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Abstract

We study an agent’s incentives to discover where her talents lie before putting them to
productive use. In our setting, an agent can specialize and learn about the same type of talent
repeatedly, or experiment and learn about different types of talent. When talents are normally
and symmetrically distributed we find that experimentation is efficient, regardless of one’s ini-
tial draw of talent. Institutions that make the agent a residual claimant of her returns to talent
encourage experimentation, whereas institutions that force the agent’s wage down to her next
best option in another sector favor specialization. Relaxing our assumptions of normality and
symmetry in the distribution of talents and allowing for human capital acquisition provides a
role for specialization in discovering talents.

1 Introduction

The idea that there are gains from the division of labor with people specializing their efforts across
tasks is an old one–dating to around 2,400 years ago in Plato’s Republic. It was, of course, expanded
into one of the cornerstones of modern economics by Adam Smith in The Wealth of Nations where
he emphasized the benefits of breaking down tasks in his hypothetical pin factory.

Less emphasized by Smith, though equally relevant in the modern economy, is that gains
from division of labor also arise from people having different talents.1 These gains among people
with different talents remain a fundamental consideration in fields from labor economics to inter-
national trade. But far less attention has been paid to how people come to discover their talents.
Sometimes talents are apparent, but more often they must be discovered.

In an insightful book, Range: Why Generalists Triumph in a Specialized World, David Epstein
explores different paths to discovering talent. Some, like the golfer Tiger Woods, specialize by
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starting early on an activity and sticking to it. Others, like the tennis player Roger Federer, exper-
iment by dabbling in many activities before honing in on one. Drawing on examples from sport,
music, education, and careers, Epstein observes that a significant proportion of top performers
choose a path of experimentation – a view that is at odds with the widespread belief that only
high-frequency repetition makes top performers. 2

The discovery of talents (through specialization or experimentation) and the critical role that
labor markets and other institutions play in providing (implicit or explicit) incentives for this
discovery are the topic of this paper.

The workhorse model for analyzing the role of talent in economics is the now classic ca-
reer concerns model of Holmstrom (1982) in which the market and a worker symmetrically learn
about the worker’s innate ability. By now there is a substantial literature that applies aspects of
the career concerns framework to issues of institutional and organizational design: public sec-
tor management (Dewatripont, Jewitt and Tirole (1999)), team management and compensation
(Jeon (1996), Auriol, Friebel and Pechlivanos (2002), and Ortega (2003)), job design (Meyer (1994),
Ortega (2001), and Kaarboe and Olsen (2006)), and compensation design (Gibbons and Murphy
(1992) and Meyer and Vickers (1997)).

We use this framework to ask a simple question: to what extent can people be expected to be
willing to invest optimally in discovering at which activity they are best? In particular, we focus
on the role of incentives as provided by the institutional structure of the labor market and the
organizations that reside within them.

In our model there are two sectors with at least one firm in each sector and an agent who
can choose to work in either sector. The agent’s sector-specific talent is unknown and production
depends on an agent’s talent.

There are two phases: learning and working. Prior to working, the agent can get a signal about
her talents by sampling, but she can only sample one type of talent per period of learning. In
the working phase, the agent shares the surplus generated from the employment relationship via
bargaining.

The learning phase is readily interpretable as education with the sampling taking place at the
level of a course, a major, or a degree in a certain field, and with signals in the form of grades or
references. As Schultz (1968) put it, one of the “three major functions of higher education...[is]...the
discovery of talent.” Thus, our model speaks to the incentives that education systems and labor
markets provide for discovering talent. Alternatively, learning may also take place within the
context of an internal labor market where new hires or interns in an organization are assigned to
different jobs to see what they are good at. We elaborate on these two modes of learning in Section
7.

