in the data, and they only increased 9% in the simulation that takes all factors into 
account. According to the model, other factors were hindering Canadian affiliate arms-length 
exports to the U.S.. One key factor was rising Canadian real wages. The real wage (in U.S. dollar 
terms) paid by Canadian affiliates increased by 20% from 1984-1995. The model predicts that 
this reduced affiliates’ arms-length exports to the U.S. by 20%.  
      Table 5 also reveals the important role that the model assigns to technical change in 
increasing intra-firm trade. Of the 99% increase in parents’ intra-firm sales to affiliates, the 
model attributes 72 percentage points to technical change. And of the 123% increase in affiliates’ 
intra-firm sales to parents, the model attributes 84 percentage points to technical change. The 
changes attributed to tariff reductions are only about 10 and 5 percentage points, respectively. 
While these tariff effects are not trivial, they are an order of magnitude smaller than the impact 
of technology. Feinberg and Keane (2003a) discuss possible technological reasons for the 
increase in intra-firm trade.      
    
VII.  Conclusions 
 In this paper I have described the SML based on FOCs approach for structural estimation 
of economic models. The approach is a compromise between GMM and FIML because the 
economic model does not have to be completely specified and fully solved, a feature the method 
shares with GMM. But parametric distributions must be specified for all the stochastic terms that 
appear in the FOCS, a feature the method has in common with FIML.  

The key virtue of the method relative to GMM is that it allows for multiple sources of 
structural error, and hence enables one to model rich patterns of heterogeneity across economic 
agents. In contrast, to apply GMM to models with multiple sources of structural error, one 
typically needs strong functional form assumptions so that the FOCS can nevertheless be written 
in terms of a single additive composite error term.  

There are two computational problems that will typically arise in applying the SML 
based on FOCs method. First, in a model where the stochastic terms enter the FOCs nonlinearly, 
it will typically be the case that the Jacobian of the transformation from the stochastic terms to 
the data will be intractable. I have shown how one can deal with this problem by using numerical 
and simulation methods to approximate the Jacobian. 



 34

Second, economic models often have the feature that for certain ranges of the stochastic 
terms the FOCs cannot be satisfied (i.e., we are at a corner solution where the firm shuts down, 
demand is zero, etc.). I have shown how to deal with this problem by developing a new recursive 
importance algorithm to simulate the likelihood function. This algorithm is based on drawing the 
stochastic terms from the “wrong” density, chosen in such a way that all draws from the density 
allow the FOCs to be satisfied. The importance sampling weights adjust for the fact that the 
“wrong” density is used. This algorithm is the discrete/continuous analogue of the GHK 
algorithm. 

Once one has estimated a model using the SML based on FOCs method, it is desirable to 
be able to draw from the posterior distribution of the firm specific parameters. This is useful both 
because one would like to test ones distributional assumptions, and because one would like to be 
able to simulate the behavior of the economic agents in the model. The GMM approach does not 
allow this because it does not produce estimates of the distributions of a model’s stochastic 
terms. The SML based on FOCs approach does provide estimates of the distributions of the 
stochastic terms, so posterior simulation is in principle possible. However, such posterior 
simulation is in general a difficult problem in models where there is not a one-to-one mapping 
from the data to the stochastic terms. In models with rich patterns of heterogeneity across agents, 
there will typically be more stochastic terms than there are observed data elements.  

To deal with this problem, I have presented a recursive importance algorithm that can be 
used to simulate from a J dimensional vector of agent specific stochastic terms that lie in a K 
dimensional sub-space, where K<J is determined by the constraints implied by the data and the 
FOCs. The particular problem one faces here is that the sub-space of valid draws has measure 
zero. The algorithm that I develop to draw from such a sub-space is the continuous data analogue 
of the GHK algorithm. 

The methods developed in the paper were applied to an illustrative model of the behavior 
of U.S. MNCs with affiliates in Canada. The methods appeared to work well in practice, and the 
estimates were numerically well behaved. Interestingly, there appeared to be little evidence 
against the distributional assumptions of the model, particularly the assumption of normally 
distributed forecast errors. This seems encouraging from the perspective of future application of 
the method.  
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Table 1:  Parameter Estimates for Structural Model of MNC Behavior 
    
 Parameter Name Symbol Estimate Std. Error

I. U.S. Parent Technology Intercept α0
Ld -0.2288 (0.0925) b 

 Time trend ([Nd>0]) αtime
Ld· t·I[Nd>0] -0.1135 (0.0089) a 

     Parent Labor Time trend ([Nd=0]) αtime
Ld· t·I[Nd=0] -0.0149 (0.0199)

 Intercept Shift αshift
Ld·I[Nd>0]  5.4032 (0.1096) a 

 Box Cox parameter bc(1) -0.0182 (0.0035) a 

 Intercept α0
Μd 0.2311 (0.0834) a 

 Time trend ([Nd>0]) αtime
Md· t·I[Nd>0] -0.0922 (0.0083) a 

     Parent Materials Time trend ([Nd=0]) αtime
Md· t·I[Nd=0] -0.0044 (0.0168)

