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Abstract

This paper explores the problem of assembling capital for projects. It can

be difficult to assemble capital, when it is disaggregated, for a project that

exhibits increasing returns. Small investors may be reluctant to participate,

as they may question the ability of the project owner to raise the additional

capital he requires. This suggests the possibility that agents with blocks of

capital (capital that is already aggregated) might earn rents. Similarly, agents

with “network capital” — that is, an ability to aggregate the capital of others

— may earn rents. In this paper, we develop a simple theory of the rents

attached to capital assembly, and discuss the implications for a range of issues

from investment, to growth, to inequality.
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1 Introduction

This paper explores the problem of assembling capital for projects. Under the usual

economic assumption of decreasing-returns-to-investment, this problem does not

arise; but when there are increasing returns over some range, investors may only

be willing to invest in projects when they believe others are willing to do so. In

such instances, assembling capital (or coordinating investors) is a relevant — and

often critical — consideration. This paper addresses the issue by viewing the pro-

cess of assembling capital as part of the equilibrium, and it explores the conse-

quences of capital assembly for a range of features of investment. One striking

implication is that certain agents who possess a privileged network position can

use their “network capital” to improve overall investment and they receive outsize

returns for doing so. Our theory also predicts that investors with blocks of capi-

tal will serve as anchor investors for projects and earn higher rates of return than

small investors.

Our theory speaks to a fundamental aspect of the investment process that exist-

ing models fail to address. In contrast to existing theories, which assume surplus

maximization, we emphasize the importance of scarce resources — network cap-

ital and block capital — for the execution of valuable projects. This implies that

these resources earn rents — potentially large ones — in market equilibrium. It

also implies that institutions may be important, as they may affect the supply of

these scarce resources, and hence the extent to which valuable projects are imple-

mented.

We analyze a model in which a project owner tries to raise capital for a project

that exhibits increasing returns over some range. We first show that by making an

anchor investment in the project, a large investor with a block of capital can move

the project from a “bad” equilibrium with low investment to a “good” equilibrium

with high investment. Since a large investor spurs others to invest by making an

anchor investment, he need not finance the entire shift to the good equilibrium

himself. We characterize the minimum capital block-size needed to effect a shift to

the good equilibrium — as well as the rate of return earned on such an investment.

Interestingly, by holding a subordinated claim rather than a senior claim (equity

or junior debt), a large investor can move the project to the good equilibrium with
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a smaller block of capital.1

We then consider the possibility of a central network actor generating a rent by

coordinating small investors on a high level of investment; and we discuss how

this might be micro-founded.

A key goal of the paper is to develop a simple approach to the problem of capital

assembly and increasing returns that can be applied in a variety of settings. The

details of our analysis, while subtle, can largely be ignored once they have been

considered. Our formal model is game-theoretic; but it boils down to a model that

is essentially price-theoretic.2 We present this simpler, price-theoretic treatment in

Section 2 and our formal model in Section 3.

There are many “real-world” examples that illustrate the capital-assembly prob-

lem.

Consider the founding of Federal Express by entrepreneur Fred Smith. Its es-

tablishment required significant capital investment upfront. Before the company

could even open its doors, it needed to have in place a fleet of jets, a central hub

with sorting facilities, and pickup and delivery operations in twenty-five cities.

Furthermore, capital was needed to cover the losses the company could expect to

run for the first several years (four, as it turned out) while it built up demand for its

service. While the company eventually became a great success, obtaining investor

participation early on was “like herding cats,” according to Charlie Lea, a venture

capitalist who worked with Smith.3

Smith relied heavily on his social connections to coordinate investors on the

idea of his company. A graduate of Yale, he had been a member of Skull and Bones,

where he befriended both George W. Bush and John Kerry; and he established

valuable contacts in the airline industry running a business with his stepfather

that bought and sold jets. Smith was also a talented communicator and salesman.

As one early FedEx employee put it: “Fred turned on the charm in a way that few

others can match.”4

1A subordinated claim facilitates coordination; but a large investor may prefer a senior claim if
the project is risky. See the conclusion for further discussion.

2Bulow and Roberts (1989)’s paper on optimal auctions has a similar aim. They develop a rig-
orous mechanism-design model but show that their results can be reinterpreted in the language of
standard micro theory.

3Frock (2006), p. 105.
4Frock (2006), p. 62.
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The success of the company also depended heavily upon Smith’s ability to as-

semble a top-notch management team; this task involved coordination as well. For

instance, FedEx’s initial COO Roger Frock remarked: “How could I even consider

joining Fred in his crazy scheme?...I...knew that Art’s [head of air operations] broad

vision and mellow personality would be tremendous assets for Federal Express.”5

Warren Buffett’s investment in Goldman Sachs provides a good illustration of

the power of blocks of capital. In September of 2008, soon after the collapse of

Lehman Brothers, Buffett agreed to provide Goldman with $5 billion of capital.

His investment, plus the additional $2.5 billion Goldman was able to raise from

small investors on the back of his investment, helped Goldman weather the fi-

nancial crisis. The deal was made on very favorable terms to Buffett. Berkshire

Hathaway (Buffett’s company) received a 10% annual dividend on its “perpetual

preferred” stock, plus warrants to buy $5 billion of common stock at 8% percent be-

low the previous day’s closing price.6 By comparison, the investors who provided

the additional $2.5 billion dollars did not receive nearly as favorable terms.

There is empirical support for the idea that social connections yield substantial

returns. Hochberg et al. (2007), for instance, find that socially connected venture

capital firms do especially well. The VC industry, in general, is characterized by

strong network ties among VC firms that typically syndicate their deals with oth-

ers. Hochberg et al. (2007) find that the “centrality”7 of VCs in their network in-

crease their internal rates of return from 15% to 17% for a one standard-deviation

increase in centrality. Similarly, they find that the more central a VC firm, the bet-

ter the performance of its portfolio companies. A one standard deviation change

in VC centrality increases the probability that a portfolio company survives its first

funding-round from 66.8% to 72.4%. A possible interpretation of their findings is

that VC firms provide startups with network capital in exchange for a share of

their returns.

There is a large literature on investment, ranging from so-called “Q-theory” to

lumpy-investment models (see Akerlof and Holden (2016), footnotes 3 and 4 for

some notable references). Relative to those papers, we focus specifically on a set-

5Ibid., p. 95.
6Bary, Andrew, “Warren Buffett Makes an Offer Goldman Sachs Can’t Refuse,” The Wall Street

Journal 28 September 2008, Retrieved from http://www.wsj.com.
7In the sense of “eigenvector centrality” (Bonacich (1972)).

3

http://www.wsj.com


ting in which there are increasing returns and we emphasize the strategic aspects

of capital assembly.

