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A Proof of Theorem 2

We fix an SCF f which is implemented under complete information by the MR mechanism ΓMR.

We let µ be a complete information prior and show that for the sequence of priors νε (indexed

by ε > 0) as specified in (∗ ∗ ∗) of Section III.B, there is no sequence of equilibrium strategy

profiles converging to truth-telling. Let ΓMR(νε) be an incomplete information game associated

with the MR mechanism and a prior νε. By way of contradiction, assume that for each ε > 0, there

exists a profile of mixed equilibrium strategies of the game ΓMR(νε) such that as ε goes to 0, the

probability that both players report their signals truthfully converges to 1. Fix such a sequence

of mixed equilibrium strategy profiles. We then use the following notation to describe equilibrium

play in the games ΓMR(νε):

• σε,jk,l denotes the probability that player 1 with signal sk,l1 announces θj1 at Stage 1 of Phase 1;

• λε,jk,l [θ̂1] denotes the probability that player 2 with signal sk,l2 announces θj1 at Stage 2 of Phase

1 given that at Stage 1 of Phase 1, player 1 has announced θ̂1

• ρε,jk,l denotes the probability that player 2 with signal sk,l2 announces θj2 at Stage 1 of Phase 2;

and

• τ ε,jk,l [θ̂2] denotes the probability that player 1 with signal sk,l1 announces θj2 at Stage 2 of Phase

2 given that at Stage 1 of Phase 2, player 2 has announced θ̂2.

Using the above notation, our hypothesis to derive a contradiction is summarized as follows:

for all k 6= j, all l and all announcements θ̂1, σε,jk,l and λε,jk,l [θ̂1] converge to 0 as ε → 0; and for all

l 6= j, all k and all announcement θ̂2, ρε,jk,l and τ ε,jk,l [θ̂2] converge to 0 as ε→ 0.

We will use the following claim about the properties of the MR mechanism under complete

information:

Claim 1. For truthtelling to be the unique subgame-perfect equilibrium of the MR mechanism under

complete information, it must be that for each θ = (θ1, θ2) and each φ1,

u1(f(θ1, θ2); θ1) > U1(y(φ1, θ1); θ1)− ty(φ1,θ1) −∆, (1)
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and

u2(f(θ1, θ2); θ2) > U2(x(θ1, φ1); θ2) + tx(θ1,φ1) −∆. (2)

Proof of Claim 1. Suppose first that Inequality (1) goes the other way, that is, for some θ = (θ1, θ2)

and some φ1, we have

u1(f(θ1, θ2); θ1) < U1(y(φ1, θ1); θ1)− ty(φ1,θ1) −∆.

Then, under complete information where the true state is θ, we claim that truthtelling is not a

subgame-perfect equilibrium: player 1 has an incentive to deviate by claiming some φ1 6= θ1 (and

player 2 challenges player 1’s report at Stage 2 under truthtelling) in order to reach Stage 3 where he

would pick {y(φ1, θ1), ty(φ1,θ1) + ∆}. This contradicts the hypothesis that truthtelling is a subgame

perfect equilibrium of the MR mechanism under complete information.

Now, suppose instead that for some θ = (θ1, θ2), and some φ1 6= θ1, we have

u1(f(θ1, θ2); θ1) = U1(y(φ1, θ1); θ1)− ty(φ1,θ1) −∆.

In this case, we claim that there is a subgame-perfect equilibrium at θ = (θ1, θ2) where player 1 does

not report truthfully. To see this, we propose the following strategy profile σ∗: At Stage 1 of Phase

1, player 1 reports φ1 6= θ1; player 2 reports the true state θ1 at Stage 2 irrespective of player 1’s

announcement; and at Stage 3, player 1 always plays his optimal action. Note here that player 1’s

optimal play at Stage 3 depends on what he reported at Stage 1. In Phase 2, both players always

report truthfully and player 2 plays his optimal action at Stage 3. Here again, player 2’s optimal

action at Stage 3 depends on what he reported at Stage 1. Given the continuation strategy profile

from Stage 2 induced by σ∗, player 1 is indifferent between reporting φ1 and θ1 at Stage 1, and so

(if truthtelling is a subgame perfect equilibrium) this σ∗ is indeed a subgame-perfect equilibrium

at θ = (θ1, θ2). This contradicts the uniqueness of truthtelling as a subgame perfect equilibrium of

the MR mechanism under complete information.

Similarly, we must have that for each θ = (θ1, θ2) and each φ1,

u2(f(θ1, θ2); θ2) > U2(x(θ1, φ1); θ2) + tx(θ1,φ1) −∆.

By way of contradiction, we argue why this must be the case. Suppose first that for some θ = (θ1, θ2)

and some φ1, we have

u2(f(θ1, θ2); θ2) < U2(x(θ1, φ1); θ2) + tx(θ1,φ1) −∆.

Then, under complete information where the true state is θ = (θ1, θ2), we claim that truthtelling is

not an equilibrium: player 2 has an incentive to deviate by claiming some φ1 6= θ1 in order to reach

stage 3 where player 1 would pick {x(θ1, φ1), tx(θ1,φ1) + ∆}. This contradicts the hypothesis that

truthtelling is a subgame perfect equilibrium of the MR mechanism under complete information.
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Now, suppose instead that for some θ = (θ1, θ2), and some φ1 6= θ1, we have

u2(f(θ1, θ2); θ2) = U2(x(θ1, φ1); θ2) + tx(θ1,φ1) −∆.

In this case, we claim that there is a subgame-perfect equilibrium at θ = (θ1, θ2) where player 2

does not report truthfully. To see this, we construct the following strategy profile σ∗∗: At Stage

1 of Phase 1, player 1 always reports θ1 truthfully; player 2 reports a false state φ1 if player 1

has claimed θ1 and otherwise challenges with θ1; and at Stage 3, player 1 always plays his optimal

action. Note here that player 1’s optimal play at Stage 3 depends on what he reported at Stage

1. In Phase 2, both players always report truthfully and player 2 plays his optimal action at stage

3. Here again, player 2’s optimal action at Stage 3 depends on what he reported at Stage 1. Since

player 1 would choose {x(θ1, φ1), tx(θ1,φ1) + ∆} at Stage 3, player 2 is indifferent between reporting

θ1 and φ1 at Stage 2 after player 1 reported θ1. This shows that (if truthtelling is a subgame

perfect equilibrium) σ∗∗ is a subgame perfect equilibrium where player 2 does not report truthfully.

However, this contradicts the uniqueness of truthtelling as a subgame perfect equilibrium of the

MR mechanism under complete information. This completes the proof of the claim.

Now, let us fix the prior νε (as defined in (∗ ∗ ∗) of Section III.B. Consider the case where

player 1 receives sk,l1 . Clearly, νε(θk1 , θ
l
2, s

k,l
2 |s

k,l
1 )→ 1 as ε→ 0. Hence, at Stage 1, by continuity of

expected payoffs with respect to beliefs, the expected equilibrium payoff of player 1 for announcing

θk1 converges (as ε vanishes) to

u1(f(θk1 , θ
l
2); θk1),

while if he lies by claiming φ1 6= θk1 at Stage 1, his expected equilibrium payoff converges to

something (weakly) smaller than

U1(y(φ1, θ
k
1); θk1)− ty(φ1,θk1 ) −∆.

By Equation (1) and when ε is sufficiently small, there is no way that the equilibrium strategies

{σε,jk,l , λ
ε,j
k,l [θ̂1], ρε,jk,l , τ

ε,j
k,l [θ̂2]}k,l,j,θ̂1,θ̂2 can make player 1’s best response indifferent at Stage 1. Hence,

for ε > 0 small enough, player 1 with signal sk,l1 plays pure strategies at Stage 1 of Phase 1. This

reasoning holds for an arbitrary choice of sk,l1 so that player 1 plays in pure strategies irrespective

of his signal.

Note now that player 1 with signal sk,l1 could deviate and claim that θk
′

1 is the true state where

k′ 6= k. In this case, because player 1 plays in pure strategies (and hence, the equilibrium is fully

revealing), in the first phase, after observing θk
′

1 , player 2 believes with probability one that player

1 has received a signal of the form sk
′,l
′

1 for some l
′
. We claim that player 2 with signal sk,l2 will

not challenge: indeed, by construction of νε, player 2 with signal sk,l2 believes with high probability

that θ = (θ1, θ2) where θ2 = θl2 is the true state. If player 2 challenges with θk1 , by construction

of νε, he expects player 1 to choose {x(θk
′

1 , θ
k
1), t

x(θk
′

1 ,θ
k
1 )

+ ∆} at Stage 3. On the other hand, if

he does not challenge, his expected payoff would tend to u2(f(θk
′

1 , θ
l
2); θl2) as ε vanishes. Hence, by

3



Equation (2), for ε > 0 small, player 2 will be better off by not challenging. Thus, we get that

λε,kk,l [θ
k′
1 ] = 0, which is a contradiction. This completes the proof of Theorem 2.

B Proof of Theorem 3

We first introduce some notation. Given a prior µ over Θ× S, we write µ(θ) for [margΘµ](θ), and

given s−i ∈ S−i, we will write µ(s−i) as [margS−iµ](s−i). Finally, given an arbitrary countable

space X, δx will denote the probability measure that puts probability 1 on {x} ⊂ X.