Our first central result is that when the two sectors are symmetric in the sense talents in both
sectors have the same mean and the same variance, and are normally distributed, experimentation

2See Colvin (2008) for an example of this view which emphasizes ‘deliberate practice’ – that is, a designed activity
often with a teacher’s help that can be frequently repeated with continuous feedback – over talent.
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is efficient – regardless of the initial draw of talent.
To understand the result consider the choice of the agent after having sampled, say, sector A

in the first period. Experimentation involves sampling sector B in period 2, whereas specialization
involves sampling sector A again. By symmetry of the sectors, a first signal from sector B is
Blackwell more informative than a second signal from sector A. So there is more to learn from
experimentation. But there is also nothing to lose. If the agent learns that she has little aptitude
for sector B she can always switch to sector A.

Our second central result is that labor market institutions do not always provide incentives
for efficient experimentation. In particular, when the agent’s bargaining power is low and labor
markets in each sector monopsonistic, the agent’s wage is forced down to her next best talent
in another sector. Consequently, she (inefficiently) specializes or does not sample her talent. By
contrast, when the agent’s bargaining power is high, so that she is a residual claimant to the
returns from her talent, she efficiently experiments.

To see the intuition for this result, note that sampling a talent involves risk (over the posterior
mean) with experimentation being more risky than specialization as less is known about a talent
sampled for the first time. When the agent is a residual claimant, the risk is all upside, leading to a
convex payoff profile that encourages risk taking through experimentation. By contrast, when the
agent’s wage equals her next best option in an outside sector, the risk is all downside, leading to a
concave payoff profile where the agent prefers the safer option of specialization or not sampling a
talent.

The key feature of our model driving the inefficiency result above — namely that an agent’s
options outside a sector matter for wage determination in monopsonistic labor markets – is con-
sistent with evidence in Schubert, Stansbury and Taska (2020). Using a database of online vacancy
postings, they find that the negative effect of labor market concentration on wages is stronger for
occupations with lower outward mobility to another occupation. It is also worth pointing out that
there are other labor market institutions besides an agent’s high bargaining power which encour-
age residual claimancy: these include competition in labor markets (which we analyze in Section
6.4), entrepreneurship, and high-powered incentive pay.

A strength of our model is that we can clearly see to what extent our result that experimen-
tation is efficient relies on our assumptions of symmetry, normality, and the absence of human
capital. Relaxing these assumptions highlights circumstances in which there is a role for special-
ization. When talents are asymmetric, sampling the talent with the higher variance repeatedly
can be optimal because there is more to learn from that talent. To understand the role normality
plays, we consider a setting where talents have a t-distribution. Unlike the case where talents are
normally distributed, the posterior variance now depends on the realization of the signal, which
once again makes specialization efficient for extreme draws (negative or positive) of the talent
sampled. Finally, when sampling a talent is associated with the accumulation of sector-specific
human capital, specialization once again has a role to play for high draws of the initial talent sam-
pled. We also consider an extension where we endogenize the number of samples drawn and find
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that labor market competition encourages the agent to sample more.
Our study shares features with the multi-armed bandit literature.3 As in the multi-armed

bandit problem, our setup includes experimentation and exploitation; but whereas in the former
an agent can repeatedly switch between experimentation and exploitation over an infinite hori-
zon, in our setup, experimentation can only happen in the learning phase (periods 1 and 2) and
exploitation occurs in the working phase (period 3). In other words, we emphasize a different, yet
fundamental, type of (pre work) sampling that complements these theories above. Modeling the
labor market as a multi-armed bandit problem, Miller (1984) shows that, ceteris paribus, an agent
chooses the job with the highest information value. Since working in a job reduces uncertainty
about the job-specific match value, agents have an incentive to switch between jobs (and occupa-
tions). This result is consistent with our finding that agents who are residual claimants experiment
during the learning phase. Following Jovanovic (1979), Miller (1984) considers many firms that
compete for a single agent, who is, therefore, able to extract the entire match value. In contrast,
Felli and Harris (1996) assumes that there are only two firms, one for each job, such that the agent’s
wage from its current employer equals the agent’s match value with the other firm. In this setting,
Felli and Harris (1996) show that the agent experiments efficiently, in the sense that total surplus
is maximized. This contrasts with our finding that inefficiencies can arise in the sampling stage.