Increasing returns naturally brings to mind the trade literature on the subject

— especially Krugman (1980, 1981), Helpman (1981), and Helpman and Krugman

(1985). These models focus on a different issue from our paper. They assume, in

contrast, that the efficient scale can easily be achieved. They explore the tradeoff

between efficiency (which is achieved by industries being large) and variety (for

which consumers have a preference).

Closer to us, a different strand of papers considers the possibility that increas-

ing returns can generate multiple equilibria. For instance, Murphy et al. (1989)

propose this as a reason for poverty traps.8

There is also a literature on contribution games, beginning with Admati and

Perry (1991). Andreoni (1998) particularly relates to our paper. In a charitable-

giving context, he considers the role of a large contributor or government in achiev-

ing successful coordination. Relative to these papers, the novel features of our

analysis are our focus on an investment context and our examination of the rents

associated with playing a pivotal role in coordination.9

Building on the work of Segal (1999), who initiated a literature on contract-

ing with externalities, Bernstein and Winter (2012) and Sakovics and Steiner (2012)

study settings where large players can earn rents because of the positive externali-

ties they impose on smaller players. An example would be a shopping mall opera-

tor offering a discounted rental rate to a national brand store due to its importance

in driving traffic to smaller stores.10

There is a large literature in corporate finance on the value of controlling blocks

and large shareholders (see Grossman and Hart (1980) and Shleifer and Vishny

(1986) for early contributions and Becht et al. (2003) for further discussion and

8By contrast, Romer (1986) considers increasing returns that come from technological rather
than pecuniary externalities. Relatedly, Aghion and Howitt (1992) emphasize the fact that techno-
logical innovations improve the quality of products, rendering previous, inferior ones, obsolete.

9There is also a literature on “catalytic finance” which, unlike us, considers the role of a large,
non-strategic player, such as the IMF, in avoiding coordination failures in a non-market setting (see,
for instance, Corsetti et al. (2006) and Morris and Shin (2006)).

10Our setting differs since all players impose externalities on all others (those externalities being
proportional to players’ size). Bernstein and Winter (2012)’s and Sakovics and Steiner (2012)’s
argument why the large player earns rents does not apply in our setting. In our theory large players
earn rents for a different reason: their particular ability to play a coordinating role.
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references). In these models, the value of large stakes comes from control rights;

but there is scant consideration of the coordination problems involved in raising

capital.

The most closely related paper is Akerlof and Holden (2016). In that paper, we

consider a specific setting in which a networked agent — a “mover and shaker”

— can increase aggregate investment and earn a rent. This paper gives a far more

general treatment of the capital-assembly problem; it is also much simpler. We ac-

complish this by stripping out informational considerations and focusing squarely

on agents’ coordination problem (using risk dominance rather than global games

as a refinement concept). Our methodology does not require us to make any as-

sumptions about the shape of production functions. It reveals the importance of

block capital as well as network capital for coordinating investors. Importantly, we

are also able to embed our analysis within a market and study the nature of equi-

librium: both how block capital and network capital are deployed and the rents

they command.

The remainder of the paper is organized as follows. Section 2 gives the simple

price-theoretic treatment of our model. Section 3 develops the model more for-

mally. We first examine the role a large investor can play in assembling capital for

a project; we then embed our analysis in a market setting (with multiple projects)

and analyze the market equilibrium; finally, we consider the role that networked

agents can play and examine the returns to network capital. Section 4 discusses

a set of issues related to network capital such as: how it is acquired and whether

agents can invest in it. Section 5 considers some issues raised by our theory and

contains some concluding remarks.

2 A simple treatment of the capital-assembly problem

Imagine a project owner is trying to assemble capital for a project. When k units

of capital are invested in the project, it yields a return f(k). Our theory can handle

production functions with any shape; for the purposes of illustration, though, as-

sume f(k) has the shape shown in Figure 1.11 The production function in Figure 1

11For a discussion of how our theory generalizes to f(k) of any shape, see Section 3.4.
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exhibits increasing returns for intermediate values of k and decreasing returns for

high and low values of k.

kL kH 

Line 1 

Line 2 

f(k) 

k 

slope = 1 + rmkt  

k kM 
1 kM 

2 kM 
3 

Δ1 

Δ2 

Figure 1 – An example

Case 1: Small investors only

Suppose there are many risk averse investors, each with only a small amount

of capital. They can invest in the project or earn a market rate of interest, rmkt.

We will show in the next section that there are two equilibria, one good and one

bad; however, the bad equilibrium is likely to prevail. In the bad equilibrium, the

project owner obtains kL units of capital at the market interest rate and receives

a payoff of ∆1. In the good equilibrium, the project owner receives the surplus-

maximizing amount of capital, kH , at the market interest rate and receives a payoff

of ∆2 > ∆1.

Why is the bad equilibrium likely to prevail? Observe that there is a region

in which the project is in the “red,” yielding an insufficient return to pay off in-

vestors (f(k) < (1 + rmkt)k). In Figure 1, this is the region between k1
M and k3

M , in

which f(k) dips below Line 1. Investors take a risk when they try to coordinate

on lending kH rather than kL, since the project may end up in the region in which

it is undercapitalized and in the “red.” In game-theoretic terms, the bad equilib-
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rium “risk dominates” the good one. There is a large literature showing that risk

dominant equilibria tend to be focal.12

To summarize, we find that a bad equilibrium, with a kL-level of investment, is

likely to prevail when capital is disaggregated (i.e., investors have only negligible

amounts of it).

Case 2: One large investor

Let us assume now that, in addition to small investors, there is a large investor

with a block of capital of size kblock.

A large investor with a block of capital can potentially ensure the optimal level

of investment (kH). It is obvious that he can do so if kblock ≥ kH ; but he may be

able to bring about the optimal level of investment even if he is unable to fund the

entire project. For instance, a block of size k3
M−k1

M is adequate. Small investors are

happy to lend when the project is in the “black”; there is only reluctance to lend

between k1
M and k3

M , when the project is in the “red.” A block of size k3
M − k1

M is

enough to bridge this gap.

In fact, it turns out that the large investor can bring about the good equilibrium

with less capital still. It is sufficient to have a block of size k (k is graphically

represented in Figure 1). Suppose the large investor loans k for the project and,

additionally, enables the project owner to pay off small investors first. (This could

be achieved either by taking junior debt or equity in the project.) Small investors

are paid off in this scenario so long as f(k) does not dip below Line 2. f(k) is

tangent to Line 2 at k2
M but never dips below; hence, small investors are certain to

be paid off. Since small investors need not worry about being paid off, they will be

willing to provide the project owner with the additional capital he needs to reach

the good equilibrium.

Therefore, a large investor with a block of size kblock ≥ k can generate a surplus

of size ∆2 −∆1.