For the sake of completeness, we reproduce the definition of Maskin monotonitity : A social

choice correspondence (SCC) F on a payoff relevant state space Θ is Maskin monotonic if for all

pair of states of nature θ′ and θ′′ if a ∈ F(θ′) and

{(i, b)
∣∣ui(a; θ′) ≥ ui(b; θ′)} ⊆ {(i, b)

∣∣ui(a; θ′′) ≥ ui(b; θ′′)} (∗)

(i.e., no individual ranks a lower when moving from θ′ to θ′′), then a ∈ F(θ′′).

Let µ be any complete information prior, and assume that a mechanism Γ SPE-implements a

non-Maskin monotonic SCC F . By hypothesis F is not Maskin monotonic, so there are θ′, θ′′ and

a ∈ F(θ′) satisfying (∗) in the definition of Maskin monotonicity while a /∈ F(θ′′). We now fix this

particular θ′, θ′′ and a throughout.

Since the mechanism Γ SPE-implements F , there exists a pure strategy subgame-perfect equi-

librium m∗θ′ in Γ(θ′) such that g(m∗θ′) = a. Fix one such equilibrium. Clearly, m∗θ′ is a Nash

equilibrium of Γ(θ′). From (∗) in the definition of Maskin monotonicity, it follows that m∗θ′ is also

a Nash equilibrium of Γ(θ′′). Recall that H denotes the set of all possible histories. For each t ≥ 0,

let h∗t be the history induced by m∗θ′ up to date t and let H∗ denote the set of all such histories for

any t. In addition, for each player i, let H∗−i be the set of histories h along which every player j 6= i

has chosen the message m∗θ′,j(h) ; formally, H∗−i ≡ {h ∈ H : h = (∅,m1,m2, ...,mt−1) for some t

and mt′
j = m∗,t

′

j,θ′ for all t′ ≤ t− 1 and all j 6= i}. Note that h∗t ∈ H∗−i for each t ≥ 1.

Consider the following family of information structures νε. For each player i, let τi represent

the profile of signals s = (s1, ..., sn) defined by si = sθ
′′
i and sj = sθ

′
j for all j 6= i. For all i, νε is

given by1

νε(θ′, τi) =
ε

n
µ(θ′, sθ

′
);

νε(θ′, sθ
′
) = (1− ε)µ(θ′, sθ

′
); and

νε(θ̃, sθ̃) = µ(θ̃, sθ̃) ∀θ̃ 6= θ′.

In this information structure when the state is anything other than θ′ or θ′′, the state is common

knowledge. Furthermore, when a player observes sθ
′
, he knows that the state is θ′. Obviously,

1This sequence of perturbations is similar to that used by Chung and Ely (2003). However, because sequential equi-
librium requires verifying sequential rationality conditions that are not imposed by undominated Nash equilibrium,
the body of proof is very different from that in Chung and Ely (2003).
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νε → µ as ε→ 0. The support of νε is denoted

supp(νε) = {(θ̃, sθ̃) : θ̃ ∈ Θ} ∪ {(θ′, τi) : i ∈ N}.

Before we prove Theorem 3, we introduce some notation and the formal definition of sequential

equilibrium. A system of beliefs of agent i is defined as a function φi : Si ×H → ∆(Θ× S−i). Let

φi[(θ, s−i) | si, ht] denote agent i’s belief that (θ, s−i) is realized when agent i’s signal is si and the

observed history is ht. We will henceforth abuse notation and sometimes consider φi[(θ, s−i) | si, ht]
as an element of ∆(Θ×S). We also say a vector of beliefs φ = (φ1, . . . , φn) is Bayes consistent with

a strategy profile σ if beliefs are updated from one stage to the next using Bayes’ rule whenever

possible (see Fudenberg and Tirole (1991a) for its precise definition). An assessment is a pair (φ, σ)

consisting of a profile of beliefs and a pure behavior strategy profile. We formally define sequential

equilibrium.

Definition B.1. A sequential equilibrium is an assessment (φ, σ) that satisfies condition (S) and

(C):

(S) Sequential rationality: for all i ∈ N, si ∈ Si, ht ∈ H :∑
(θ,s−i)∈Θ×S−i

φi[θ, s−i|si, ht]
{
ui(g(σ(s);ht); θ)− ui(g((σ′i(si), σ−i(s−i));ht); θ)

}
≥ 0

for each σ′i.

(C) Consistency: there exists a sequence of totally mixed strategy profiles (σk1 , ..., σ
k
n) converging

to (σ1, ..., σn) with Bayes consistent beliefs φk converging to φ.2

Now we come back to the proof and in particular, build a sequential equilibrium (φε, σε) of

Γ(νε) where g(σε(sθ
′′
); ∅) = a for each ε > 0 small enough. This will show that there exist a

sequence of priors {νε}ε>0 that converges to µ and a corresponding sequence of sequential equilibria

{(φε, σε)}ε>0 such that g(σε(sθ
′′
); ∅)→ a /∈ F(θ′′) as ε goes to 0. This will complete the proof.

In the sequel, we will omit the dependence of σε with respect to ε and simply write σ for σε.

In the following lines, we define a strategy profile σ and a family of systems of beliefs Φ so that

g(σ(sθ
′′
); ∅) = a. In addition, we will show that (φ, σ) is a sequential equilibrium of Γ(νε) for some

φ ∈ Φ. We define Φ and σ as follows:

Definition of σ:

Σ1. For any player i and any ht ∈ H∗ or ht /∈ H∗−i, σi(ht, sθ
′′
i ) = m∗i,θ′(ht);

3

2Convergence in the definition of consistency is taken uniformly over messages and histories. Given that the set
of messages (and so the set of histories) can be countably infinite, two natural convergence notions can be used:
point-wise convergence or uniform convergence. The set of sequential equilibria is smaller when one assumes uniform
convergence. Hence, the use of uniform convergence strengthens our main result.

3Note that players here send the messages that m prescribes for state θ′ when their signal suggests that the state
is θ′′.
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Σ2. For any player i, any ht ∈ H∗−i\H∗, σi(ht, sθ
′′
i ) = m̄i(ht) where m̄i satisfies for any ht,

ht ∈ H∗ or ht /∈ H∗−i ⇒ m̄i(ht) = m∗i,θ′(ht);

ht ∈ H∗−i\H∗ ⇒ m̄i(ht) ∈ arg max
∑
θ̃

νε(θ̃|sθ′′i )ui(g((m′i,m
∗
−i,θ′);ht); θ̃),

where the max is taken over all pure messages m′i ∈ Mi that differs from m̄i only at h.4 By

A1 there exists such m̄i;

Σ3. For any player i and any ht ∈ H, σi(ht, sθ
′
i ) = m∗i,θ′(ht);

Σ4. And for any ht ∈ H, σi(ht, s
θ̃
i ) = m∗

θ̃,i
(ht) for θ̃ 6= θ′, θ′′ where m∗

θ̃
is an arbitrary pure

strategy subgame-perfect equilibrium of Γ(θ̃). (This is well-defined since F is implementable

in subgame-perfect equilibrium under complete information.)

Definition of Φ:

φ ∈ Φ if and only φ satisfies the following three properties.

Φ1. Fix any i ∈ N , any ht /∈ H∗−i,
φi

[
·
∣∣sθ′′i , ht] = δ

(θ′,sθ
′
−i)

and

supp
(
φi

[
·
∣∣sθ′i , ht]) ⊆ supp

(
νε
[
·
∣∣sθ′i ])

and for all l 6= i with ht ∈ H∗−l\H∗−i
(i.e., player l has deviated from the path prescibed by m∗θ′)

φi[(θ
′, τl) | sθ

′
i , ht] = 0.

Φ2. For any i ∈ N , any ht ∈ H∗−i, any si ∈ {sθ
′
i , s

θ′′
i },

φi[·|si, ht] = νε(·|si).

Φ3. For any i ∈ N , any ht ∈ H and any sθ̃i /∈ {sθ
′
i , s

θ′′
i }, φi

[
·
∣∣sθ̃i , ht] = δ

(θ̃,sθ̃−i)
where δx denotes

the probability measure that puts probability 1 on {x}.

Note that hT [σ(sθ
′′
), ∅] = hT [m∗θ′ , ∅] and so, σ generates g(σ(sθ

′′
); ∅) = g(m∗θ′ ; ∅) = a. Hence, it

only remains to show that (φ, σ) constitutes a sequential equilibrium for some φ ∈ Φ. In Section B.1,

4Note that the maximization above is over all pure messages m′i ∈ Mi that differs from m̄i only at h. Hence,
since player i may be playing at several stages, it might be the case that this maximization depends on what player
i is playing at further histories, and these further histories may be outside H∗−i\H∗ (for instance in case a player j
different of i does not play according to m∗j,θ′ at some subsequent history). This is why we also have to define m̄i

outside H∗−i\H∗.
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we show that (φ, σ) satisfies sequential rationality for any φ ∈ Φ; and we establish that (φ, σ) satisfies

consistency for some φ ∈ Φ in Section B.2.

B.1 Sequential rationality

Fix any φ ∈ Φ. Sequential rationality of (φ, σ) will be proved by Claims 2 and 3 below.

Claim 2. For any i ∈ N, si 6= sθ
′′
i , ht ∈ H :∑

(θ̃,s−i)

φi[(θ̃, s−i)|si, ht]
[
ui(g(σ(s);ht); θ̃)− ui(g(σ′i(si), σ−i(s−i);ht); θ̃)

]
≥ 0

for each σ′i.