In our model, talent has multiple dimensions. This feature appears in other learning contexts
as well: job design (Meyer (1994) and Ortega (2001)) and education systems (Malamud (2010) and
Malamud (2011)). But in these models, the decision about which type of talent to learn about is
fixed upfront and cannot depend on new information. By contrast, this decision in our framework
is flexible and is allowed to vary with new information.

The idea that learning can be inefficient when the costs of discovering talent cannot be ade-
quately compensated also plays a role in other settings. In Terviö (2009) and Pallais (2014), firms
bear the opportunity cost of trying out a worker to discover her talent but when talents are gen-
eral they cannot recoup the benefits. As a result, firms underinvest in hiring new workers with
upside potential. Using a field experiment in an online marketplace, Pallais (2014) finds evidence
consistent with this result. The difference in our paper is the source of these opportunity costs of
learning and the compensation for them. With multiple talents, the opportunity cost of sampling
a talent is not being able to sample another, which in turn interacts with an agent’s bargaining
power to determine compensation.

The trade-off between experimantation and specialization is related to the comparison of
breadth versus depth in Geng, Pejsachovicz and Richter (2018). In their baseline model, Geng et
al. (2018) consider an agent who chooses between N products which each have N attributes. The
value of a product is the sum of its i.i.d. attributes. Before choosing a product, the agent decides
whether to learn the values of all N attributes of one product (depth) or pick one attribute, say
attribute j, and learn the values of attribute j for all N products (breadth). Geng et al. (2018) show

3See Bergemann and Välimäki (2008) for a review of the multi-armed bandit problem and its applications in eco-
nomics.
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that when N = 2 and the distribution of attributes is symmetric, the agent is indifferent between
breadth and depth, whereas we find that the agent prefers experimentation (breadth). The key
difference that leads to the divergent findings is that in Geng et al. (2018), all attribute values are
i.i.d., whereas in our model, the second signal from sector A is less informative than the first signal
from sector B.

Finally, our paper is related to an extension in Holmstrom (1982) where he shows how a risk
averse agent may inefficiently choose projects to reduce her exposure to risk from inferences of
her talent. In our setting, the agent avoids risk even though she is risk neutral because of the
concave payoff profile induced from her bargaining power and a monopsonistic labor market.
Another distinction is that an agent who is a residual claimant always makes efficient choices in
our framework whereas this is not the case in Holmstrom (1982).

2 The model

2.1 Environment and Production

There are two sectors: sector A and sector B. Associated with each sector is one risk neutral firm
so that the labor market in a sector is monopsonistic. There is a risk neutral agent who chooses to
work in either sector A or sector B.

The agent’s talent in sector A (B) is given by ηA(ηB). This talent is unknown and is distributed
normally with mean 0 and variance σ2η > 0. Talents across sectors are independent of one another.
We relax this assumption of independence later in Section 6. Production depends on the talent of
the agent in the sector. An agent who works in sector A (B) produces an output ηA(ηB).

If the agent does not work in one of the two sectors, her reservation utility is minus infinity.
The firm’s reservation utility, on the other hand, is 0.

2.2 Sampling Talents

Prior to working, the agent can sample (or learn about) her talents in a sector over two periods. An
agent who samples sector i, i = A,B, in period t, t = 1, 2, draws an informative signal sit = ηi + εit

at the end of the period, where εit is an idiosyncratic error term which is normally distributed with
mean 0 and variance σ2ε > 0. The error terms are independent across periods.

The key constraint that the agent faces is that she can sample at most one type of talent per
period. If the agent samples the same type of talent over both periods, we say that she specializes.
On the other hand, if the agent samples different types of talents over both periods, we say that
she experiments.