Market rates of return: large versus small investors

Consider next a market setting, with many projects, in which interest rates are

12For notable early contributions see Cooper et al. (1990) and Huyck et al. (1990).
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endogenous. In a competitive capital market, if block capital is scarce, large in-

vestors earn higher rates of return than small investors. Large investors receive, in

addition to rmkt, the surplus their blocks help generate.

For example, an investor with a block of size k who invests in a project of the

type shown in Figure 1 receives (1 + rmkt)k+ (∆2−∆1).13 He therefore earns a rate

of return:

r = rmkt +
∆2 −∆1

k
.

The difference between large investors’ and small investors’ rates of return is

potentially quite significant. A numerical example helps to illustrate. Figure 1

corresponds to a particular numerical example in which rmkt = 5% and f(k) =

2.55k − 0.0975k2 + 0.0016k3 − 0.0000075k4. In the good equilibrium, kH = 100 and

∆2 = 25; in the bad equilibrium, kL = 10 and ∆1 = 6.775. The block size needed

to reach the good equilibrium is k = 14.881. It follows that r = 127.5%. Therefore,

while a small investor earns a return of 5%, an investor with a block of size k earns

a return of 127.5%.

Network Capital

Suppose investors are networked. It might be possible for a central network

actor (C) to use his position to coordinate small investors on a high level of invest-

ment. Agent C substitutes for a block investor; hence, he should earn an equivalent

rent in a market equilibrium (i.e., ∆2 − ∆1 if the block investor for which he sub-

stitutes receives a rent of ∆2 −∆1).

We can think of agent C as possessing “network capital” and we can think of

∆2 −∆1 as the rent agent C earns on his network capital.

3 The formal model

This section develops the model more formally. It is organized along similar lines

to Section 2. Sections 3.1 through 3.4 consider a setting in which a project owner is

13The project owner receives a payoff of ∆1. Because of competition between project owners to
obtain block capital, the block investor receives the entire surplus from reaching the good equilib-
rium (∆2 −∆1).
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trying to raise capital from investors. We initially assume that there are only small

investors; we then show that a large investor can improve the overall level of in-

vestment. Section 3.5 moves to a market setting, with many projects, and examines

the market equilibrium. Interest rates are endogenous (in contrast to Sections 3.1

through 3.4). Finally, Section 3.6 discusses network capital and proposes one pos-

sible micro-foundation.

3.1 Setup

The owner of a project is trying to raise capital from a set of potential investors

(i ∈ 1, 2, ..., n). Each investor possesses a small amount of capital, δ.

At time 1, the project owner decides (i) how much capital he will try to raise

(kP ≥ 0) and (ii) the interest rate (rP ≥ 0) he will pay to those who invest in the

project. We assume the project owner’s capital target, kP , must be a multiple of δ

(kP ∈ {0, δ, 2δ, 3δ, ...}).

At time 2, after observing the project owner’s choices, potential investors si-

multaneously decide under what circumstances they are willing to invest in the

project. Each investor chooses ai(κ) ∈ {0, 1} for all values of κ < kP that are multi-

ples of δ. ai(κ) = 1 indicates that investor i is willing to invest if the project owner

has raised κ units of capital at the point he approaches i.

At time 3, the project owner approaches investors in a random order. Agent

i becomes an investor in the project if, when approached, he is willing to invest

(ai(κ) = 1) and the project owner has yet to meet his capital target kP (κ < kP ). Let

k denote the total amount of capital raised at time 3.

At time 4, the project yields a return f(k). The project owner receives f(k) −
(1 + rP )k when the project is in the “black” (that is, when f(k)− (1 + rP )k ≥ 0) and

0 when the project is in the “red.” Agents who invested in the project receive a rate

of return rP when the project is in the “black”; they receive equal shares of f(k)

when the project is in the “red,” with an associated rate of return f(k)
k
− 1. Agents

who do not invest in the project receive the market rate of interest, rmkt.

The project owner is risk neutral. Investor i’s utility is given by u(wi), where wi
denotes the final wealth of investor i. u is strictly increasing and weakly concave:
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u′ > 0, u′′ ≤ 0. wi is equal to δ(1 + ri), where ri is investor i’s rate of return. As a

tie-breaking rule, we assume, for ease of later exposition, that investors prefer all

else equal to choose a(κ) = 1 when there is a possibility of being approached by a

project owner who has raised κ and a(κ) = 0 otherwise.

We make a set of simplifying assumptions regarding f(k). Under these as-

sumptions, f(k) resembles the production function in Figure 1. Later, we will dis-

cuss how our analysis can be generalized. Let π(k) = f(k) − (1 + rmkt)k. We

assume:

1. π(k) is continuous and π(0) = 0.

2. π(k) has its global maximum at kH ≤ nδ and π(kH) = ∆2.

3. π(k) also has a local maximum at kL < kH and π(kL) = ∆1.

4. π(k) < 0 if and only if k1
M < k < k3

M , where δ < kL < k1
M < k3

M < kH .

5. π(k) has its global minimum at k2
M and π(k2

M) = −∆3.

6. δ < min( ∆3

1+rmkt
, k3

M − k1
M − ∆3

1+rmkt
).

7. kL, kH , k1
M , k2

M , k3
M , and ∆3

1+rmkt
are all multiples of δ.14

3.2 Analysis

Let us compare two strategies the project owner might follow. Strategy 1: set out

to raise kL at the market rate of interest (kP = kL and rP = rmkt). Strategy 2: set out

to raise kH at the market rate of interest (kP = kH and rP = rmkt). (We will later

discuss whether there might be a third strategy that is preferable to these two.)

First, consider what happens when the project owner follows Strategy 1.

Proposition 1. Suppose, at time 1, the project owner sets out to raise kL at interest rate

rmkt. In the unique Nash equilibrium of the time-2 subgame, the project owner successfully

raises kL and receives a payoff of ∆1.

14We make Assumption 6 purely for ease of exposition, in order to avoid “integer issues.”
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The project owner only seeks to raise kL and the project is in the black for all

k ≤ kL. Therefore, the project owner has no trouble raising kL from investors.

Now, consider what happens when the project owner follows Strategy 2.

Proposition 2. Suppose, at time 1, the project owner sets out to raise kH at interest rate

rmkt. There are two Nash equilibria of the time-2 subgame:

1. In one, the project owner only raises k1
M and receives a payoff of 0.

2. In the other, the project owner successfully raises kH and receives a payoff of ∆2.

The time-2 subgame is a coordination game with two equilibria. In Equilibrium

1, investors are willing to invest up to the point the project dips into the red (ai(κ) =

1 if and only if κ < k1
M ); this results in the project owner raising k1

M . In Equilibrium

2, investors are willing to invest even when the project is in the red (ai(κ) = 1 for

all κ); this results in the project owner raising kH .