Claim 2 states that for any player i with any signal si 6= sθ
′′
i , σi is a best response to σ−i given

his belief φi. This will be checked by considering three classes of histories: (1) Histories where all

players have played according to the equilibrium m∗θ′ (i.e., in H∗); (2) histories where player i has

not played according to m∗i,θ′ but all other players have (i.e., in H∗−i\H∗); and finally (3) histories

where some player other than i has not played according to m∗θ′ (i.e., outside H∗−i).
In particular, in the non-trivial case where si = sθ

′
i , we will show that for any of these histories

ht, whenever player i follows σi against σ−i, player i believes with probability one that the outcome

will be given by g(m∗θ′ ;ht), while if player i deviates from σi(si) to some m′i , player i believes

with probability one that the outcome will be given by g(m′i,m
∗
−i,θ′ ;ht). Because m∗θ′ is a subgame-

perfect equilibrium in the complete information game Γ(θ′) and player i with signal sθ
′
i believes

with probability one that θ′ is the true state, this will prove the claim.

Proof of Claim 2. Fix any player i. This claim is obvious for sθ̃i 6= sθ
′
i because by Φ3, φi

[
·
∣∣sθ̃i , ht] =

δ
(θ̃,sθ̃−i)

and so state θ̃ is common knowledge. By Σ4, we can further conclude that σ(sθ̃) = m∗
θ̃

is a

subgame-perfect equilibrium in the complete information game Γ(θ̃). Hence, we focus on the case

where si = sθ
′
i . By construction, νε(θ′|sθ′i ) = 1 and so this player knows the state is θ′, and he

knows the profile of signals is either sθ
′

or τk for some k 6= i. We partition the set of all histories

into three classes H∗; H∗−i\H∗ and H\H∗−i and consider the following three cases: Case (1) ht ∈ H∗;
Case (2) ht ∈ H∗−i\H∗; and Case (3) ht /∈ H∗−i.

• Case (1): ht ∈ H∗

In this case, each player has played according to m∗θ′ and if players j 6= i received signals of

either sθ
′
j or sθ

′′
j , by Σ1 and Σ3, this will continue to be the case as long as all players conform

to σ. So when players are playing strategy σ, and the profile of signals received is sθ
′

or τk, for

k 6= i any subsequent history also falls intoH∗. Thus, g(σ(sθ
′
);ht) = g(σ(τk);ht) = g(m∗θ′ ;ht).

Now suppose player i deviates to a strategy σ′i so that σ′i(s
θ′
i ) = m′i. Clearly, since m′i 6=

σi(s
θ′
i ), there is a date at which player i does not play according to m∗i,θ′ . Thus, by Σ1 and

Σ3, when the profile of signals received is either sθ
′

or τk for k 6= i, any subsequent history of
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ht either falls in H∗ (player i has played according to m∗i,θ′ so far) or does not fall in H∗−k for

each k 6= i (at some point in this history, player i has not played according to m∗i,θ′). In each

of these cases, again by Σ1 and Σ3, player i’s opponents are playing according to m∗−i,θ′ . So

we get 5

g(σ′i(s
θ′
i ), σ−i(s

θ′
−i);ht) = g(σ′i(s

θ′
i ), σ−i(τk);ht) = g(m′i,m

∗
−i,θ′ ;ht).

Here again, since m∗θ′ is a subgame-perfect equilibrium in the complete information game

Γ(θ′), we have

ui(g(m∗θ′ ;ht); θ
′) ≥ ui(g(m′i,m

∗
−i,θ′ ;ht); θ

′).

Thus, we get ui(g(σ(sθ
′
);ht); θ

′) ≥ ui(g(σ′i(s
θ′
i ), σ−i(s

θ′
−i);ht); θ

′) and ui(g(σ(τk);ht); θ
′) ≥

ui(g(σ′i(s
θ′
i ), σ−i(τk);ht); θ

′) for each k 6= i. Now since by Φ2, φi[· | sθ
′
i , ht] may assign strictly

positive weight only to (θ′, sθ
′
−i) and (θ′, τk) for each k 6= i, we can conclude∑

(θ̃,s−i)

φi[(θ̃, s−i)|sθ
′
i , ht]

[
ui(g(σi(s

θ′
i ), σ−i(s−i);ht); θ̃)− ui(g(σ′i(s

θ′
i ), σ−i(s−i);ht); θ̃)

]
≥ 0.

• Case (2): ht ∈ H∗−i\H∗

Since ht ∈ H∗−i and ht /∈ H∗, only player i has not played according to m∗i,θ′. Then, it is

clear that ht does not fall in H∗−k for each k 6= i (recall that H∗−k is the set of histories under

which every player j other than k has played according to m∗j,θ′). It is also clear that any

subsequent history does not fall in H∗−k for each k 6= i. By Σ1 and Σ3, we thus obtain

that each player k other than i will play according to m∗k,θ′ at any subsequent history when

receiving signal sθ
′
k or sθ

′′
k . Hence,

g(σ(sθ
′
);ht) = g(σ(τk);ht) = g(m∗θ′ ;ht).

Consider the case where player i deviates to a strategy σ′i so that σ′i(s
θ′
i ) = m′i. Here, since

(by a similar argument as above) any history that player i can achieve by deviating does not

fall in H∗−k for each k 6= i, each player k other than i will be playing according to m∗k,θ′ at

any subsequent history whether he receive sθ
′
k or sθ

′′
k , which implies

g(σ′i(s
θ′
i ), σ−i(s

θ′
−i);ht) = g(σ′i(s

θ′
i ), σ−i(τk);ht) = g(m′i,m

∗
−i,θ′ ;ht).

Since m∗θ′ is a subgame-perfect equilibrium in the complete information game Γ(θ′), we already

have ui(g(m∗θ′ ;ht); θ
′) ≥ ui(g(m′i,m

∗
−i,θ′ ;ht); θ

′). Thus, we also get

ui(g(σ(sθ
′
);ht); θ

′) ≥ ui(g(σ′i(s
θ′
i ), σ−i(s

θ′
−i);ht); θ

′) and

ui(g(σ(τk);ht); θ
′) ≥ ui(g(σ′i(s

θ′
i ), σ−i(τk);ht); θ

′) for each k 6= i.

5We abuse notation because we should use σ−i(τl\sθ
′
i ) instead of σ−i(τl).
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Now, since by Φ2 we know that φi[·|sθ
′
i , ht] assigns a strictly positive weight only to (θ′, sθ

′
−i)

and (θ′, τk) for each k 6= i, we can conclude∑
(θ̃,s−i)

φi[(θ̃, s−i)|sθ
′
i , ht]

[
ui(g(σ(sθ

′
i ), σ−i(s−i), ht); θ̃)− ui(g(σ′i(s

θ′
i ), σ−i(s−i);ht); θ̃)

]
≥ 0.

• Case (3): ht /∈ H∗−i
In this case, at least one player j 6= i has not played according to m∗j,θ′ .

By Σ3, we know that when each player j receives signal sθ
′
j , then these players play according

to m∗j,θ′ , so σ(sθ
′
) = m∗θ′ . Thus, at history ht, the outcome achieved by playing σ when the

profile of signals is sθ
′

must be the same as the one when playing m∗θ′ , i.e.,

g(σ(sθ
′
);ht) = g(m∗θ′ ;ht).

In addition, for each l 6= i with ht /∈ H∗−l, by definition, some player j other than l has not

played according to m∗j,θ′ and obviously this will continue to be the case at any subsequent

histories. Hence, any subsequent histories does not belong to H∗−l either. At any such

histories, we know by Σ1, that player l will be playing according to m∗l,θ′ when he receives sθ
′′
l

while when players j other than l receive signal sθ
′
j , by Σ3 they will also be playing according

to m∗j,θ′ . Hence, we get that the outcome achieved from history ht when playing σ and when

the profile of signals received is τl is equal to the outcome achieved from history ht when

playing m∗θ′ . Otherwise stated, for each l 6= i with ht /∈ H∗−l, we have

g(σ(τl);ht) = g(m∗θ′ ;ht).

Now, when player i deviates to some strategy σ′i such that σ′i(s
θ′
i ) = m′i, using the argument

above, when the other players receive signal profile sθ
′
−i, we know that the outcome achieved

is

g(σ′i(s
θ′
i ), σ−i(s

θ′
−i);ht) = g(m′i,m

∗
−i,θ′ ;ht).

while for each l 6= i with ht /∈ H∗−l, we know that

g(σ′i(s
θ′
i ), σ−i(τl);ht) = g(m′i,m

∗
−i,θ′ ;ht).

Since m∗θ′ is a subgame-perfect equilibrium in the complete information game Γ(θ′), we have

ui(g(m∗θ′ ;ht); θ
′) ≥ ui(g(m′i,m

∗
−i,θ′ ;ht); θ

′). Thus, we get

ui(g(σ(sθ
′
);ht); θ

′) ≥ ui(g(σ′i(s
θ′
i ), σ−i(s

θ′
−i);ht); θ

′)

and for each l 6= i such that ht /∈ H∗−l, ui(g(σ(τl);ht); θ
′) ≥ ui(g(σ′i(s

θ′
i ), σ−i(τl);ht); θ

′).