We assume that there are costs associated with not sampling a talent in a period. In the first
period, we assume that this cost is prohibitively large. In the second period the cost is φ > 0. These
costs can be thought of as costs to access a labor market. For instance, norms in a labor market may
make it more difficult for an agent who has not sampled her talent to work in the market.
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Figure 1: Timeline.

2.3 Bargaining Power and Incentives

An agent’s wage is determined in the following way. With probability µ ∈ [0, 1], the agent makes
a take it or leave it offer to the firm she chooses to work in, and with probability 1 − µ, the firms
simultaneously make offers to the agent, who chooses between one of them. The parameter µ
can thus be interpreted as the agent’s bargaining power to claim the returns from her talent. As
we will see later, in equilibrium an agent with the power to make an offer extracts all of the
surplus from her talent. A high µ thus corresponds to a setting where the agent is more likely
to be a residual claimant of the returns to her talent. At the other end, a smaller µ exposes the
agent to competition across firms in a labor market as in Holmstrom (1982). But the key difference
here is that competition is between monopsonistic firms across sectors. We discuss some of these
institutions in greater detail in Section 7.

2.4 Timing and Information Structure

There are three periods in the model: two sampling periods followed by a working period. Given
the symmetry in the distribution of both talents, we assume without loss of generality that the
agent samples sector A in the first period. Thus, for all of our analysis, we treat the realized signal
in period 1 for talent A, sA1 , as an exogenous parameter. The timing and information structure of
the model then is as follows.

The agent samples sector A at the start of period 1. At the end of this period, she draws a
publicly observable signal sA1 . Conditional on this realized signal the agent decides which sector
(if any) to sample at the start of the second period. At the end of the second period, the signal
si2, where i ∈ {A,B}, is realized when sector i is sampled. In the beginning of period 3, the
agent decides which sector to work in and wages are determined. Finally, at the end of period 3,
production takes place. Figure 1 depicts the timing of the model.
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3 Efficiency

We start in this section by characterizing the efficient sampling strategy – that is, the strategy that
maximizes expected output – before turning to the agent’s incentives in the following section.
In particular, we compare the expected surplus (output) from specializing versus experimenting,
given the realization of the first period signal sA1 .4 We first sketch the total surplus functions
associated with specialization and experimentation. We then compare the expected surplus across
these two sampling strategies.

Consider the surplus function associated with specialization first. To convey the intuition for
our results clearly, it is useful to work with a transformation of the second period signal in sector
A. In particular, define ŝA2 = sA2 − λ1sA1 where λ1 =

σ2
η

σ2
η+σ

2
ε

. This normalized signal ŝA2 has a mean

of 0 and the same variance as the signal sA2 . Let FA and FB be the distribution functions for ŝA2
and sB2 respectively.

Because the agent can pick which sector to work in after sampling talents, the surplus from
specialization is given by:

TSS = max{E(ηA|sA1 , ŝA2 ), E(ηB|sA1 , ŝA2 )}

= max{λ1sA1 + λ2ŝ
A
2 , 0} ,

where λ2 =
σ2
η

2σ2
η+σ

2
ε

.
Similarly, the surplus from experimentation is given by:

TSE = max{E(ηA|sA1 , sB2 ), E(ηB|sA1 , sB2 )}

= max{λ1sA1 , λ1sB2 }.

The expected surplus from specialization, VS , is then given by:

VS = EŝA2
[TSS ] = EŝA2

[max{λ1sA1 + λ2ŝ
A
2 , 0}]

and the expected surplus from experimentation, VE , is given by:

VE = EsB2
[TSE ] = EsB2

[max{λ1sA1 , λ1sB2 }] .

Figures 2 and 3 plot the surplus from experimentation and specialization as a function of the
realization of the second period signal. Looking at these figures, it is not clear which of the two
sampling strategies yields a higher expected surplus. Notice that the surplus functions overlap.
Also expectations are taken with respect to different random variables: ŝA2 and sB2 . Our main result
in this section is that experimentation yields a higher expected surplus relative to specialization
regardless of the initial draw of talent.