 Intercept Shift αshift
MdI[Nd>0]  4.8860 (0.1142) a 

 Box Cox parameter bc(2) -0.0398 (0.0038) a 

 Intercept α0
Kd 4.5094 (0.1125) a 

     Parent Capital Time trend ([Nd>0]) αtime
Kd· t·I[Nd>0] -0.0764 (0.0058) a 

 Box Cox parameter bc(3) -0.0635 (0.0045) a 

II. Canadian Affiliate Technology Intercept α0
Lf -0.2373 (0.1172) b 

  Time trend ([Nd>0]) αtime
Lf· t·I[Nf>0] -0.0448 (0.0058) a 

 Time trend ([Nd=0]) αtime
Lf· t·I[Nf=0] 0.0167 (0.0134)

     Affiliate Labor Intercept Shift αshift
LfI[Nf>0]  1.5053 (0.0964) a 

 Box Cox parameter bc(4) -0.0771 (0.0091) a 

 Intercept α0
Μf 0.4295 (0.1920) b 

 Time trend ([Nd>0]) αtime
Mf· t·I[Nf>0] -0.0301 (0.0103) a 

     Affiliate Materials Time trend ([Nd=0]) αtime
Mf· t·I[Nf=0] 0.0259 (0.0186)

 Intercept Shift αshift
MfI[Nf>0]  1.3688 (0.1694) a 

 Box Cox parameter bc(5) -0.0277 (0.0052) a 

 Intercept α0
Kf 1.2639 (0.2013) a 

     Affiliate Capital Time trend ([Nd>0]) αtime
Kf· t·I[Nf>0] -0.0808 (0.0084) a 

 Box Cox parameter bc(6) -0.0260 (0.0062) a 

Parent and Affiliate Scaling US Parent Scaling Parameter SCdI[Nd=0] 0.4065 (0.0117) a 

Parameters for Nd, Nf=0 Affiliate Scaling Parameter SCfI[Nf=0] 0.6334 (0.0141) a 

    
  Profit Rate RK 0.1652 (0.0033) a 

Common Parameters TFP growth rate h 0.0453 (0.0080) a 

 Discount factor β 0.9500 -   

    
 
Notes:  a = significant at 1% level; b=significant at 5% level; c=significant at 10% level.   
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Table 1  (Continued) 
 

 Parameter Name Parameter Estimate Std. Error  

U.S. Parent Labor Adjustment Costs Intercept δ0d -5.1078 (0.0995) a 

 Domestic wage δdwdt 1.0194 (0.0267) a 

 Time trend δd, time·t 0.0240 (0.0038) a 

 Intercept Shift δd·I[Ndt>0] -0.0151 (0.0287)  

CA Affiliate Labor Adjustment Costs Intercept δ0f -5.4817 (0.0506) a 

 Foreign wage δfwft 0.9667 (0.0073) a 

  Time trend δf, time·t 0.0884 (0.0049) a 

  Intercept Shift δf·I[Nft>0] 0.1563 (0.0500) a 

Common Adjustment Cost numerator exponent µ 0.7161 (0.0015) a 

    Parameters denominator exponent ∆ 0.2216 (0.0047) a 

 parent intercept τd0 
0.3186 (0.1409) b 

Forecast Errors - Standard Deviation affiliate intercept τf0 
-0.2072 (0.1247) c 

     and Correlation labor foce size τ1*L 
1.1368 (0.0143) a 

 Correlation CORR(τd, τf) 0.2974 (0.0808) a 

Inverse Price elasticity of demand Intercept g1,0 -1.3610 (0.0960) a 

     for domestically-produced good Time trend g1,time*t 0.0001 (0.0005)  

 Intercept Shift g1,shift·I[Nd>0] 0.0055 (0.0061)  

 Box Cox parameter bc(7) 0.6084 (0.0674) a 

Inverse Price elasticity of demand Intercept g2,0 -1.0878 (0.0435) a 

     for foreign-produced good Time trend g2,time*t -0.0021 (0.0004) a 

 Intercept Shift g2,shift·I[Nf>0] -0.0002 (0.0037)  

 Box Cox parameter bc(8) 0.8424 (0.0433) a 

Demand function Parameters Intercept P0d
1

,0 2.6898 (0.0908) a 

     Domestic demand for domestically- Time trend P0d
1 

,time·t -0.0526 (0.0085) a 

     produced good Intercept Shift P0d
1

shift·I[Nd>0] 0.0647 (0.0346) c 

 Box Cox parameter bc(9) -0.0049 (0.0157)  

     Domestic demand for foreign- Intercept P0d
2

,0 2.5330 (0.1875) a 

     produced good Time trend P0d
2 

,time·t -0.0740 (0.0123) a 

 Intercept Shift P0d
2

shift·I[Nf>0] 0.3912 (0.1018) a 

 Box Cox parameter bc(12) 0.1013 (0.0235) a 

     Foreign demand for domestically- Intercept P0f
1

,0 2.4520 (0.0816) a 

     produced good Time trend P0f
1 

,time·t -0.0539 (0.0083) a 

 Intercept Shift P0f
1

shift·I[Nd>0] 0.0583 (0.0269) b 

 Box Cox parameter bc(11) -0.0135 (0.0136)  