Because by Φ1, φi[·|sθ
′
i , ht] may assign strictly positive weight only to (θ′, sθ

′
−i) and (θ′, τl) for
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each l 6= i such that ht /∈ H∗−l, we can conclude

∑
(θ̃,s−i)

φi[(θ̃, s−i)|sθ
′
i , ht]

[
ui(g(σ(sθ

′
i , s−i);ht); θ̃)− ui(g(σ′i(s

θ′
i ), σ−i(s−i);ht); θ̃)

]
≥ 0.

This completes the proof of the claim.

Claim 3. For any i ∈ N, si = sθ
′′
i , and ht ∈ H :∑

(θ̃,s−i)

φi[(θ̃, s−i)|si, ht]
[
ui(g(σ(s);ht); θ̃)− ui(g(σ′i(si), σ−i(s−i);ht); θ̃)

]
≥ 0

for each σ′i.

This claim states that for any player i with signal sθ
′′
i , σi is a best response to σ−i given his

belief φi. Here again we consider the same partition of histories as in Claim 2. When ht is a history

where each player has played according to m∗θ′ (i.e., ht ∈ H∗), player i assigns positive probability

to both θ′′ and θ′. However, we will show that here again player i believes with probability one that

the other players will be playing according to m∗−i,θ′ , whether he deviates or not. Hence, if he does

not deviate and ht ∈ H∗, he gets a while if he deviates to m′i he gets g(m′i,m
∗
−i,θ′ ;ht). Because m∗θ′

is a subgame-perfect equilibrium in Γ(θ′), we know that the deviation is not profitable if θ′ is the

true state, and Maskin monotonicity (Condition (∗) of Maskin monotonicity) implies that this is

also not profitable if the state is θ′′. Since these are the only states to which player i assigns strictly

positive probability, this will complete the argument for this class of histories.

The easy case occurs when ht is a history where a player other than i has not played according

to m∗θ′ (i.e., ht /∈ H∗−i). In such a case, player i believes with probability one that θ′ is the true

state. In addition we will check that whenever player i uses σi against σ−i, player i believes with

probability one that the outcome will be given by g(m∗θ′ ;ht), while if player i deviates from σi(si) to

m′i, player i believes with probability one that the outcome will be given by g(m′i,m
∗
−i,θ′ ;ht). Here

again, the fact that m∗θ′ is a subgame-perfect equilibrium in the complete information game will lead

to the desired result. Finally, in the last case where player i has not played according to m∗θ′ while

all other players have (i.e., ht ∈ H∗−i\H∗), we will also check that player i assigns probability one

to his opponent playing m∗−i,θ′ . But σi has been constructed (see Σ2) so that playing σi is better

than any one-shot deviation. Then the one-shot deviation principle for sequential equilibrium will

complete the proof of Claim 3. Taken together, Claims 2 and 3 establish sequential rationality of

(φ, σ).

Proof of Claim 3. This claim will be proved by studying three different cases depending on the

type of history we consider: (1) ht ∈ H∗; (2) ht /∈ H∗−i; and (3) ht ∈ H∗−i\H∗.

• Case (1): ht ∈ H∗
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In this case, each player has played according to m∗θ′ . Note that, by Σ1 and Σ3, if each player

j received signals of either sθ
′
j or sθ

′′
j , this will continue to be the case as long as all players

conform to σ. So when players are playing strategy σ, and player i′s opponents received

either signal profile sθ
′
−i or sθ

′′
−i, any subsequent history also falls into H∗. Thus,

g(σ(sθ
′′
i , s

θ′′
−i);ht) = g(σ(sθ

′′
i , s

θ′
−i);ht) = g(m∗θ′ ;ht).

Now suppose that player i deviates to a strategy σ′i so that σ′i(s
θ′′
i ) = m′i. Since m′i 6= σi(s

θ′′
i ),

there must exist a date at which player i does not play according to m∗i,θ′ . Thus, by Σ1 and

Σ3, when player i’s opponents receive signal sθ
′
−i or sθ

′′
−i, any subsequent history of ht either

falls in H∗ (player i has played according to m∗i,θ′ so far) or does not fall in H∗−k for each

k 6= i (at some point in this history, player i has not played according to m∗i,θ′). In each of

these cases, by Σ1 and Σ3, player i’s opponents are playing according to m∗−i,θ′ . So we get

g(σ′i(s
θ′′
i ), σ−i(s

θ′
−i);ht) = g(σ′i(s

θ′′
i ), σ−i(s

θ′′
−i);ht) = g(m′i,m

∗
−i,θ′ ;ht). (3)

Here again, since m∗θ′ is a subgame-perfect equilibrium in the complete information game

Γ(θ′), we have

ui(g(m∗θ′ ;ht); θ
′) ≥ ui(g(m′i,m

∗
−i,θ′ ;ht); θ

′).

Thus, we also get

ui(g(σ(sθ
′′
i , s

θ′
−i);ht); θ

′) ≥ ui(g(σ′i(s
θ′′
i ), σ−i(s

θ′
−i);ht); θ

′). (4)

The above inequality, together with (3), also implies

ui(g(σ(sθ
′′
i , s

θ′′
−i);ht); θ

′) ≥ ui(g(σ′i(s
θ′′
i ), σ−i(s

θ′′
−i);ht); θ

′).

Since g(σ(sθ
′′
i , s

θ′′
−i);ht) = g(m∗θ′ ;h

∗
t ) = a and we have assumed that θ′ and θ′′ are two states

satisfying (∗) in the definition of Maskin monotonicity, we get that

ui(g(σ(sθ
′′
i , s

θ′′
−i);ht); θ

′′) ≥ ui(g(σ′i(s
θ′′
i ), σ−i(s

θ′′
−i);ht); θ

′′). (5)

Now, since by Φ2, φi[·|sθ
′′
i , ht] assigns a strictly positive weight only to (θ′, sθ

′
−i) and (θ′′, sθ

′′
−i),

we conclude (4) and (5) imply that:∑
(θ̃,s−i))

φi[(θ̃, s−i)|sθ
′′
i , ht]

[
ui(g(σ(sθ

′′
i , s−i);ht); θ̃)− ui(g(σ′i(s

θ′′
i ), σ−i(s−i);ht); θ̃)

]
≥ 0.

• Case (2): ht /∈ H∗−i
In this case, at least one player j 6= i has not played according to m∗j,θ′ ; This is still the

case for any subsequent histories, so that they all fall outside H∗−i. By Σ1, if player i plays
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according to σi, from ht, he will play according to m∗i,θ′ . Now, by Σ3, we know that when

player j other than i receives signal sθ
′
j , then he plays according to m∗j,θ′ . Thus, the outcome

achieved when the profile of signals is (sθ
′′
i , s

θ′
−i) must be the same as the outcome achieved

when m∗θ′ is played. That is, we obtain

g(σ(sθ
′′
i , s

θ′
−i);ht) = g(m∗θ′ ;ht).

Suppose player i deviates to a strategy σ′i so that σ′i(s
θ′′
i ) = m′i. Since, if the other players

are receiving signal profile sθ
′
−i, they will all be playing according to m∗−i,θ′ , we obtain

g(σ′i(s
θ′′
i ), σ−i(s

θ′
−i);ht) = g(m′i,m

∗
−i,θ′ ;ht).

Since m∗θ′ is a subgame-perfect equilibrium in the complete information game Γ(θ′), we have

ui(g(m∗θ′ ;ht); θ
′) ≥ ui(g(m′i,m

∗
−i,θ′ ;ht); θ

′). Thus, we also get

ui(g(σ(sθ
′′
i , s

θ′
−i);ht); θ

′) ≥ ui(g(σ′i(s
θ′′
i ), σ−i(s

θ′
−i);ht); θ

′).

Because by Φ1, φi[(θ
′, sθ

′
−i)|sθ

′′
i , ht] = 1, so we can conclude∑

(θ̃,s−i)

φi[(θ̃, s−i)|sθ
′′
i , ht]

[
ui(g(σ(sθ

′′
i , s−i);ht); θ̃)− ui(g(σ′i(s

θ′′
i ), σ−i(s−i);ht); θ̃)

]
≥ 0.

• Case (3): ht ∈ H∗−i\H∗

Since ht ∈ H∗−i and ht /∈ H∗, only player i has not played according to m∗i,θ′ . Then ht does not

fall in H∗−k for each k 6= i (recall that H∗−k is the set of histories under which every player j

other than k has played according to m∗j,θ′). It is also clear that any subsequent history does

not fall in H∗−k for each k 6= i. By Σ1 and Σ3, whether player i’s opponents have received

sθ
′
−i or sθ

′′
−i, they all play according to m∗−i,θ′ . By Φ2 we know that φi[·|sθ

′′
i , ht] = νε(·|sθ′′i )

assigns a strictly positive weight only to (θ′, sθ
′
−i) and (θ′′, sθ

′′
−i). In addition, we have that for

any h ∈ H∗ or h /∈ H∗−i : σi(h, s
θ′′
i ) = m∗i,θ′(h, s

θ′′
i ). Since ht ∈ H∗−i\H∗, we conclude with Σ2

that: ∑
(θ̃,s−i)

νε(θ̃, s−i|sθ
′′

i )
[
ui(g(σ(sθ

′′
i , s−i);ht); θ̃)− ui(g(σ′i(s

θ′′
i ), σ−i(s−i);ht); θ̃)

]
≥ 0

for any σ
′
i that differs from σi only at ht. By this and case (1) and (2), we know that at any

history players have no profitable one-shot deviation, by the one-shot deviation principle (see
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Hendon, Jacobsen, and Sloth (1996)6) this yields:∑
(θ̃,s−i)

νε(θ̃, s−i|sθ
′′

i )
[
ui(g(σ(sθ

′′
i , s−i);ht); θ̃)− ui(g(σ′i(s

θ′′
i ), σ−i(s−i);ht); θ̃)

]
≥ 0

for any σ′i. This completes the proof.