4Given the agent can choose to work in the sector which maximizes her talent, not sampling a talent is never efficient.
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Figure 2: Total Surplus Functions: sA1 > 0.

TSE
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ŝA2 ,sB2

TS

0

Figure 3: Total Surplus Functions: sA1 < 0.

But first we state a useful Lemma.

Lemma 1 Let x be a normally distributed random variable with mean 0. Let a be a positive real number
and let c and d be real numbers. Then Ex[max{ax+ c, d}] = Ex[max{ax+ d, c}].

The proof of Lemma 1 is in the Appendix. The Lemma says that when a random variable is
normally distributed with a mean of zero, then interchanging intercepts across components of the
max function does not change the expected value of the max function. It is worth pointing out
that the lemma above holds not just for a normal distribution but for any symmetric distribution
with mean 0.

We now turn to our main result in this section.

Proposition 1 Experimentation, where the agent samples different sectors in each period, is efficient.

Proof We split the proof into three claims.
Claim 1: EŝA2 [TSS ] = EŝA2

[max{λ1sA1 + λ2ŝ
A
2 , 0}] ≤ EsB2 [max{λ1sA1 + λ2s

B
2 , 0}].

The distribution of signal ŝA2 given sA1 is N(0, (1 − λ21)(σ2η + σ2ε )). The distribution of signal
sB2 is N(0, σ2η + σ2ε ). Therefore the two random variables ŝA2 and sB2 have the same mean but the
former has smaller variance than the latter. Thus ŝA2 second-order stochastically dominates sB2 .
Since the max function is convex, EŝA2 [max{λ1sA1 + λ2ŝ

A
2 , 0}] ≤ EsB2 [max{λ1sA1 + λ2s

B
2 , 0}].

Claim 2: EsB2 [max{λ1sA1 + λ2s
B
2 , 0}] < EsB2

[max{λ1sA1 + λ1s
B
2 , 0}].

Consider two possible cases.
First, suppose sA1 ≤ 0. Then max{λ1sA1 +λ2s

B
2 , 0} ≤ max{λ1sA1 +λ1s

B
2 , 0}with the inequality

strict for sB2 sufficiently large. Thus EsB2 [max{λ1sA1 + λ2s
B
2 , 0}] < EsB2

[max{λ1sA1 + λ1s
B
2 , 0}].

Second, suppose sA1 > 0. Then max{λ1sA1 , λ2sB2 } ≤ max{λ1sA1 , λ1sB2 } with the inequal-
ity strict for sB2 sufficiently large. From Lemma 1, it follows that EsB2 [max{λ1sA1 + λ2s

B
2 , 0}] =

EsB2
[max{λ1sA1 , λ2sB2 }] < EsB2

[max{λ1sA1 , λ1sB2 }] = EsB2
[max{λ1sA1 + λ1s

B
2 , 0}].

Claim 3: EsB2 [max{λ1sA1 + λ1s
B
2 , 0}] = EsB2

[max{λ1sA1 , λ1sB2 }] = EsB2
[TSE ].

This claim follows from Lemma 1.
Taking all three claims together, the result holds. �
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To understand the intuition for this result it helps to take a closer look at the surplus func-
tions in Figures 2 and 3 above. In particular, notice that there is an upside effect: a high signal in
the second period increases the posterior mean of the sampled talent and thus increases surplus,
whereas a low signal entails no cost because the agent can switch to the non-sampled sector. It
turns out that the upside effect is stronger in the case of experimentation for the following two
reasons.

First, since the agent’s talent in sector B is sampled for the first time in the case of experimen-
tation, the weight placed on this signal is larger relative to the weight placed on the signal in the
specialization case (λ1 > λ2). This is because a signal drawn for the first time is more informative
about talent.