Observe that Strategy 1 yields a higher payoff if Equilibrium 1 prevails while

Strategy 2 yields a higher payoff if Equilibrium 2 prevails. As we will see presently,

Equilibrium 1 risk dominates Equilibrium 2. Therefore, the project owner has good

reason to think Equilibrium 1 will prevail and he has good reason to select Strategy

1.

Harsanyi and Selten (1988)’s concept of risk dominance captures the idea that

certain equilibria in coordination games may be less risky than others. Suppose a

2x2 coordination game has two pure-strategy Nash equilibria, (U,U) and (D,D).

Players may be uncertain whether the other player intends to playU orD. Harsanyi

and Selten say that (U,U) risk dominates (D,D) if players prefer to play U when

the other player chooses U with probability 1
2

and D with probability 1
2
.

Harsanyi and Selten’s original paper defines risk dominance for 2x2 games

only; however, an equilibrium concept proposed by Kets and Sandroni (2015) —

“introspective equilibrium” — generalizes their idea.15. Introspective equilibrium

is based upon level-k thinking (see Crawford et al. (2013) for a survey). Kets and

Sandroni assume that each player has an exogenously-given “impulse” which de-

termines how he plays at level 0. At level k > 0, each player formulates a best
15Several papers have suggested generalizations of risk dominance, such as Morris et al. (1995)

and Kojima (2006). Our reason for using Kets and Sandroni (2015)’s version of risk dominance is
that it permits a natural interpretation of “network capital” in Section 3.6.
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response to the belief that opponents are at level k − 1. Introspective equilibrium

is defined as the limit of this process as k →∞.

Introspective equilibrium nests risk dominance as a special case. It corresponds

to the case where players are uncertain regarding each others’ impulses. When

players are uncertain regarding each others’ impulses, they face the type of strate-

gic risk envisioned by Harsanyi and Selten.

With this in mind, we make the following two assumptions regarding im-

pulses:16

1. With probability θ, an investor’s impulse is to always invest (ai(κ) = 1 for all

κ); with probability 1 − θ, an investor’s impulse is to never invest (ai(κ) = 0

for all κ).

2. It is common knowledge that θ is drawn from the uniform-[0, 1] distribution.

Under these assumptions, Equilibrium 1 is the unique introspective equilib-

rium of the time-2 game (see Proposition 3). In this sense, it risk dominates Equi-

librium 2.

Proposition 3. Suppose the project owner follows Strategy 2 at time 1. For all realizations

of investors’ impulses, Equilibrium 1 is the unique introspective equilibrium of the time-2

subgame.

Hence, when investors follow the introspective equilibrium, the project owner

prefers Strategy 1 to Strategy 2. A remaining question is whether there might be

a Strategy 3 that the project owner prefers to both Strategies 1 and 2. Clearly, it

would not be optimal to offer an interest rate below the market rate since this

leads to zero investment. It might be optimal, though, to offer a rate greater than

rmkt. Doing so might get agents to overcome their fear of investing in the project

when it is in the red. Specifically, Strategy 3 would involve offering an interest rate

r̃ > rmkt and seeking to raise k̃ = arg maxk[f(k)− (1 + r̃)k].

Proposition 4 (stated below) says that, if agents are sufficiently risk averse,

Strategy 1 is optimal. There are two reasons for this result. First, if agents are

16These assumptions are meant to mirror Harsanyi and Selten’s definition of risk dominance.
However, our results (in particular, Proposition 3) are robust to a wide range of assumptions re-
garding impulses.
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sufficiently risk averse, no above-market interest rate will induce agents to invest

when the project is in the red. Second, even if it is possible to induce agents to

invest in the project when it is in the red, it may require paying a high interest rate.

If r̃ is large, the project owner’s payoff from raising k̃ at rate r̃ will be less than the

payoff from following Strategy 1 (∆1). In other words, the cost to the project owner

of paying the higher interest rate may exceed the benefit.

Proposition 4. Suppose investors follow the introspective equilibrium at time 2. There

exists a ρ such that the project owner prefers Strategy 1 to any other strategy whenever

investors’ risk aversion exceeds ρ (that is, ρ(w) > ρ for all w, where ρ(w) = − u′(w)
u′′(w)

denotes investors’ coefficient of absolute risk aversion.)

Henceforth, we will assume that investors follow the introspective equilibrium.

We will also focus on the case where Strategy 1 is optimal. We focus on this case

for simplicity; but a version of our argument regarding the value of block capital

goes through even when Strategy 3 is optimal. In that case, block capital reduces

the interest rate the project owner needs to pay to small investors.

3.3 A large investor

Suppose that, in addition to small investors, there is one large investor with a block

of capital of size kblock (where kblock is a multiple of δ). The large investor has the

same utility function as small investors; and, like small investors, his outside op-

tion yields a rate of return rmkt. At time 1, the large investor can make a loan to the

project owner. A loan contract between the project owner and the large investor

specifies five things:

1. The loan size (klarge ≤ kblock).

2. The interest rate (rlarge).

3. Whether the loan is junior seniority or standard seniority.

4. The point at which the loan is to be made (κlarge).

5. The amount of capital the project owner will try to raise from small investors

(kP ) and the interest rate he will pay them (rP ).
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Points 3 and 4 require further elaboration. We assume the loan can either be

junior seniority or standard seniority. If it is junior seniority, the large investor gets

paid off after small investors. If the loan is standard seniority, the large and small

investors have the same seniority; when the project is in the red, the large investor

receives a fraction of f(k) proportional to the amount of capital he loaned (klarge
k

).

κlarge denotes the point at which the large investor makes a loan. We assume

that the large investor puts klarge into the project at the point the project owner has

raised κlarge from small investors. If the project owner never manages to raise κlarge
from small investors, the large investor does not put capital into the project and he

earns the market rate of interest on kblock.

We assume that the project owner and the large investor engage in Nash bar-

gaining over the contract and have equal bargaining power.

Analysis

If a large investor has sufficient capital, he can help the project owner reach kH .

For instance, if kblock ≥ kH , the large investor can loan the project owner all the

capital he needs (klarge = kH).

It is natural to ask how large kblock must be in order for the large investor to help

the project owner reach kH . First, suppose the large investor makes a standard-

seniority loan. A block of size k3
M − k1

M − δ is sufficient in this case. The large

investor can lend k3
M − k1

M − δ after the project owner has raised k1
M from small

investors (klarge = k3
M − k1

M − δ and κlarge = k1
M + δ), thereby bridging the region

where the project is in the red and small investors are unwilling to invest. If the

block size is any smaller, though, it is impossible to reach kH .

Now suppose the large investor makes a junior-seniority loan. To reach kH ,

the block only needs to be large enough to ensure that small investors are paid

off. It is easily shown that the minimum block-size that is sufficient to reach kH is

k = ∆3

1+rmkt
and k < k3

M − k1
M − δ. The block can be invested before — or just after

— the project owner has raised k1
M from small investors: κlarge ≤ k1

M + δ.