B.2 Consistency

In this section, we show that for some φ ∈ Φ, (φ, σ) satisfies consistency.

To show this part, we first fix σ as defined above and consider the following sequence {(φk, σk)}∞k=0

of assessments. Let ηk > 0 for each k and ηk → 0 as k →∞. For each player i, ht ∈ H, and signal

si, let ξi(ht, si, ·) be any strictly positive prior over Mi(ht)\{σi(si, ht)} and define σki as

σki (mt
i|ht, sθ

′′
i ) =

{
1− ηT×nk if mt

i = σi(ht, s
θ′′
i );

ηT×nk × ξi(ht, sθ
′′
i ,m

t
i) otherwise

where T is the (finite) length of the longest final history, and for any signal si 6= sθ
′′
i :

σki (mt
i|ht, si) =

{
1− ηk if mt

i = σi(ht, si);

ηk × ξi(ht, si,mt
i) otherwise

.

Let φk be the unique consistent belief associated with each σk. It is easy to check that σk converges

to σ and also that φk converges.7 Let φ ≡ limk→∞ φ
k. In what follows, we show that φ satisfies

Φ1, Φ2 and Φ3. This will show that (φ, σ) satisfies consistency, and φ ∈ Φ as claimed.

To do so, we explicitly compute each φk and study its limit as k tends to infinity. In general

for each (θ̃, s̃−i) ∈ Θ× S−i, each ht = (m1, ...,mt−1) ∈ H, and each s̃i ∈ Si, we have

φki [(θ̃, s̃−i)|s̃i, ht] =

νε(θ̃, s̃−i, s̃i)×
t−1∏
t′=1

[
σk(mt′ |ht′ , s̃)

]
∑

(θ̂,s′−i)

νε(θ̂, s′−i, s̃i)×
t−1∏
t′=1

[
σk(mt′ |ht′ , s′−i, s̃i)

] .

In the above formula for each t′ ≤ t, ht′ stands for the truncation of ht to the first t′ elements, i.e.,

ht′ = (m1, ...,mt′−1).

6Hendon, Jacobsen, and Sloth (1996) assume that for each i and h, Mi(h) is finite, which is our A1. It is easy to
check that their argument goes through in case Mi(h) is countably infinite. This fact is implicitly used in Section C.

7As will become clear from the proof, the sequence {φk}k does converge. Moreover, convergence in the definition
of consistency is taken uniformly over messages and histories. In the case where Mi(h) is countably infinite (we
will discuss this case in Section C of this online appendix), two natural convergence notions can be used: point-
wise convergence or uniform convergence. The set of sequential equilibria is smaller when one assumes uniform
convergence. Hence, the use of uniform convergence strengthens our result.
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Claim 4. φ satisfies Φ1.

Claim 4 says that, for any player i who sees signal sθ
′′
i and has an opportunity to play after some

other player has not played according to m∗θ′ (i.e., ht /∈ H∗−i), then under φ ≡ limk→∞ φ
k, player i

believes with probability one that the state is θ′, and that the other players have received sθ
′
−i. In

order to show that, we observe that if every player other than i has received a signal sj ∈ {sθ
′
j , s

θ′′
j },

then at such a history some player j other than i has deviated from σ. Then, since under the

sequence of totally mixed strategies built above, it is (infinitely) more likely (as ηk tends to 0) that

a deviation occurred at sθ
′
j rather than at sθ

′′
j . In the limit, Bayes’ rule will then put probability

one on sθ
′
j and given that the prior νε assigns strictly positive weight only to (θ′′, sθ

′′
−i) and (θ′, sθ

′
−i),

Bayes rule will then put probability arbitrarily close to one on (θ′, sθ
′
−i). In case player i received

the private signal sθ
′
i , if ht is a history under which all players other than l have played according

to m∗θ′ (i.e. ht ∈ H∗−l), then the deviating player is l and again using a similar argument as above,

we show that player i must assign probability 0 to player l receiving sθ
′′
l and so to τl.

Consider player i at history ht /∈ H∗−i. The proof is reduced to checking the following two cases:

Proof of Claim 4. Case 1: si = sθ
′′
i

Recall that νε(·, sθ′′i ) assigns a strictly positive weight only to (θ′′, sθ
′′
−i) and (θ′, sθ

′
−i). Hence,

φki [(θ
′, sθ

′
−i)|sθ

′′
i , ht]

=

νε(θ′, sθ
′
−i, s

θ′′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′
j )

νε(θ′, sθ
′
−i, s

θ′′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′
j ) + νε(θ′′, sθ

′′
−i, s

θ′′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′′
j )

=
νε(θ′, sθ

′
−i, s

θ′′
i )

νε(θ′, sθ
′
−i, s

θ′′
i ) + νε(θ′′, sθ

′′
−i, s

θ′′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j | ht′ , sθ

′′
j )

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j | ht′ , sθ

′
j )

.

We now show that the ratio below converges to 0 as k →∞:

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′′
j )

/∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′
j )→ 0 as k →∞.

This will show that φki [(θ
′, sθ

′
−i)|sθ

′′
i , ht]→ 1 and φki [(θ

′′, sθ
′′
−i)|sθ

′′
i , ht]→ 0 as k →∞.

Note first that in case every player j other than i receives signal sj ∈ {sθ
′
j , s

θ′′
j }, there must exist

a player ̂ 6= i and a date t̂ ≤ t − 1 so that ̂ has not played according to σ̂, i.e. σ̂(ht̂, ŝ) 6= mt̂
̂.

To see this, we proceed by contradiction and assume that σ−i(ht′ , s−i) = mt′
−i for all t′ ≤ t − 1.
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This implies that whenever ht′−1 ∈ H∗−i, we must have ht′ ∈ H∗−i, because ht′−1 ∈ H∗−i implies

that either ht′−1 ∈ H∗ (i.e., no player has deviated) or ht′−1 /∈ H∗−j for all j 6= i (i.e., player i has

deviated). In either case, σ−i(ht′−1, s−i) = m∗−i,θ′(ht′−1) is obtained by Σ1 and Σ3. Since we have

assumed that σ−i(ht′−1, s−i) = mt′−1
−i , we get mt′−1

−i = m∗−i,θ′(ht′−1), which proves that ht′ ∈ H∗−i.
Since h1 = ∅ ∈ H∗ ⊆ H∗−i, this simple inductive argument shows that ht ∈ H∗−i, a contradiction.

By construction of σk, this implies that for some ̂ 6= i and t̂ ≤ t− 1 :

σk̂ (mt̂
̂|ht̂, s

θ′′
̂ ) = ηT×nk ξ̂(ht̂, s

θ′′
̂ ,m

t̂
̂). (6)

Now, we have:

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′′
j )

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′
j )

≤
ηT×nk × ξ̂(ht̂, sθ

′′
̂ ,m

t̂
̂)× 1∏

j 6=i

t−1∏
t′=1

ηkξj(ht′ , s
θ′
j ,m

t′
j )

=
ηT×nk

η
(t−1)(n−1)
k

×
ξ̂(ht̂, s

θ′′
̂ ,m

t̂
̂)∏

j 6=i

t−1∏
t′=1

ξj(ht′ , s
θ′
j ,m

t′
j )

→ 0 (as k →∞).

Here, the inequality is assured by (6) and the construction of σk that, for all j and t′ ≤ t − 1,

σkj (mt′
j |ht′ , sθ

′
j ) ≥ ηk × ξj(ht′ , sθ

′
j ,m

t′
j ).

Case 2: si = sθ
′
i

Recall that νε(·, sθ′i ) assigns a strictly positive weight only to (θ′, sθ
′
−i) and (θ′, τl) for each l 6= i.

Hence,

φki [(θ
′, τl)|sθ

′
i , ht]

=

νε(θ′, τl)×
∏
j 6=l,i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′
j )×

t−1∏
t′=1

σkl (mt′
l |ht′ , sθ

′′
l )

∑
z 6=i

νε(θ′, τz)×
∏
j 6=z,i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′
j ) + νε(θ′, sθ

′
−i, s

θ′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′
j )

=
νε(θ′, τl)∑

z 6=i
νε(θ′, τz)× cz(k) + νε(θ′, sθ

′
−i, s

θ′
i )×

t−1∏
t′=1

σkl (mt′
l |ht′ , sθ

′
l )
/ t−1∏
t′=1

σkl (mt′
l |ht′ , sθ

′′
l )

for some positive functions cz(k). We now show that if ht ∈ H∗−l, then the ratio below converges

to +∞ as k →∞:

t−1∏
t′=1

σkl (mt′
l |ht′ , sθ

′
l )

/
t−1∏
t′=1

σkl (mt′
l |ht′ , sθ

′′
l )→ +∞ as k →∞.
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This will show that φki [(θ
′, τl)|sθ

′
i , ht] → 0 for all l if ht ∈ H∗−l; and hence that φ satisfies Φ1.