     Foreign demand for foreign- Intercept P0f
2

,0 2.8451 (0.2123) a 

     produced good Time trend P0f
2 

,time·t -0.0888 (0.0128) a 

 Intercept Shift P0f
2,

shift·I[Nf>0] 0.4714 (0.1129) a 

 Box Cox parameter bc(10) 0.1568 (0.0195) a 

     
 

Notes:  a = significant at 1% level; b=significant at 5% level; c=significant at 10% level. 
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Table 2:  Correlation Matrices for the Firm-Specific Stochastic Terms 

 
1.  Correlation Matrix:  Composite Error:  µi + εit 

 
 
2.  Correlation Matrix:  Composite Error:  t and t+1 

  

Parameter:
αLd αΜd αKd αLf αΜf αKf g1 g2 P0d

1 P0d
2 P0f

1 P0f
2

αLd 0.72 0.59 0.69
αΜd 0.59 0.73 0.68
αKd 0.69 0.68 0.73
αLf  0.79 0.68 0.68
αΜf 0.68 0.78 0.68
αKf 0.68 0.68 0.73
g1 0.46
g2 0.53

P0d
1 0.78 0.37 0.77 0.39

P0d
2 0.37 0.73 0.40 0.71

P0f
1 0.77 0.40 0.80 0.40

P0f
2 0.39 0.71 0.40 0.75

Parameter:
αLd αΜd αKd αLf αΜf αKf g1 g2 P0d

1 P0d
2 P0f

1 P0f
2

αLd 1.00
αΜd 0.84 1.00
αKd 0.95 0.93 1.00
αLf 1.00
αΜf 0.85 1.00
αKf 0.88 0.89 1.00
g1 1.00
g2 1.00

P0d
1 1.00

P0d
2 0.40 1.00

P0f
1 0.97 0.44 1.00

P0f
2 0.42 0.97 0.44 1.00
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Table 3: χ2 Tests of Normality based on Deciles of the Normal (0,1) Distribution 
 
             Residual χ2         Residual χ2         Residual χ2  

 αLd 9.549  g1 8.583 τd0 9.138  
 αMd 8.559  g2 11.195 τf0 0.512  
 αKd 18.454*  P0d

1 4.257   
 αLf 2.983  P0d

2 2.759   
 αMf 27.958*  P0f

1 5.131   
 αKf 11.889  P0f

2 7.978   
      

*Rejected at p<.05, based on the bootstrapped critical value of the χ2 distribution 
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Table 4: Comparison of Quantile Points of Residual Distributions versus the Normal (0,1) 

Z -2.58 -2.24 -1.96 -1.65 -1.28 -0.52 -0.25 0.00 0.25 0.52 1.28 1.65 1.96 2.24 2.58
Prob ε < Z 0.01 0.025 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.975 0.99

Parameter:
αLd 0.008 0.023 0.043 0.094 0.214 0.296 0.385 0.492 0.614 0.721 0.823 0.907 0.945 0.966 0.984

(.003) (.006) (.009) (.012) (.018) (.020) (.021) (.021) (.019) (.018) (.014) (.010) (.008) (.006) (.004)

αMd 0.011 0.027 0.052 0.096 0.195 0.288 0.391 0.489 0.623 0.726 0.806 0.895 0.950 0.971 0.986
(.004) (.007) (.009) (.012) (.017) (.019) (.021) (.020) (.019) (.018) (.015) (.011) (.007) (.005) (.003)

αKd 0.022 0.046 0.078 0.147* 0.261* 0.362* 0.453 0.539 0.621 0.691 0.778 0.867* 0.920 0.960 0.981
(.007) (.010) (.013) (.017) (.022) (.024) (.025) (.025) (.023) (.022) (.019) (.015) (.011) (.007) (.005)

αLf 0.006 0.022 0.043 0.095 0.198 0.311 0.412 0.521 0.615 0.717 0.814 0.899 0.939 0.966 0.980
(.002) (.005) (.008) (.011) (.016) (.020) (.022) (.021) (.020) (.018) (.016) (.011) (.009) (.006) (.005)

αMf 0.008 0.017 0.041 0.099 0.194 0.290 0.385 0.476 0.659* 0.737* 0.814 0.904 0.937 0.971 0.980
(.003) (.004) (.007) (.012) (.016) (.019) (.020) (.020) (.020) (.017) (.015) (.012) (.010) (.006) (.006)

αKf 0.011 0.023 0.058 0.115 0.226 0.349 0.467 0.566 0.650 0.726 0.803 0.901 0.941 0.957 0.977
(.004) (.006) (.010) (.014) (.018) (.021) (.023) (.023) (.023) (.021) (.017) (.012) (.010) (.008) (.007)

g1 0.007 0.020 0.044 0.093 0.188 0.281 0.381 0.485 0.596 0.708 0.821 0.923 0.966 0.985 0.996
(.001) (.002) (.004) (.006) (.009) (.011) (.012) (.012) (.012) (.011) (.009) (.007) (.004) (.003) (.001)

g2 0.012 0.035 0.066 0.119 0.197 0.281 0.372 0.474 0.584 0.696 0.807 0.908 0.951 0.969 0.982
(.003) (.005) (.007) (.011) (.014) (.016) (.017) (.017) (.016) (.015) (.013) (.009) (.007) (.006) (.004)