This leads to Proposition 5.

Proposition 5. The following describes the equilibrium when there is a large investor:

1. The project owner raises a total of kH if kblock ≥ k; the project owner raises kL
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otherwise.

2. The large investor’s payoff is equal to (1 + rmkt) · kblock + ∆2−∆1

2
if kblock ≥ k; the

large investor’s payoff is (1 + rmkt) · kblock otherwise.

3. When kblock ≥ k, the contract between the project owner and the large investor

involves a loan of size klarge ≥ k. Furthermore, the loan is of junior-seniority if

klarge < k3
M − k1

M − δ.

Observe that if the large investor is able to help the project owner reach kH (i.e,

kblock ≥ k), he earns a higher rate of return than small investors. In addition to

earning rmkt, he receives half of the surplus associated with reaching kH (∆2−∆1

2
).

Discussion

We have assumed that the large investor makes his investment decision before

small investors (at time 1 rather than time 2). Does the large investor, in fact, have

an incentive to move early and serve as an anchor investor in the project?

First, observe that small investors do not have an incentive to move early. Small

investors cannot help the project owner reach kH by moving up the timing of their

investment decisions since they have less than k units of capital.

On the other hand, the large investor does have an incentive to move early.

By moving early, he is able to reduce strategic uncertainty for small investors and

thereby increase their willingness to invest. Furthermore, by reducing the strategic

uncertainty faced by small investors, he also reduces the strategic uncertainty he

himself faces. Consequently, by moving early, the large investor can help the project

owner reach kH with a smaller block of capital.

3.4 Generalizing

For ease of exposition, we restricted attention to production functions resembling

the one in Figure 1. Our analysis easily generalizes, though.

For instance, Figure 2a shows a production function that exhibits increasing

returns for low values of k rather than intermediate values of k. There is still a

“good” equilibrium and a “bad” equilibrium. In the bad equilibrium, zero capital
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is invested in the project. In the good equilibrium, kH is invested in the project. The

good equilibrium generates a surplus of ∆; a block of capital of size k is needed in

order to reach it since f(k) dips into the red — down to Line 2 — between k = 0

and k = kH .

Figure 2b shows a more complicated production function. π(k) = f(k) − (1 +

rmkt)k has three local maxima — at kL, kM , and kH . The project owner can reach

kL without any help from a block investor because the project is in the black for

all k ≤ kL. To reach kM , the project owner must obtain some help from a large

investor since the project dips into the red between kL and kM . The project dips

down to Line 2 and hence a block of size k1 is required to reach kM . To reach kH ,

the project owner must obtain a larger block (of size k2) because the project dips

further into the red — down to Line 3 — between kM and kH .

Proposition 6 provides a more formal statement of how our results generalize.

Proposition 6. Consider a project with a production function f(k). Suppose, at time

1, the project owner receives a junior-seniority, anchor investment of size k from a large

investor at an interest rate rlarge and sets out to raise an additional k∗ − k in capital from

small investors at the market interest rate. In the resulting time-2 subgame, the project

owner succeeds in raising k∗ − k from small investors if and only if:

f(k)− (1 + rmkt)(k − k) ≥ 0 for all values of k ≤ k∗ that are multiples of δ.

3.5 Market Equilibrium

Our focus thus far has been on a single project and we have taken interest rates

as exogenous. It is natural at this point to consider a market setting with many

projects, in which interest rates are endogenous, and ask what a market equilib-

rium might look like.

A benchmark case to consider is a market with the following features:

1. There are multiple types of projects (where a project’s type is defined by its

production function); there are many projects of any given type.

2. Each project has a different owner.
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3. A set of potential investors possess blocks of capital of varying sizes.

4. Potential investors prefer to invest their capital — rather than consume it —

if they can earn an interest rate greater than or equal to r0.

5. In aggregate, potential investors possess an infinite (or very large) amount of

capital.

6. Block capital is scarce, however: for any k, there is a finite amount of capital

in blocks of size k or greater.

What can we say about the market equilibrium? First, an investor’s rate of

return will depend upon the size of his capital block. Let rmkt(k) denote the rate of

return on a block of size k.

Second, larger blocks will earn (weakly) more than smaller blocks in the fol-

lowing sense:

rmkt(k1 + k2) · (k1 + k2) ≥ rmkt(k1) · k1 + rmkt(k2) · k2 for all k1, k2.

This follows from the fact that blocks can always be broken up into smaller pieces.

Third, there will be some threshold, k̂, such that rmkt(k) = r0 for k < k̂ and

rmkt(k) > r0 for k ≥ k̂. Investors with blocks of size k̂ or greater will serve as

anchor investors for projects and thereby earn more than r0. Investors with smaller

blocks will not serve as anchor investors.

Fourth, anchor investors capture all of the surplus their blocks help to gener-

ate. For instance, suppose in the market equilibrium a project receives an anchor

investment of size k. Suppose further that this anchor investment increases the

overall level of investment in the project from kL to kH , generating a surplus of

size ∆2 −∆1. Then:

rmkt(k) = r0 +
∆2 −∆1

k
.

The reason block investors capture all of the surplus is that the supply of block

capital is scarce relative to projects. By contrast, in Section 3.3, the surplus (∆2−∆1)

was equally divided between the anchor investor and the project owner.

Finally, blocks will be deployed in equilibrium on the projects that maximize

the size of the associated surplus (∆2 − ∆1). Given the scarcity of block capital,
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many projects will be undercapitalized in equilibrium. Furthermore, depending

upon block interest rates, a project of the type shown in Figure 2b might be funded

up to kM (rather than kL or kH).17

As a final note: Assumptions 1-6 are clearly strong and it is important to re-

member that they are only meant to serve as a benchmark. In particular, one could

imagine settings where there are relatively few projects or where block capital is

abundant. In such a setting, ∆2 −∆1 might by partially or wholly captured by the

project owner.

3.6 Network Capital

If investors are networked, a central network actor might be able to coordinate a

group of small investors on a high level of investment, forgoing the need to obtain

help from a large investor. Given that central network actors can substitute for

large investors, we would expect them to earn rents on their “network capital”

equivalent to those earned by large investors.

Below, we propose one possible micro-foundation of network capital based

upon the idea that agents can flip the “impulses” of those to whom they are con-

nected.

A Formal Model

Consider the setting described in Section 3.3; but in place of a large investor,

imagine there is a central network actor (C) — who possesses no capital — with

whom the project owner can contract at time 1. Agent C is connected to M small

investors, possessing M · δ units of capital. At negligible cost, agent C can make

publicly observable changes to the impulses of investors to whom he is connected.