Assume that ht ∈ H∗−l for some l, as we already claimed, if every player j other than i has received

a signal sj ∈ {sθ
′
j , s

θ′′
j }, there is a player ̂ 6= i and a date t̂ ≤ t−1 so that ̂ has not played according

to σ̂, i.e., σ̂(ht̂, ŝ) 6= mt̂
̂. Now, since ht ∈ H∗−l, we claim that ̂ = l. Indeed, ht ∈ H∗−l means that

any player j other than l has played according to m∗j,θ′ . So if player l had played according to σl

(i.e., for all t′ : σl(ht′ , sl) = mt′
l ), repeated applications of Σ1 and Σ3 would yield to ht = h∗t ∈ H∗−i

which is false by assumption.

By construction of σk, this implies that there exists t̂ ≤ t− 1 such that σl(ht̂, sl) 6= mt̂
l and so:

σkl (mt̂
l |ht̂, s

θ′′
l ) = ηT×nk ξl(ht̂, s

θ′′
l ,m

t̂
l). (7)

Now, we have

t−1∏
t′=1

σkl (mt′
l |ht′ , sθ

′
l )

t−1∏
t′=1

σkl (mt′
l |ht′ , sθ

′′
l )

≥

ηt−1
k

t−1∏
t′=1

ξl(ht′ , s
θ′
l ,m

t′
l )

ηT×nk ξl(ht̂, s
θ′′
l ,m

t̂
l)× 1

→∞ (as k →∞).

Where the inequality is assured by (7) and (assuming without loss of generality that ηk is small)

we use the fact that by construction, for all t′ ≤ t− 1, σkl (mt′
j |ht′ , sθ

′
l ) ≥ ηk × ξl(ht′ , sθ

′
l ,m

t′
l ).

Claim 5. φ satisfies Φ2.

Claim 5 says that if player i gets signal sθ
′
i or sθ

′′
i then at a history ht under which each of his

opponent has played according to m∗θ′ , φ is the same as his beliefs given only by his private signal.

To prove this, we show that if every player j 6= i has received a signal sj ∈ {sθ
′
j , s

θ′′
j } then at

histories where all players other than i have played according to m∗θ′ , each player other than i has

played according to σ at each previous stage. This ensures that for any ht ∈ H∗−i, no player other

than i has deviated from the candidate for sequential equilibrium strategy profile σ and so player

i’s beliefs must be given by his private signal.

Proof of Claim 5. Consider player i at history ht ∈ H∗−i. Here again, the proof is reduced to

checking the following two cases.

Case 1: si = sθ
′′
i

Recall that νε(·, sθ′′i ) assigns a strictly positive weight only to (θ′′, sθ
′′
−i) and (θ′, sθ

′
−i). Hence,

φki [(θ
′′, sθ

′′
−i)|sθ

′′
i , ht]

=

νε(θ′′, sθ
′′
−i, s

θ′′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′′
j )

νε(θ′′, sθ
′′
)×

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′′
j ) + νε(θ′, sθ

′
−i, s

θ′′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′
j )

16



=
νε(θ′′, sθ

′′
−i, s

θ′′
i )

νε(θ′′, sθ′′) + νε(θ′, sθ
′
−i, s

θ′′

i )×

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j | ht′ , sθ

′
j )

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j | ht′ , sθ

′′
j )

We now show that the ratio below converges to 1 as k →∞:

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′
j )
/∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′′
j )→ 1 as k →∞.

This will show that φki [(θ
′′, sθ

′′
−i)|sθ

′′
i , ht]→ νε((θ′′, sθ

′′
−i)|sθ

′′
i ) and φki [(θ

′, sθ
′
−i)|sθ

′′
i , ht]→ νε((θ′, sθ

′
−i)|sθ

′′
i ).

Note now that if players j 6= i receive signal sj ∈ {sθ
′
j , s

θ′′
j }, then for all t′ ≤ t− 1, σj(ht′ , sj) =

mt′
j . To see this, note that for any t′ ≤ t − 1 : ht′ ∈ H∗−i, thus, either every player has played

according to m∗θ′ (i.e., ht′ ∈ H∗) or player i has not played according to m∗i,θ′ (i.e., ht′ /∈ H∗−j for

all j 6= i). In each of these cases we know, by Σ1 and Σ3, that σj prescribes to play according to

m∗j,θ′ . Since ht′ ∈ H∗−i this implies that σj(ht′ , sj) = m∗j,θ′(ht′) = mt′
j .

By construction of σk, this in turn implies that for all j 6= i and t′ ≤ t− 1 :

σkj (mt′
j |ht′ , sθ

′
j ) = 1− ηk and σkj (mt′

j |ht′ , sθ
′′
j ) = 1− ηT×nk .

Thus, ∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′
j )

/∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′′
j )→ 1 as k →∞.

Case 2: si = sθ
′
i

Recall that νε(·, sθ′i ) assigns a strictly positive weight only to (θ′, sθ
′
−i) and (θ′, τl) for l 6= i.

Hence,

φki [(θ
′, sθ

′
−i)|sθ

′
i , ht]

=

νε(θ′, sθ
′
−i, s

θ′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′
j )

νε(θ′, sθ
′
−i, s

θ′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′
j ) +

∑
l 6=i
νε(θ′, τl)×

∏
j 6=i,l

t−1∏
t′=1

σkj (mt′
j |ht′ , sθ

′
j )×

t−1∏
t′=1

σkl (mt′
l |ht′ , sθ

′′
l )

=
νε(θ′, sθ

′
−i, s

θ′
i )

νε(θ′, sθ
′
−i, s

θ′
i ) +

∑
l 6=i
νε(θ′, τl)×

t−1∏
t′=1

σkl (mt′
l | ht′ , sθ

′′
l )

t−1∏
t′=1

σkl (mt′
l | ht′ , sθ

′
l )
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We now show that for each l 6= i, the ratio below converges to 1 as k →∞:

t−1∏
t′=1

σkl (mt′
l |ht′ , sθ

′′
l )

/ t−1∏
t′=1

σkl (mt′
l |ht′ , sθ

′
l )→ 1 as k →∞.

This will show that φki [(θ
′, sθ

′
−i)|sθ

′
i , ht]→ νε((θ′, sθ

′
−i)|sθ

′
i ) and similar reasoning shows that for each

l 6= i : φki [(θ
′, τl)|sθ

′
i , ht]→ νε((θ′, τl)|sθ

′
i ), and hence, φ satisfies Φ2.

Now, by similar reasoning as in the case above, we get that for all l 6= i and t′ ≤ t− 1 :

σkl (mt′
l |ht′ , sθ

′
l ) = 1− ηk and σkl (mt′

l |ht′ , sθ
′′
l ) = 1− ηT×nk .

Thus,
t−1∏
t′=1

σkl (mt′
l |ht′ , sθ

′′
l )

/
t−1∏
t′=1

σkl (mt′
l |ht′ , sθ

′
l )→ 1 as k →∞.

Finally, observing that for sθ̃i /∈ {sθ′i , sθ
′′
i }, νε(·, sθ̃i ) assigns a weight one to (θ̃, sθ̃−i), we have

established the following claim, which completes the proof of Theorem 3.

Claim 6. φ satisfies Φ3.

C Theorem 3 extends to countable messages

Here we extend Theorem 3 to mechanisms that have countably infinite message spaces. This ex-

tension is important because some of the literature on implementation theory uses “integer games”

where each player has to announce an integer and becomes the dictator when his integer is the

largest one, as in Maskin (1999) and in Moore and Repullo (1988).

Assumption A2. Mi (h) is countable for each i and h.

The next assumption says that against any profile of strategy in the complete information game,

in the neighborhood of complete information, each player i has a non-empty set of best responses.

This condition is vacuously satisfied under A1, so Theorems 3 and 4 show that if a mechanism

can implement a non-Maskin monotonic social choice correspondence (SCC) both under complete

information and under small information perturbations, then under this mechanism players must

not have well-defined best responses. In addition, we show in Section C.2 that when the state space

is finite (this is our case), Moore and Repullo’s general mechanism has well-defined best-responses

(under weak assumptions) and so our argument also applies there.

Assumption A3. The sequential mechanism Γ has well-defined best replies: for any player i,

any θ ∈ Θ, any m−i ∈ M−i, there exists ξ̄ (i, θ,m−i) > 0 such that for any β ∈ ∆ (Θ) with

β (θ) ≥ 1− ξ̄ (i, θ,m−i) , for any mi ∈Mi we have for all h ∈ H :

arg max
∑
θ̃

β(θ̃)ui(g
((
m′i,m−i)

)
;h
)

; θ̃) 6= ∅
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where the max is taken over all pure messages m′i ∈Mi that differ from mi only at h.

Remark C.1. If the mechanism is not finite but the set of outcomes is, A3 is also vacuously

satisfied. We also note that A3 is not needed for sequential mechanisms in which each player moves

only once.8

Theorem C.1. Assume A2 and A3. Suppose that a mechanism Γ SPE-implements a non-Maskin

monotonic SCC F . Fix any complete information prior µ. There exist a sequence of priors {νε}ε>0

that converges to µ and a corresponding sequence of sequential equilibria {(φε, σε)}ε>0 such that as

ε tends to 0, g(σε(sθ); ∅)→ a /∈ F(θ) for some θ ∈ Θ and some a ∈ A.