P0d
1 0.005 0.018 0.045 0.093 0.182 0.283 0.393 0.504 0.609 0.719 0.822 0.908 0.950 0.974 0.991

(.002) (.004) (.007) (.011) (.014) (.017) (.018) (.018) (.017) (.016) (.013) (.010) (.008) (.005) (.003)

P0d
2 0.015 0.025 0.044 0.086 0.184 0.274 0.380 0.493 0.616 0.720 0.815 0.900 0.944 0.971 0.987

(.007) (.009) (.011) (.016) (.022) (.026) (.028) (.029) (.028) (.026) (.022) (.017) (.012) (.009) (.005)

P0f
1 0.006 0.020 0.049 0.100 0.187 0.276 0.390 0.496 0.603 0.719 0.822 0.904 0.948 0.975 0.991

(.003) (.005) (.009) (.013) (.017) (.019) (.020) (.021) (.020) (.018) (.015) (.011) (.009) (.006) (.003)

P0f
2 0.012 0.028 0.053 0.093 0.183 0.265 0.384 0.503 0.614 0.721 0.817 0.908 0.953 0.975 0.990

(.005) (.007) (.009) (.012) (.016) (.018) (.019) (.019) (.018) (.017) (.014) (.010) (.007) (.005) (.003)

τd0 0.011 0.030 0.057 0.112 0.215 0.311 0.406 0.502 0.596 0.690 0.789 0.888 0.940 0.968 0.986
(.001) (.003) (.004) (.006) (.009) (.010) (.011) (.012) (.011) (.010) (.009) (.006) (.005) (.003) (.002)

τf0 0.010 0.025 0.049 0.100 0.202 0.301 0.398 0.498 0.600 0.698 0.798 0.900 0.950 0.974 0.989
(.001) (.001) (.001) (.002) (.003) (.004) (.004) (.004) (.004) (.003) (.003) (.002) (.001) (.001) (.001)

Note:  *Rejected at p<.05, based on bootstrapped distribution of the quantile points
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Table 5:  Percentage Changes 1984-1995:  Data and Model Predictions 

 
           Model Decomposition 
 Data Model Tariffs Technology Wages Other

USP Sales     

Domestic  (Pd
1Sd) -19.6 -9.0 0.8 4.0 -4.3 -9.5

Intra-firm  (Pd
1Nf) 73.3 99.1 9.7 71.8 14.4 3.2

Arms-Length  (Pf
1E) 75.3 79.1 36.0 9.0 -1.3 35.4

Total -17.1 -6.0 1.1 7.3 -3.9 -10.5
Total Net -20.2 -9.8 1.0 3.8 -3.9 -10.7

  
CA Sales    

Domestic  (Pf
2Sf) -17.9 -6.9 6.4 -71.9 18.3 40.3

Intra-firm  (Pf
2Nd) 94.5 123 5.2 84.1 -2.9 36.6

Arms-Length  (Pd
2I) 4.0 8.9 32.5 37.9 -20.5 -41.0

Total 18.7 38.3 7.3 7.8 11.2 12.0
Total Net -0.5 14.2 6.3 -23.3 9.9 21.3

  
MNC Sales -19.0 -8.4 1.3 2.4 -3.0 -9.1

  
USP Employment -24.4 -12.6 1.4 12.4 -1.6 -24.8
CA Employment -14.1 -3.0 9.0 15.5 -7.0 -20.5
 
 
Notes:  "Data" shows percentage change in our analysis data set.  "Model" shows percentage change from 1984-95 
in the model simulation.  Under "Model Decomposition," we compare the % change predicted by the model under 
the baseline simulation, with the % change the model predicts under the counterfactual that the indicated forcing 
variable (tariffs, technology or wages) stayed fixed at the 1984 level.  The difference is the percentage change 
attributable to changes in that particular forcing variable. 
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Appendix 1:  The Mapping from the Data to the Stochastic Terms of the Model  
 
The mapping from the data to the stochastic terms of the model is obtained by solving the 

system of nonlinear equations given by the FOCs and the production functions. If the MNC 
utilizes all four trade flows (bilateral intra-firm and arms length flows) this is a system of 12 
equations in 12 unknowns. We describe the solution in this general case. 
  
Step 1: By summing the FOCs for Ld, Kd, Md and Nd (see eqn. (19) in Section IV.2) we obtain: 

(A1.1)  0L)FD(EB)NP(gCD)QP)(Ag1( ddd
2
f2d

1
d1 =δ−+−−  

Similarly, for the affiliate, we obtain: 

(A1.2)    0L)FF(EA)NP(gCF)QP)(Bg1( fff
1

d1f
2
f2 =δ−+−−  

where CD and CF are U.S. and Canadian costs, respectively (including capital, labor, materials 
and intermediates, but not adjustment costs). We have utilized the CRTS assumption to eliminate 
the share parameters, leaving g1 and g2 as the only unknown parameters in (A1.1) and (A1.2).  
However, the variables d

1
d QP and f

2
f QP are not observed, so we cannot yet solve for g1 and g2. 