In particular, agent C can ensure that: (i) an investor has the impulse to “always

invest” and (ii) this impulse is common knowledge.

17The owner of a project of the type shown in Figure 2b will base his decision of how much capital
to obtain on the interest premiums on blocks of capital of size k1 and k2. If the project owner obtains
kL units of capital, his payoff is f(kL)− (1 + rmkt(0))kL. If the project owner obtains kM (kH ) units,
his payoff is f(kM )−(1+rmkt(0))kM−(rmkt(kM )−rmkt(0))k1 (f(kH)−(1+rmkt(0))kH−(rmkt(kH)−
rmkt(0))k2). The project owner will choose the level of funding so as to maximize his payoff.
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Imagine the project owner and agent C can write a contract specifying the fol-

lowing:

1. The number of investors, m ≤ M , that agent C will guarantee have the im-

pulse to “always invest.”

2. A payment to agent C, taking the form of a junior-seniority stake in the

project of size T .

3. The amount of capital the project owner will try to raise from small investors

(kP ) and the interest rate he will pay them (rP ).

If agent C instills the impulse to invest in enough investors (m ≥ k3M
δ

), it be-

comes possible for the project owner to raise kH at the market interest rate, rmkt.18

Hence, agent C can help the project owner reach kH if he has sufficient connections

(M ≥ k3M
δ

). This leads to Proposition 7.

Proposition 7. If the networked agent (C) has sufficient connections (M ≥ k3M
δ

), in equi-

librium:

1. The project owner raises a total of kH from small investors at the market interest rate.

2. Agent C’s payoff, T , is equal to ∆2−∆1

2
.

We can think of M as agent C’s network capital. Proposition 7 says that agent

C will earn a rent (of size ∆2−∆1

2
) if he has a sufficient amount of network capital

(M ≥ k3M
δ

).

It is worth making two comments. First, agent C only obtains half the surplus

associated with reaching kH (due to Nash bargaining). However, in a market set-

ting where block capital and network capital are both scarce, agent C would obtain

the entire surplus.

18In Section 3.2, we found that the project owner would fail if he tried to raise kH at the market
interest rate: he only raises k1M in the unique introspective equilibrium of the time-2 subgame. The
project owner fails because investors believe that, with some probability, the aggregate impulse to
invest is low. If m ≥ k3M

δ , however, agent C ensures that the aggregate impulse to invest is high.
The project owner therefore succeeds in raising kH in the unique introspective equilibrium.
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Second, the project owner and agent C can contract on m. In other words, they

can contract over how much effort agent C will exert to change investors’ impulses.

In some settings, it might be hard to write such contracts. When such contracts are

hard to write, we would expect agents with network capital to become project

owners as a way of getting around the problem. In Akerlof and Holden (2016),

we find that the most highly connected agent becomes the project owner; this is

due to an implicit assumption that the effort exerted by connected agents is non-

contractible.

4 Discussion

A large economic literature — pioneered by Mincer (1958) and Becker (1962) —

observes that a variety of seemingly disparate activities (for example: on-the-job

training or college education) can profitably be thought of as investments in hu-

man capital and analyzed using a cohesive framework. This literature has ana-

lyzed issues such as: the economic returns to human capital, the optimal level of

investment, the incentive of firms to provide it, whether human capital depreci-

ates, and its role in understanding inequality and economic growth.

In this paper we develop an analogous concept: network capital. We will now

make a few remarks.

1. People can invest in network capital, just as they can invest in human cap-

ital.19 Business schools are a notable example. According to The Economist:

“Business school gives one many advantages...but perhaps the most impor-

tant of all is a network of other successful people.”20 Networking is a huge fo-

cus of MBA students’ time, and some schools (e.g. London Business School)

even offer workshops on how to do so effectively.21

19Glaeser et al. (2002) provide empirical support. In contrast to Putnam (1993) who pioneered the
study of social capital, Glaeser et al. (2002) focus on the investment decisions of individual actors
rather than aggregate group outcomes. Glaeser et al. (2002) find, for instance, that individuals put
more effort into making social connections in occupations where social skills are more important
and that mobility reduces people’s effort at making connections.

20“Network effects: A ranking of business schools’ alumni,” The Economist 6 February 2015, Re-
trieved from http://www.economist.com.

21Pozniak, Helena, “MBAs and the power of networking,” The Independent 10 April 2013, Re-
trieved from http://www.independent.co.uk.
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2. Cultural background and upbringing — which sociologists often refer to

as “cultural capital” — affect one’s ability to form ties (see Bourdieu and

Passeron (1977)). In this sense, one’s background affects one’s ability to in-

vest in network capital. Therefore, one can think of “cultural capital” as a

precursor to network capital.

3. Because relationships need to be tended to, network capital can depreciate

over time, in a similar manner to physical and human capital.

4. People can invest in network capital, but they can also have network capital

conferred on them (through the investments of others).

5. It may be particularly valuable to connect to highly-connected people (see

Akerlof and Holden (2016) for one rationale). Consequently, some people

may become and remain highly connected purely as a result of luck.

6. When agents invest in network capital, there are externalities. Such invest-

ments affect the overall supply of network capital — not just an agent’s own

supply. This raises the question of appropriate policy interventions or insti-

tutions to achieve the socially optimal level of investment.

7. If groups A and B rarely interact, an agent with connections to both possesses

a rare type of network capital; by virtue of its scarcity, such network capital

is likely to command a high market price.22 Sociologists such as Ronald Burt

emphasize the importance of agents who connect disparate groups; in his

terminology, they bridge “structural holes” (see Burt (2001) for a review).

8. An interesting issue concerns the incentives in a partnership to share connec-

tions. On the one hand, hoarding connections increases one’s value to the

firm. On the other, hoarding connections reduces the firm’s value because it

makes certain people essential, and use of their connections cannot be com-

pelled.23

22Note that in our model, we assume there is only a single type of network capital. It is appro-
priate, however, to think of there being multiple types if there are multiple dimension along which
agents coordinate. For instance, a project owner might face a problem of coordinating workers as
well as investors.

23This resembles the issue raised by Rajan and Zingales (1998). Access to assets (in this case, the
connections of the firm) may be preferable to ownership.
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5 Concluding remarks

We conclude by considering some issues raised by our theory.

First: could project owners and investors write conditional contribution con-

tracts, whereby investors’ capital only goes into a project if the total amount pledged

is above a threshold? Such contracts would seem to solve the capital-assembly

problem; hence one might expect to see them with great regularity. We do, in fact,

see such contracts: “Kickstarter” being a notable example. However, conditional

contribution contracts are far from ubiquitous, and this begs the question as to

why. One reason is that it is usually easy to walk away from such pledges. An

escrow account might help but such accounts are known to be far from airtight.