Proof. The proof is essentially the same as the proof of Theorem 3 where we only consider finite

mechanisms. So, we claim that there are essentially only two changes we need to extend the proof

of Theorem 3 to the case of countably infinite message spaces. First, in the beginning of the proof

of Theorem 3, we have to choose ε > 0 small enough to apply A3. Second, we will show that A3

guarantees that Σ2 (which is introduced in the proof of Theorem 3) is well defined. This will be

proved in the next subsection.

C.1 A3 guarantees that Σ2 is well-defined

Fix ε > 0 small enough so that νε(θ
′ |sθ

′

i ) ≥ 1 − ξ̄(i, θ,m∗−i,θ). We shall claim that A3 guarantees

that one can construct m̄i needed for Σ2. First, for any ht ∈ H∗ or ht /∈ H∗−i, we set m̄i(ht) =

m∗i,θ(ht). Second, we define m̄i by induction on the set of histories in H∗−i\H∗. Take any history

ht ∈ H∗−i\H∗ so that there is no subsequent history that falls into H∗−i\H∗. Since we already

defined m̄i(ht) = m∗i,θ(ht) for any ht /∈ H∗−i\H∗, m̄i has been defined for any subsequent histories.

By A3 we obtain

arg max
∑
θ̃

νε(θ̃|sθ
′

i )ui(g
((
m′i,m

∗
−i,θ)

)
;ht
)

; θ̃) 6= ∅

where the max is taken over all pure messages m′i ∈ Mi that differ from m̄i only at ht and are

identical at any subsequent histories (what happens before ht is obviously irrelevant).

Now set

m̄i(ht) ∈ arg max
∑
θ̃

νε(θ̃|sθ
′

i )ui(g
((
m′i,m−i)

)
;ht
)

; θ̃).

This establishes that one can inductively construct m̄i so that m̄i satisfies the properties needed

for Σ2.

C.2 A3 is satisfied in the Moore-Repullo canonical mechanism

We will review some of the main results of Moore and Repullo (1988) here.

8One can directly check this in the definition of strategy σ (Σ2) used in the proof of Theorem 3. More specifically,
it can be checked there that for each player, A3 is only used at histories where this player has to choose a message
and at which he has previously deviated from the equilibrium. By construction, there is no such a history.
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Definition C.1 (Moore and Repullo (1988)). A social choice correspondence F satisfies Condition

C if, for every pair of profiles θ, φ ∈ Θ with a ∈ F(θ)\F(φ), there exists a finite sequence

σ(θ, φ; a) ≡ {a0 = a, a1, . . . , ak, . . . , al, al+1} ⊂ A,

with l = l(θ, φ; a) ≥ 1, such that:

1. for each k = 0, . . . , l − 1, there is some particular player j(k) = j(k|θ, φ; a), for whom

uj(k)(ak; θ) ≥ uj(k)(ak+1; θ);

2. there is some player j(l) = j(l|θ, φ; a) for whom

uj(l)(al; θ) ≥ uj(l)(al+1; θ) and uj(l)(al+1;φ) > uj(l)(al;φ).

Further, l(θ, φ; a) is uniformly bounded by some l̄ <∞.

Assuming Condition C holds, let Q(F) be a class of subsets Q of A. A typical Q is defined as

follows:

For each pair of profiles θ and φ in Θ, and for each a ∈ F(θ)\F(φ), select one

sequence σ(θ, φ; a) satisfying (1) and (2) in Condition C. Then let Q be the union of

the elements in these sequences.

Q(F) comprises the Q’s constructed from all possible selections.

Definition C.2. A social choice correspondence F satisfies Condition C+ if it satisfies Condition

C and the following condition as well: there exists a particular Q+ ∈ Q(F), and a particular set

B ⊆ A containing Q+, such that the following is true for each θ ∈ Θ:

• Each player i has nonempty maximal set B∗i (θ) ⊆ B under θ, i.e., B∗i (θ) = arg maxa∈B ui(a; θ).

• B∗i (θ) ∩B∗j (θ) = ∅ for each θ ∈ Θ and each i, j ∈ N with i 6= j

• B∗i (θ) ∩Q+ = ∅ for each i and each θ.

Let the selected sequences σ(θ, φ; a) ∈ Q+ be labelled σ+(θ, φ; a). Define the Moore-Repullo

canonical mechanism ΓMR = (M, g) as follows.

Stage 0: each player i announces some triplet mi,0 = (θi, ai, ni0), where θi ∈ Θ, ai ∈ F(θi), and ni0
is a nonnegative integer. There are three possibilities to consider:

1. all n players agree on a common profile θ and outcome a ∈ F(θ), then outcome a is chosen.

STOP
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2. If only n−1 players agree on a common profile θ and outcome a ∈ F(θ), and if the remaining

player i announces a profile φ, and

(a) if a ∈ F(φ), then outcome a is implemented; STOP

(b) if a /∈ F(φ) but i is not the agent j(0) prescribed in σ+(θ, φ; a), then outcome a is

implemented; STOP

(c) if a /∈ F(φ) and i = j(0), then go to Stage 1.

3. If neither (1) nor (2) apply, then the player with the highest integer ni0 is allowed to choose an

outcome from B. Ties are broken by selecting from the players who announced the highest

number according to who has the smallest i. STOP

Stage k = 1, . . . , l: each player i can either raise a “flag,” or announce a nonnegative integer

nik ∈ N, i.e., mi,k ∈Mi,k ∈ {flag} ∪ N. Again there are three possibilities to consider:

1. If n− 1 or more flags are raised, then the agent j(k − 1) prescribed in σ+(θ, φ; a) is allowed

to choose an outcome from B. STOP

2. If n− 1 or more players announce zero, and

(a) if the player j(k) prescribed in σ+(θ, φ; a) is one of those who announce zero, then

implement outcome ak from sequence σ+(θ, φ; a); STOP

(b) if j(k) does not announce zero, then

i. if k < l, go to Stage k + 1;

ii. if k = l, implement outcome al+1 from sequence σ+(θ, φ; a). STOP

(c) If neither (1) nor (2) apply, then the player who announces the highest integer nik is

allowed to choose an outcome from B. STOP

Theorem C.2 (Moore and Repullo (1988)). If a social choice correspondence F satisfies Condition

C+, and n ≥ 3, then F can be implemented in subgame-perfect equilibrium.

Moore and Repullo (1988) show the above theorem by using the mechanism described above.

We note that this mechanism satisfies A3 if the set of outcomes A is finite or when each player’s

preferences over A are strict and utilities are bounded. Furthermore, the above mechanism satisfies

A3 whenever (i) the set B given in Condition C+ is a compact set of outcomes; (ii) ui : A×Θ→ R
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is continuous in a.9,10 It is worth noting that many researchers assume (i) and (ii) after appeal-

ing to Moore and Repullo’s (1988) result. This is the case for instance in Moore and Repullo

(1988)’s examples of risk-sharing (Section 6.1) or the production contract example (Section 6.2).

More importantly, it is also the case in Maskin and Tirole (1999a)’s proof of the irrelevance theo-

rems. Hence our non-robusntess result (i.e., our Theorem C.1) also apply to Maskin and Tirole’s

irrelevance theorems.

D Sufficiency for Robust Implementation: The Case of Social

Choice Correspondences (SCCs)

In Remark 3 of Section IV, we argue that Maskin monotonic social choice functions are robustly

implementable. Here we extend this argument to the case of social choice correspondences.

We need to strengthen Maskin monotonicity to the following:

Definition D.1. An SCC F satisfies strong Maskin Monotonicity if for every SCF f selected

from F and every pair of states θ′ and θ′′ such that

{(i, b)
∣∣ui(f(θ′); θ′) > ui(b; θ

′)} ⊆ {(i, b)
∣∣ui(f(θ′); θ′′) ≥ ui(b; θ′′)}

then f(θ′) ∈ F(θ′′).

Strong Maskin monotonicity is equivalent to Maskin monotonicity in many economic environ-

ments.11 For example, consider environments in which there is a private good that is both desirable

and continuously transferable. Another example is an environment in which agents have strict pref-

erences. The next definition is the no-veto-power condition, which is widely used in the literature.

Definition D.2. An SCC F satisfies no-veto-power if whenever there is an alternative c ∈ A
such that for at least n− 1 players i, ui(c; θ) ≥ ui(b; θ) for every b ∈ A, we have c ∈ F(θ).

We need one extra condition together with strong Maskin monotonicity and no-veto power.

This is the no-worst-alternative condition as defined by Cabrales and Serrano (2011):

9Then, for any β ∈ ∆(Θ),

arg max
a∈B

∑
θ̃

β(θ̃)ui(a; θ̃) 6= ∅.

We note that a one-shot deviation of player i at stage k in ΓMR allows player i possibly to fall into an integer game
at stage k where he can get any outcome in B; if he cannot fall into this integer game, he can only induce a finite
number of outcomes, say Bk, by deviating. In any case, he has a most preferred deviation, i.e.,

arg max
a∈B

∑
θ̃

β(θ̃)ui(a; θ̃) 6= ∅; arg max
a∈B∪Bk

∑
θ̃

β(θ̃)ui(a; θ̃) 6= ∅; and arg max
a∈Bk

∑
θ̃

β(θ̃)ui(a; θ̃) 6= ∅.

Then A3 is satisfied whenever (i) and (ii) hold.
10Note that A2 need not be satisfied for these mechanisms since B need not be countable. A2 was introduced only

to define sequential equilibrium in a simple manner. If one uses perfect Bayesian equilibrium instead, we believe
that A2 is not required.