Step 2: We can express d
1

d QP  and f
2
f QP in terms of observed data as follows: 

(A1.3)   )EP()PP(NPSPQP 1
f

1
f

1
df

1
dd

1
dd

1
d ++=  

(A1.4)   )IP()PP(NPSPQP 1
d

2
d

2
fd

2
ff

2
ff

2
f ++=  

Here, only the price ratios Pd
1/Pf

1 and Pf
2/Pd

2 are not observed. At this point, it is convenient to 
denote these price ratios as PR1 and PR2, and treat them as unknown parameters. 
 Before proceeding, it is useful to give an intuition for identification of g1 and g2. First, 
consider what (A1.1) and (A1.2) imply in the special case of no intra-firm intermediates. In that 
case, the g2(Pf

2Nd)B and g1(Pd
1Nf)A terms drop out, so we can consider each equation separately. 

Furthermore, A=B=1, and the domestic to foreign price ratios depend only on the wedge created 
by tariff and transport costs. Therefore, d

1
d QP  and f

2
f QP are observable, and they are exactly 

equal to total revenues (net of tariff and transport costs) of the parent and affiliate. Denote these 
by RD and RF.18 Then we get g1 = (RD-CD- δdE(FD)Ld)/RD, which is the usual Lerner markup 
equation in the CRTS case, modified to account for expected labor force adjustment costs. Thus, 
g1 and g2 are basically identified from price/cost markups.  
 With intra-firm trade in intermediates, the price ratios PR1 and PR2 are not observed, we 
have 0<A<1 and 0<B<1, and the g2(Pf

2Nd)B and g1(Pd
1Nf)A terms matter, so (A1.1) and (A1.2) 

must be solved jointly. All three of these changes reflect the fact that with intra-firm trade in 
intermediates, the firm’s incentive to hold down output to increase prices is mitigated because 
higher output prices also imply higher tariff and transport costs.    
 Fortunately, the price ratios PR1 and PR2 depend only on tariff and transport costs and on 
g1 and g2. For instance, the FOC for E shows how the parent’s incentive to hold down Pd

1 to 
avoid tariff and transport costs on shipping Nf  to the Canadian affiliate depends on g1, tariffs and 
                                                
18 Note that RD=Pd

1Sd + Pd
1Nf + (1-Tf-Cf)(Pf

1E). In the absence of intra-firm trade in intermediates, Pf
1/ Pd 

1 = 1/(1-
Tf-Cf), so the last term reduces to Pd

1E, the value of exports at domestic prices. Hence, Pd
1Qd = RD.    
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transport costs.19 Thus, in steps 3-4, we use the FOCs for E and I to substitute for the unobserved 
price ratios in (A1.3) and (A1.4), obtaining two equations we can solve for g1 and g2.  
 It is worth noting that if we introduced an elasticity of substitution between goods 1 and 
2, of if we let the price elasticities differ by country, we would have more unknowns that  
equations, and we could not identify all the elasticities using only data on sales and revenues.   

Step 3:  Using (A1.3)-(A1.4) to substitute for d
1

d QP and f
2
f QP in (A1.1)-(A1.2), we obtain: 

(A1.5)  ddd
2
f21

1
f1 L)FD(ECDB)NP(g)Ag1)](EP)(PR(Y[ δ+=+−+  

(A1.6)   fff
1

d12
1

d2 L)FF(ECFA)NP(g)Bg1)](IP)(PR(V[ δ+=+−+  

where we have defined f
1

dd
1

d NPSPY +=  and d
2
ff

2
f NPSPV += . Note that we now have two 

equations in the 4 unknowns: g1, g2, PR1 and PR2. 
 
Step 4:  We now use the FOCs for E and I to add two more equations in g1, g2, PR1 and PR2: 

(A1.7)  )g1)(CT1()Ag1(PR:E 1ff11 −−−=−  
(A1.8)   )g1)(CT1()Bg1(PR:I 2dd22 −−−=−  

Next, we use (A1.7)-(A1.8) to substitute for the price ratios in (A1.5)-(A1.6), to obtain: 

(A1.9)   B)NP(gL)FD(ECDRD)AYE(g d
2
f2dd1 +δ−−=  

(A1.10)  A)NP(gL)FF(ECFRF)BVI(g f
1

d1ff2 +δ−−=  

where we have defined: 
0)EP)(CT1()NPSP(AAYE 1

ffff
1

dd
1

d >−−++≡  

0)IP)(CT1()NPSP(BBVI 2
dddd

2
ff

2
f >−−++≡  

Solving for g1, we have: 

B)NP(L)FD(ECDRD]AYE[g)11.1A( d
2
fBVI

)L)FF(ECFRF(
ddBVI

)NP)(NP(AB
1

ffd
2
ff

1
d δδ −−

+−−=−
and a similar equation gives g2. [This is referred to as Equation (23) in the text.] 
 