Furthermore, there is an incentive to wait to contribute to see what other investors

will do, which leads to a problem of a “race to the last.” Waiting retains one’s

option value; and there is also an informational benefit of waiting.

Second: there would seem to be an incentive for project owners to start projects

only after they have finished raising capital. A project owner who tries but fails

to raise kH could thereby invest only kL in the project and return the remaining

capital to investors. While delaying the start of a project can help solve the capital-

assembly problem, there may be large costs associated with delay. Furthermore,

project delay may send a negative signal to investors regarding a project owner’s

ability to raise capital.24

Third: our model suggests that small investors might want to contract with a

proxy to act on their collective behalf. The proxy would allow the small investors

to behave as if they were a single, large investor. Arguably, private equity and

activist hedge funds play such a role. An issue, however, is that it may be hard

to align the proxy’s interests with those of small investors. Such moral hazard

considerations explain, for instance, why there are typically limits placed on the

size of single investments, and the class of securities in which fund managers can

invest.

Fourth: our model assumes that small investors commit to an investment pol-

icy. In the absence of commitment, the “bad” equilibrium can unravel. If the

24Furthermore, there might be transaction costs or liquidation costs associated with temporarily
investing funds in the market.
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project owner tries to raise kH , the last investor needed to reach kH will invest;

the second-to-last investor, recognizing this, will invest; by iteration, all investors

are prepared to invest. This unraveling argument is fragile, however. For instance,

it falls apart if the project’s return (f(k)) is not strict common knowledge.25

Fifth: large investors in our model subordinate their claims to those of small

investors (either by taking equity or junior debt in the project). This prediction is

stark and may not perfectly reflect what we see in reality. The starkness of this

prediction is an artifact, though, of our assumption that the project is riskless (i.e.,

our assumption that f(k) is non-random). Recall that a large investor subordinates

his claim in our model because it reduces the amount of capital he needs to invest

to bring about the “good equilibrium.” If the project is risky, however, there is an

additional consideration. The large investor exposes himself to greater risk if he

subordinates his claim. This second consideration might outweigh the first.

In this paper, we have examined the capital-assembly problem, which arises

when there are increasing returns to investment. We have argued that holders

of block capital play an important role in capital assembly. By serving as anchor

investors for projects, they can increase the overall level of investment. Similarly,

central network actors are important because they can use their position to pool

the capital of small investors into blocks.

The potentially large returns earned by holders of network and block capital

have clear implications for income inequality. Our theory also has implications for

corporate finance. The problem we study may have a range of further implica-

tions. It is common (e.g., in growth theory) to assume that projects/ideas are in

short supply. In contrast, the scarce resources in our theory are network and block

capital. Our theory therefore shifts the focus from the challenge of generating ideas

to the challenge of implementing and executing them.

25To illustrate why common knowledge matters, consider a setup as in Section 3.1 with one
difference: while each investor knows the value of k3M , k3M (the point where the project moves
from “red” back to “black”) is not common knowledge. If the project owner has already raised
k ≥ k3M , investors will contribute to the project. The last investor needed to reach k3M will also
invest in the project given that he can tip the project into the black. However, it does not follow by
backward induction that the second-to-last investor needed to reach k3M will be willing to invest.
While the second-to-last investor understands that the next investor can tip the project into the
black, he does not know whether the next investor will understand this himself (given that k3M is
not common knowledge). Hence, the unraveling argument breaks down. One way to think about
anchor investments is that they reduce the need for common knowledge.
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6 Appendix

Proof of Proposition 1. Suppose the project owner follows Strategy 1 at time 1 (i.e.,

he chooses kP = kL and rP = rmkt). Let us consider the resulting time-2 subgame.

It is clearly an equilibrium for all investors to choose a(κ) = 1 for all κ < kP .

Hence, an equilibrium exists in which the project owner raises kL. Furthermore,

this is the unique equilibrium in which the project owner raises kL since, if the

project owner is going to raise kL, it is optimal for an investor to choose a(κ) = 1

for all κ < kP (given the tie-breaking rule).

We can prove by contradiction that an equilibrium does not exist in which the

project owner raises less than kL. Suppose the project owner raises k̂ < kL in

equilibrium with positive probability. Given that the project is in the “black” for all

k ∈ [0, kL] and given investors’ tie-breaking rule, investors will all choose a(k̂) =

1. Therefore, if the project owner manages to raise k̂, investors always give him

additional capital. It follows that the project owner can never raise exactly k̂ (which

is a contradiction). This completes the proof.

Proof of Proposition 2. Suppose the project owner follows Strategy 2 at time 1 (i.e.,

he chooses kP = kH and rP = rmkt). Let us consider the resulting time-2 subgame.

We can prove by contradiction that an equilibrium does not exist in which the

project owner raises k̂ ∈ (k1
M , k

3
M) with positive probability. Suppose such an equi-

librium exists. Given that the project is in the “red” at k̂, investors’ payoffs are

lower than they would be if they never invested in the project. Hence, investors

are not best-responding (which is a contradiction).

We can also prove by contradiction that an equilibrium does not exist in which

the project owner raises less than k1
M . Suppose the project owner raises k̂ < k1

M

in equilibrium with positive probability. Given that the project is in the “black”

for all k ∈ [0, k1
M ] and given investors’ tie-breaking rule, investors will all choose

a(k̂) = 1. Therefore, if the project owner manages to raise k̂, investors always give

him additional capital. It follows that the project owner can never raise exactly k̂

(which is a contradiction).

Furthermore, by an analogous argument, an equilibrium does not exist in which

the project owner raises k̂ ∈ [k3
M , kH) with positive probability.
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To summarize, for all values of k̂ except k1
M and kH , we have ruled out that the

project owner can raise k̂ with positive probability in equilibrium.

Now, suppose the project owner raises k1
M with positive probability. Given that

the project dips into the red when k ∈ (k1
M , k

3
M), investors all prefer to choose

a(k1
M) = 0. If investors all choose a(k1

M) = 0, the project owner cannot raise more

than k1
M . Furthermore, we have already shown that an equilibrium does not exist

in which the project owner raises less than k1
M with positive probability. Hence, if

the project owner raises k1
M with positive probability in equilibrium, he raises k1

M

with probability 1 in equilibrium.

At this point, we have shown that at most two types of equilibria exist: (1) an

equilibrium in which the project owner raises k1
M with probability 1, and (2) an

equilibrium in which the project owner raises kH with probability 1. Let us now

show existence of such equilibria.

It is clearly an equilibrium for all investors to choose a(κ) = 1 for κ < k1
M and

a(κ) = 0 for κ ≥ k1
M . This results in the project owner raising k1

M . Furthermore, this

is the unique equilibrium in which the project owner raises k1
M since, if the project

owner is going to raise k1
M , it is optimal for investors to choose a(κ) = 1 for κ < k1

M

and a(κ) = 1 for κ ≥ k1
M (given their tie-breaking rule).