11What we mean by “strong”is that we replace the first weak inequality of (∗) in the definition of Maskin mono-
tonicity with a strict one. This notion also appears in Chung and Ely (2003).
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Definition D.3. An SCC F satisfies the no-worst-alternative (NWA) condition if for each

agent i ∈ N , θ ∈ Θ and f selected from F , there exists z(i, θ, f) ∈ A such that ui(f(θ); θ) >

ui(z(i, θ, f); θ).

Let P denote the set of priors over Θ × S with the following metric d : P × P → R+: for any

µ, µ
′ ∈ P,

d(µ, µ
′
) = max

(θ,s)∈Θ×S
|µ(θ, s)− µ′(θ, s)|.

So, when we say νk → µ, we mean that d(νk, µ)→ 0 as k →∞. When Θ×S is a finite state space,

Theorem 14.5 of Fudenberg and Tirole (1991a) shows that when νk → µ as k → ∞, there exists

{pk}∞k=1 such that (1) pk → 1 as k → ∞; (2) νk({(θ, sθ)}θ∈Θ) ≥ pk for each k; and (3) for each k,

it is common pk-belief at any profile of signals sθ that θ has realized.12

We propose the following definition of robust implementation:

Definition D.4. An SCC F is robustly implementable under the complete information prior µ if

there exists a mechanism Γ = (M, g) satisfying the following two properties: for any SCF f selected

from F and any sequence of priors {νε}ε>0 converging to µ, (1) there is a sequence of sequential

equilibria {σε}ε>0 in {Γ(νε)}ε>0 satisfying limε→0 g(σε(sθ); ∅) = f(θ) for every θ ∈ Θ; and (2) for

any sequence of sequential equilibria {σε}ε>0 in {Γ(νε)}ε>0, we have limε→0 g(σε(sθ); ∅) ∈ F(θ) for

every θ ∈ Θ.

Remark D.1: The first requirement of robust implementation says that for any SCF f selected

from a given SCC F and any environment near µ, there is an equilibrium whose outcome is close to

that given by f whenever a signal profile s has strictly positive probability under µ (i.e., s = sθ for

some θ). The second requirement says that for any environment near µ, whenever a signal profile

s has strictly positive probability under µ, equilibrium outcomes are close to that of F . Both

requirements are robust analogs of the two standard requirements of implementation.13 Roughly

speaking, the first requirement embodies a version of lower hemi-continuity of the equilibrium

correspondence and the second embodies a version of upper hemi-continuity.14 As is clear from

the proof of Theorem 3, to show that Maskin monotonicity is necessary for SCCs to be robustly

implemented, we only used the second property of robust implementation and do not exploit the full

strength of robust implementation. Finally, the subsequent argument provides sufficient conditions

under which a static mechanism yields robust implementation. Hence, the result would hold if we

were to replace sequential equilibrium by Nash equilibrium in the above statement.

We are now ready to state the result:

12See Monderer and Samet (1989) and/or Fudenberg and Tirole (1991a) for the precise definition of common
p-belief.

13See, for instance, Maskin (1999) for the definition of Nash implementation.
14Property (2) in our definition says that the correspondence from priors to equilibrium outcomes has a closed graph.

In general, this is not equivalent to upper hemi-continuity. However, the closed graph property of the equilibrium
outcomes correspondence implies upper hemi-continuity if the range of the correspondence is compact (see Aliprantis
and Border (1999)).
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Theorem D.1. Suppose there are at least three players, i.e., |N | = n ≥ 3. If an SCC F satisfies

strong Maskin monotonicity, no-veto-power and the NWA condition, then F is robustly imple-

mentable.

Proof. We construct an implementing mechanism Γ = (M, g).15 For each i ∈ N , let Mi = (Θ×F)∪
(Z+ ×A) where Z+ is the set of nonnegative integers. That is, each agent is asked to report either

a state and a social choice function or an integer and an alternative. Let mθ,f denote the message

profile ((θ, f), (θ, f), . . . , (θ, f)), and mθ,f\mi the profile obtained from mθ,f by substituting mi for

agent i. We set g(mθ,f ) = f(θ). If mi = (θ′, f ′), and if there exists an alternative c ∈ A such that

ui(c; θ
′
) > ui(f(θ); θ

′
) but ui(f(θ); θ) > ui(c; θ), then we set g(mθ,f\mi) = c. (If there is more than

one such c, select one arbitrarily). For all other cases, we set g(mθ,f\mi) = z(i, θ, f(θ)) as defined

for the NWA condition.

Consider any other profile of messages m. If each mi consists of a state and a social choice

function, then choose g(m) to be an arbitrary element of F(Θ). If at least one agent has announced

an integer and an alternative, set g(m) to be the alternative named by the agent whose named

integer is the greatest (breaking ties by choosing the lowest index among those who announced the

greatest integer).

The rest of the proof can be completed by the following three steps: in Step 1, we show that for

any SCF f selected from F , there exists a good equilibrium whose outcome coincides with that of

f for any nearby environment. In Step 2, we show that any Nash equilibrium outcome is socially

desirable. In Step 3, we show that this continues to be the case in nearby environments.

For any complete information prior µ, let U(µ) denote a neighborhood around µ with respect

to metric d.

Step 1: Let µ be a complete information prior. For each SCF f selected from F , there exists a

neighborhood U(µ) for which there exists a strict Bayesian Nash equilibrium σ of the game Γ(ν)

for each ν ∈ U(µ) such that g(σ(sθ)) = f(θ) for every θ ∈ Θ.

For each SCF f selected from F and θ ∈ Θ, consider the truthful strategy of agent i as

mθ,f
i = (θ, f). This yields g(mθ,f ) = f(θ). By construction, if in state θ, agent i sends message

mi 6= mθ,f
i ,

ui(g(mθ,f ); θ) > ui(g(mθ,f\mi); θ).

Hence, mθ,f is a strict Nash equilibrium of the game Γ(θ). Define σi(s
θ
i ) = (θ, f) for each sθi ∈ Si as

agent i’s strategy of the game Γ(µ). Then σ is a strict Nash equilibrium of the game Γ(µ). Define

A[σ−i] =
{
a ∈ A

∣∣∣ ∃s−i ∈ S−i, ∃σ′i such that g(σ
′
i(si), σ−i(s−i)) = a

}
as the set of possible outcomes that can be induced by agent i’s strategy σ

′
i against σ−i. By

construction of Γ and the finiteness of S, A[σ−i] is finite. It is important to note that each agent

can only induce a finite number of outcomes, while the set of strategies may be infinite. By the

15The proof here is a modification of that of Theorem 2 of Chung and Ely (2003).
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continuity of expected utility and the finiteness of S, N , and A[σ−i], there is a neighborhood U(µ)

such that σ continues to be a strict Bayesian Nash equilibrium of the game Γ(ν) for every ν ∈ U(µ).

Step 2: Let µ be a complete information prior and σ be a Nash equilibrium of the game Γ(µ).

Then, g(σ(sθ)) ∈ F(θ) for every θ ∈ Θ.

Suppose σ is a Nash equilibrium of Γ(µ). Assume further that in σ(sθ), each player announces

the same state and SCF (θ
′
, f
′
). Then, g(σ(sθ)) = f

′
(θ
′
). In this case, we claim that f

′
(θ
′
) ∈ F(θ).

If this is not the case, by strong Maskin monotonicity, there exist a player i and an alternative a

such that ui(a; θ) > ui(f
′
(θ
′
); θ) but ui(f

′
(θ
′
); θ
′
) > ui(a; θ

′
). By construction of Γ, we can conclude

that g(σ(sθ)\(θ, f ′)) = a. Thus, σ(sθ) would not be a Nash equilibrium of Γ(θ). For any other

profile σ(sθ), there must be at least n − 1 agents who can deviate from σ(θ) and bring about a

profile in which there are at least 3 distinct messages. Thus, by construction of Γ, each of these

agents could dictatorially choose his most preferred alternative from A in state θ. But since σ(sθ)

is a Nash equilibrium of Γ(θ), it must be that for each of these players i, ui(g(σ(sθ)); θ) ≥ ui(a; θ)

for every a ∈ A. Since F satisfies no-veto-power, g(σ(sθ)) ∈ F(θ).

Step 3: Let µ be be a complete information. Suppose that σ is a strategy profile such that

g(σ(sθ)) /∈ F(θ) for some θ ∈ Θ. It is enough for our purpose to show that there must exist a

neighborhood U(µ) such that σ is not a Bayesian Nash equilibrium of the game Γ(ν) for every

ν ∈ U(µ).

Suppose σ is given such that g(σ(sθ)) /∈ F(θ) for some θ ∈ Θ. This implies that σ is not a Nash

equilibrium of Γ(θ). Hence, there exists an agent i and a strategy σ
′
i such that

ui(g((σ
′
i, σ−i)(s

θ)); θ) > ui(g(σ(sθ)); θ).

By the continuity of expected utility and the finiteness of N,S, and A[σ−i], there exists a neigh-

borhood U(µ) such that for any ν ∈ U(µ),∑
θ̃∈Θ

∑
s−i∈S−i

ν(θ̃, s−i|sθi )
[
ui(g(σ

′
i(s

θ
i ), σ−i(s−i)); θ̃)− ui(g(σi(s

θ
i ), σ−i(s−i)); θ̃)

]
> 0.

This implies that σ is not a Bayesian Nash equilibrium of Γ(ν) for every ν ∈ U(µ).
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