Step 6:  Given g1 and g2, we can use (A1.7)-(A1.8) to solve for the price ratios: 

(A1.12) )CT1(PR ffAg1
g1

1
1

1 −−= −
−    )CT1(PR ddBg1

g1
2

2

2 −−= −
−  

Step 7:  Given PR1 and PR2, we construct dd QP1 and ff QP2 and solve for the share parameters: 

  ))(1(])()([ 1
1 dddddd

Ld QPAgLFDELw −+= δα    )QP)(Ag1()M( d
1
d1dd

Md −= φα  

(A1.13)  )QP)(Ag1()K( d
1
d1dd

Kd −= γα                 MdKdLdNd αααα −−−= 1  

and similarly for the affiliate technology parameters.   
                                                
19 With intra firm trade, the FOC for E gives: PR1 = Pd

1/Pf
1 = (1-Tf-Cf)(1-g1)/(1-g1A), where A<1. This price ratio is 

less than that in the no intra-firm trade case, because (1-g1)/(1-g1A) is less than 1. Thus, Pd
1 is relatively lower.   
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Step 8: Since ( ) ( )( ) )EP(EPSPPPPPPR 1
f

1
fd

1
d

1
of

1
d0

1
f

1
d1

1g
⋅

−
=≡  we can use g1 and PR1 to 

construct the ratio of the U.S. to Canadian demand function intercepts for the domestically 
produced good, ( )1

f0
1
d0 PP . Similarly, we use g2 and PR2 to construct ( )2

d0
2
f0 PP . Intuitively, 

given knowledge of the price elasticity of demand and the U.S./Canadian price ratio, the ratios of 
the demand function intercepts are determined by the ratio of U.S. to Canadian sales.  
 
Step 9:  To determine the levels of the demand function intercepts, we need to construct real 
quantities of output. Since we know the production function parameters, the extra information 
we need is data on prices of capital equipment and materials, so we can construct quantities of  
capital and materials inputs.20 Note that for the parent we can write:  

(A1.14) 
f

dd

fd

Nd
ddd

fd

Nd
d

Md
d

Kd
d

Ld
ddd

fd

dd
N

NLKM

NP

NLKMP

NP

NMKLHP

NP

QP
Ndαααααα

=≡= 1

1

1

1

1

1
 

where we have defined 
KdMd

ddddd MKLHLKM
Ld ααα= .  Similarly, for the affiliate, we have: 

(A1.15) dfff
2
ff

2
f NNLKMNPQP

Nfα=  

where 
KfMLf

fffff MKLHLKM
f ααα= . Solving (A1.14)-(A1.15) for Nd, we obtain: 

(A1.16) 

NfNdNf 1
1

d
d

1
d

f
1
d

f
fQ2

f

d
2
f

d LKM
QP

NP
*LKM

P

NP
N

ααα −










































































=  

Next, we substitute (A1.16) into (A1.14) to obtain a similar equation for Nf.21 Given Nd and Nf, 
we can calculate Qd and Qf. Given real output quantities, we can form: 

d

d
1
d1

d Q
QP

P =      
f

f
2
f2

f Q

QP
P =  

Then, the prices of exports and imports are given by: 

  Pf
1 = Pd

1/PR1    Pd
2= Pf

2/PR2 

Now, the quantities of exports, imports, and domestic and foreign sales are given by: 

  E = Pf
1E/Pf

1   I = Pd
2I/Pd

2 

  Sd = Qd – Nf – E  Sf = Qf – Nd – I 

                                                
20 Interestingly, we do not need price data for the intermediates used by the parent or by the affiliate, because we do 
not need to know quantities of intermediate inputs to determine output quantities. This is because the production 
function can be written solely in terms of the primary inputs. Not needing to deflate intermediates is an advantage of 
our framework, because firms have market power in these goods. Thus, as Griliches and Mairesse (1995) discuss, 
industry price indices cannot be used as deflators. 
21 If Nd = 0, we obtain Nf immediately from (A1.14), since αNd=0. If Nf = 0 we obtain Nd immediately from (A1.15). 
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Finally, we can write the demand function intercepts as: 

2

2

g2
d

2
d0

g
f

2
f

2
f0

IPP

SPP

=

=
   1g1

f
1
f0

g
d

1
d

1
d0

EPP

SPP 1

=

=
 

In the case that I=0, 2
dP and 2

d0P will be undefined, but 2
f0P can still be calculated since 

dff NQS −= . In the case that E=0, 1
fP and 1

f0P  will be undefined, but 1
d0P can still be calculated 

since fdd NQS −= . 
 
Step 10: Having obtained the 12 firm specific technology and demand parameters, one can easily 
map these into the ε vector using the equations of the stochastic specification in section III.   