It is also clearly an equilibrium for investors to choose a(κ) = 1 for all κ. This

results in the project owner raising kH . Furthermore, this is the unique equilibrium

in which the project owner raises kH since, if the project owner is going to raise kH ,

it is optimal for investors to choose a(κ) = 1 for all κ (given their tie-breaking rule).

This completes the proof.

Proof of Proposition 3. Suppose the project owner follows Strategy 2 at time 1 (i.e.,

he chooses kP = kH and rP = rmkt). Let us consider the resulting time-2 subgame.

In particular, let us examine what happens in the time-2 subgame when investors

are at level-k:

When investors are at level-0, they simply follow their impulses.

When investors are at level-1, they choose not to invest (ai(κ) = 0) for κ < k3
M−δ

and they choose to invest (ai(κ) = 1) for κ ≥ k3
M−δ. The reason is as follows. When

κ ≥ k3
M − δ, it makes sense to invest since there is no risk the project will end up in

the “red.” (Furthermore, investors believe there is a positive probability they will
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be approached by a project owner who has raised κ ≥ k3
M − δ.) On the other hand,

if investor i invests when κ < k3
M − δ, he believes there is a positive probability he

will have invested in a project that ends up in the “red.” Consequently, it does not

make sense to invest when κ < k3
M − δ.

When investors are at level-2, they choose to invest if and only if κ = 0. The

reason is as follows. Since each investor believes other investors are at level-1, they

believe there is zero probability of being approached by a project owner who has

raised κ > 0. Investors choose ai(κ) = 0 for κ > 0 given their tie-breaking rule.

On the other hand, there is a positive probability of being approached by a project

owner who has raised κ = 0. Furthermore, there is zero probability of the project

ending up in the “red” if investor i invests when κ = 0; hence, investor i will

choose to do so.

When investors are at level-3, they choose to invest if and only if κ ≤ δ. The rea-

soning is analogous to the reasoning for level-2. Given other investors are believed

to be at level-2, investors assign zero probability to being approached by a project

owner who has raised κ > δ. Hence, investors choose ai(κ) = 0 for κ > δ. On the

other hand, there is a positive probability of being approached by a project owner

who has raised κ ≤ δ. Furthermore, there is zero probability of the project ending

up in the “red” if investor i invests when κ ≤ δ; hence, investor i will choose to do

so.

Applying the same logic, at level-4, investors will invest if and only if κ ≤ 2δ.

At level-5, investors will invest if and only if κ ≤ 3δ. Eventually, we will reach a

level-k̂ where investors invest if and only if κ < k1
M .

Observe that, at level-k̂ + 1, investors follow that same strategy as at level-k̂:

they invest if and only if κ < k1
M . We conclude, then, that in the limit as k → ∞,

investors’ strategy is to invest if and only if κ < k1
M . This results in the project

owner raising k1
M units of capital in the introspective equilibrium. This completes

the proof.

Proof of Proposition 4. Suppose the project owner follows a “Strategy 3” of the form

rP = r̃ and kP = k̃, where r̃ > rmkt and k̃ = arg maxk[f(k) − (1 + r̃)k]. Let us

consider the resulting time-2 subgame. In particular, let us examine what happens

in the time-2 subgame when investors are at level-k:

27



When investors are at level-0, they simply follow their impulses.

Provided investors are sufficiently risk averse, at level-1 they choose not to in-

vest for κ < k3
M − δ and they choose to invest for κ ≥ k3

M − δ. The reason is

as follows. When κ ≥ k3
M − δ, it makes sense to invest since there is no risk of the

project yielding investors a return below rmkt (note: there is a risk still of the project

yielding a return below r̃). (Furthermore, investors believe there is a positive prob-

ability they will be approached by a project owner who has raised κ ≥ k3
M − δ.)

When κ < k3
M − δ, investors believe there is a positive probability that the project

will yield them a return below rmkt. There is also an upside risk to investing: the

project yields investors a return above rmkt with positive probability. However, if

investors are sufficiently risk averse, the downside risk will outweigh the upside

risk and they will choose not to invest when κ < k3
M − δ.

The remainder of the proof follows along identical lines to the proof of Propo-

sition 3. At level-2, investors choose to invest if and only if κ = 0 (see the proof

of Proposition 3 for the reasoning). At level-3, investors choose to invest if and

only if κ > δ. Eventually, we reach a level-k̂ where investors invest if and only if

κ < k1
M . For levels greater than k̂, investors follow the same strategy as at level-k̂.

Hence, we conclude that in the limit as k → ∞, investors’ strategy is to invest if

and only if κ < k1
M . This results in the project owner raising k1

M units of capital in

the introspective equilibrium.

Observe that the project owner’s payoff in equilibrium is 0. Hence, the project

owner prefers Strategy 1 (which yields a payoff of ∆1) to Strategy 3. This completes

the proof.

Proof of Proposition 5. The proof of Proposition 5 is given in the text of Section 3.3.

Proof of Proposition 6. Consider the time-2 subgame described in the statement of

Proposition 6.

First, suppose f(k)− (1 + rmkt)(k − k) ≥ 0 for all values of k ≤ k∗ that are mul-

tiples of δ. The large investor’s junior-seniority investment of size k ensures that

small investors cannot earn less than rmkt if they invest in the project. Therefore, it

is quite clear that, in the introspective equilibrium, small investors always invest

(ai(κ) = 1 for all value of κ) and the project owner succeeds in raising k∗ − k.
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Now suppose f(k) − (1 + rmkt)(k − k) < 0 for some values of k ≤ k∗ that are

multiples of δ. Let k̂ denote the minimum such value of k. Following an argument

identical to that given in the proof of Proposition 3, the introspective equilibrium

involves agents agreeing to invest if and only if κ < k̂−δ. Hence, the project owner

only raises k̂−δ units of capital from small investors. This completes the proof.

Proof of Proposition 7. To prove the result, we need to show that, if agent C ensures

m =
k3M
δ

have the impulse to invest, the project owner can raise kH at rate rmkt.

Therefore, suppose m =
k3M
δ

and suppose the project owner sets out to raise kH
from small investors at rate rmkt. Let us consider the resulting time-2 subgame and

find the introspective equilibrium.

At level-0, investors simply follow their impulses. At level-1, investors best re-

spond to the belief that other investors are at level-0. Observe that it is common

knowledge that at least k3M
δ

investors have the impulse to “always invest.” There-

fore, if an investor believes other players are following their impulses, he chooses

to always invest (aiκ = 1 for all κ). We conclude that, at level-1, investors always

invest. Given that investors always invest at level-1, investors always invest at lev-

els k > 1. Hence, in the introspective equilibrium, investors always invest and the

project owner succeeds in raising kH . This completes the proof.
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