 

Appendix 2:  Identification of H, P0 and R 

As discussed in Appendix 1, the sources of identification for the Cobb-Douglas share 
parameters, price elasticities of demand, and demand function intercept ratios are rather obvious 
in the context of our model. This is also true of the labor force adjustment cost parameters, which 
are pinned down by the persistence of employment over time. Much more subtle, however, is the 
source of identification of the H, P0 and R parameters, which are TFP, the demand intercept 
levels, and the profit rate. Here we give the intuition for how these parameters are identified. 

Regarding TFP, recall that we normalize Ht=1 and t=0 in 1983, and specify that TFP 
growth is determined by Ht = (1+h)t, where h is an estimated parameter. It is not immediately 
obvious is how growth in H would be separately identified from changes in the demand function 
intercepts P0 if output prices and quantities are not separately observed. One might think that, 
since any observed revenue level can be explained by a locus of price and quantity values, it 
would be impossible to disentangle H and the P0. However, this is not the case. 

Consider a simple autarky case (a single firm with no affiliate), and with K and L as the 
only inputs, and no adjustment costs. Then we have: 

LK
LKHQ αα⋅=  g

0QPP −=   wLKPQ −−= γΠ  
In this case, labor demand is: 

g
1

g1

L

K
)g1(

0

L
K

wHP)g1(
w

L



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


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
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


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
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
=

−

−
α

αγ
αα  

Calculating elasticities of labor demand with respect to H and P0, we obtain:  

(A2.1)  0
g
1

P
L

L
P

0

0 >=
∂
∂   0)1(1 >−=

∂
∂ g

gH
L

L
H   0<g<1 

Thus, both TFP growth and growth in demand (P0) cause growth in the firm’s employment. If all 
growth is due to growth in demand, then a firm’s employment growth rate will be inversely 
proportional to its g. But if all growth is due to TFP growth, then firm growth rates will decline 
even more quickly with g. In fact, as g→1, the effect of TFP on employment approaches zero. 
Thus, to the extent that firm employment growth is less than proportional to 1/g (i.e., it is much 
slower among high g firms), we will conclude that TFP is a bigger factor in growth than P0.   
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This argument requires that we can pin down the market power parameter g without 
separate information on prices and quantities. This is in fact the case. As we showed in Appendix 
1, g can be determined using only data on revenues and costs (i.e., price/cost markups).  
 Next, we turn to the issue of how the profit rate is identified. The same simple autarky 
model (with CRTS and a capital share of αK) gives: 

(A2.2)  K1
w

L K

K











 −=
α

αγ  
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)g1)(1(
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)g1(
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1
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and therefore profit is: 

(A2.3)  KK1
w

HP K
)g1(

)g1)(1(

K

K
)g1(

0

K

α
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α
αγΠ

α

−
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 −= −
−−

−  

From the definition of the profit rate, R ≡ Π / γK, we have that Π = γK ⋅ R. Substituting this 
expression for Π in (A2.3) and then solving for K we obtain: 

(A2.4)  

g
1

)g1)(1(

K

K
)g1(

0

1

K

K

1
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Comparing the expressions for K in (A2.2) and (A2.4) we see that we must have: 

  ( )( ) ( ) )1(
1

gR KK −=+
−

γαγαγ  

which implies that:  

(A2.5)  g/(1-g) = αK ⋅ R    

Note that a larger g, and hence a larger g/(1-g), implies greater market power. From (A2.5) we 
see that R (which is determined in equilibrium) governs the relationship between market power 
and the capital share, αK. If the equilibrium profit rate is low (high), then there is a strong (weak) 
tendency for firms with more market power to also have larger capital shares, so that the profits 
accrue to a larger (smaller) stock of capital. Also note that g, and hence g/(1-g), is negatively 
related to firm size. So R also governs the strength of the relationship between firm size and αK.   
 

Appendix 3:  Derivation of the bounds on (ηd , ηf ) 

In this appendix we derive the bounds on (ηd, ηf ) such that it is possible to rationalize 
firm behavior. We return to equations (A1.9) – (A1.10) and write them as: 









δ−−
δ−−















−

−
=







−

Ff

dd

1

f
1

d

d
2
f

2

1

L)FF(ECFRF
L)FD(ECDRD

BVIA)NP(

B)NP(AYE

g
g

 

This gives us: 
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The term )NP)(NP(BABVIAYE d
2
ff

1
d⋅⋅−⋅ is > 0. Thus, for g1>0 and g2>0, we must have: 

0]L)FF(ECFRF[B)NP(]L)FD(ECDRD[BVI ffd
2
fdd >δ−−+δ−−⋅  

0]L)FF(ECFRF[AYE]L)FD(ECDRD[A)NP( ffddf
1

d >δ−−+δ−−⋅  

Rearranging these expressions, we obtain: 

ffd
2
fddd

2
f L)FF(EB)NP(L)FD(EBVI]CFRF[B)NP(]CDRD[BVI)2.3A( δδ +⋅>−+−⋅

ffddf
1
df

1
d L)FF(EAYEL)FD(EA)NP(]CFRF[AYE]CDRD[A)NP()3.3A( δδ +⋅>−+−⋅

 
Substituting into (A3.2) the definitions of the expectation terms E(FD)Ld and E(FF)Lf  (see  
equation 20) we obtain an expression where the forecast errors ηd and ηf appear explicitly: 

]LFF[B)NP(]LFD[BVI]CFRF[B)NP(]CDRD[BVI fffd
2
fdddd

2
f η+⋅δ+η+⋅⋅δ⋅>−+−⋅

If we divide through by BVI > 0 and define BVIB)NP(PDB d
2
f≡  we obtain:   

ffffdddd PDBLFFPDBFDL]CFRF[PDB]CDRD[ ηδ⋅+⋅δ⋅+ηδ+δ>−⋅+−  

We can rewrite (A3.3) in a similar way.  Then, we obtain the following upper bounds on (ηd, ηf): 

BUFLFDPFAFFL]CDRD[PFA]CFRF[PFA

BUDLFFPDBFDL]CFRF[PDB]CDRD[PDB)4.3A(

dffgddff

ffddffdd

≡⋅⋅−−−⋅+−<⋅+

≡⋅⋅−−−⋅+−<⋅+

δδηδηδ
δδηδηδ

where we have defined ( ) AYEANPPFA f
1
d≡ . Denoting the upper bounds given by the right  

hand sides of the inequalities in (A3.4) by BUD and BUF, we obtain the more compact notation: 

(A3.5)  ffdd PDB ηδηδ ⋅+ <  BUD 
  ddff PFA ηδ⋅+ηδ  <  BUF 

The (ηd, ηf ) vector also has an lower bound, which we can determine from the labor share  
equations in A(1.13). The requirement αLd>0 gives: 

  δd E(FD) Ld    +   wdLd > 0 

Substituting the definition of E(FD)Ld we obtain δd (FD·Ld + ηd) + wdLd > 0, which implies the  
lower bound on ηd: 

δd ηd > -wdLd - δd FDLd ≡  BLD 

Similarly, for ηf we obtain: 

δf ηf > -wfLf   -  δf FFLf  ≡  BLF 

Thus, δdηd and δf ηf  must satisfy the following four constraints in order for firm behavior to be  
rationalizable within the model: 

(A3.6)  
BUFPFA

BUDPDB

ddff

ffdd

<⋅+

<⋅+

ηδηδ
ηδηδ

  
BLF
BLD

ff

dd
>
>

ηδ
ηδ

 



 

A7 

Note that the upper bound for δdηd depends on δf ηf, and vice-versa. We can write an  
unconditional upper bound for δdηd in terms of BLF, the lower bound for δf ηf, as follows: 

δd ηd + (PDB) (BLF) < BUD 

This equation defines the largest possible δd ηd such that firm behavior can be rationalized by 
some value of ηf. If δdηd is larger than [BUD – (PDB) · (BLF)] then it is impossible to find a δf ηf  
small enough so that the first equation in (A3.6) is satisfied. So the feasible range for δdηd is:   

  BLD < δd ηd < BUD – (PDB)(BLF). 

This translates into an (unconditional) feasible range for ηd of:  

d
d

d

)BLF)(PDB(BUDBLD
δ

−<η<
δ

  

or, substituting in the definitions of BLD, BUD, BLF and PDB we have:  

(A3.7) d
d

ff
dd

d

dd LFD
LwPDB]CFRF[PDB]CDRD[

LFD
Lw

⋅−
δ

⋅+−⋅+−
<η<⋅−

δ
−  

We rewrite (A3.7) more compactly as: 

(A3.9)  BLd < ηd < BUd  

Now, suppose we have drawn a value of ηd that satisfies (A3.9), and denote this value by 
ηd,m where m indicates the draw. Then the conditional bounds on ηf are determined as follows:  
Substituting ηd,m into (A3.3) we have: 

]LFF[AYE

]LFD[A)NP(]CFRF[AYE]CDRD[A)NP(

fff

m,dddf
1
df

1
d

ηδ
ηδ

+⋅⋅+

+⋅⋅>−⋅+−⋅
 

which implies that: 

)]LFD(CDRD[
AYE

A)NP(
LFFCFRF

m,ddd
f

1
f

f
f

f ηδ
δ

η +⋅⋅−−⋅+⋅−−<  

Thus, draw m for ηf  must satisfy this upper bound. We write this more compactly as: 

(A3.10) )m(fm
f BU<η  

We have already derived δfηf > BLF, which we can write as ηf > BLF/δf  ≡ BLf. Combining this 
with (A3.9) and (A3.10) we have the following bounds for sequential draws of ηd and ηf : 

(A3.11) 












<η<

<η<

)m(fm
f

f

d
d

d

BUBL

BUBL
⇒   η ∈  ΒD 

The recursive simulation algorithm described in Section IV.3.E works by first drawing a value 
for ηd from its truncated distribution given the first set of unconditional bounds in (A3.11), and 
then drawing a value for ηf from the second set of conditional bounds in (A3.11). Draws obtained 
in this sequential fashion will not have the correct joint distribution, so they must be weighted 
using an importance sampling algorithm to obtain unbiased estimates of likelihood contributions. 