Second, both the signals ŝA2 and sB2 have the same mean of 0, but the signal in sector B,
which is drawn for the first time, has larger variance.5 Or put differently, the signal ŝA2 second-
order stochastically dominates the signal sB2 . This is because less is known about a talent which is
sampled for the first time.

To summarize, there is more to learn from experimentation: the weight placed on signal B
when updating beliefs is stronger (λ1 > λ2) and extreme values of signal B are more likely (ŝA2
second-order stochastically dominates sB2 ). As a result, the upside effect is larger for experimen-
tation. This larger upside effect combined with the symmetry of the normal distribution ensures
that experimentation yields a higher expected surplus relative to specialization.

Given that experimentation always does better than specialization, we now look at how the
difference in the expected surplus across both of these cases varies as we vary parameters in our
model.

Proposition 2 VE − VS is:

i strictly increasing in σ2η .

ii strictly decreasing in |sA1 | and tends to 0 as |sA1 | tends to infinity.

The proofs of all the propositions that follow are in the appendix. The intuition for the first
part of this proposition is clear. As the variance of talents gets larger, there is more to learn from
experimentation which makes it more valuable relative to specialization. Part (ii) of the propo-
sition, on the other hand, is less obvious and says that the gains from experimentation are the
largest for intermediate draws of talent, and that in the limit (for very good or very bad draws of
talent) these gains disappear.

To see why the second part of Proposition 2 holds, notice from Lemma 1 that we can rewrite
EŝA2

[max{λ1sA1 +λ2ŝ
A
2 , 0}] = EŝA2

[max{λ1sA1 , λ2ŝA2 }]. Comparing this expression with the expected
surplus from experimentation, which is EsB2 [max{λ1sA1 , λ1sB2 }], we see that two things matter:
the floor of the total surplus function λ1s

A
1 which is common across both expressions, and the

inferences drawn from the second period signal across sectors (λ2ŝA2 versus λ1sB2 ). Ignoring the

5The signal ŝA2 ∼ N(0, (1− λ2
1)(σ

2
η + σ2

ε )), whereas the signal sB2 ∼ N(0, σ2
η + σ2

ε ).
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floor, we see that positive second period signals favor experimentation, with its steeper upside and
larger variance of the signal in sector B. Negative second period signals, on the other hand, favor
specialization with a flatter downside and lower variance of the signal in sector A. When sA1 > 0,
the floor curtails some of the upside benefit from experimentation. And when sA1 < 0 the floor
accommodates some downside cost from experimenting. It is at sA1 = 0, where all of the upside
benefits from experimentation are realized without any downside costs, where the difference in
the value across experimentation and specialization is the largest.

4 Incentives to Sample Talents

We now turn to incentives that the agent has to sample her talents. In a subgame perfect equilib-
rium, the agent works in the sector that she is more talented in. When she has the power to make
an offer to the firm (this occurs with probability µ) she asks for and gets a wage that equals her
talent in the sector – which is the maximum of her talents across sectors. On the other hand, when
she does not have the power to make the offer (this occurs with probability 1−µ) the wage offered
by firms that simultaneously compete with each other is her talent in the other sector – which in
this case is the minimum of her talents across sectors.

Thus, her expected utility from specializing, experimenting, and not sampling a talent in the
second period are given by:

EUS = EŝA2
[wS ] = EŝA2

[µmax{λ1sA1 + λ2ŝ
A
2 , 0}+ (1− µ)min{λ1sA1 + λ2ŝ

A
2 , 0}]

= EŝA2
[min{λ1sA1 + λ2ŝ

A
2 , 0}+ µ(max{λ1sA1 + λ2ŝ

A
2 , 0} −min{λ1sA1 + λ2ŝ

A
2 , 0})],

EUE = EsB2
[wE ] = EsB2

[µmax{λ1sA1 , λ1sB2 }+ (1− µ)min{λ1sA1 , λ1sB2 }]

= EsB2
[min{λ1sA1 , λ1sB2 }+ µ(max{λ1sA1 , λ1sB2 } −min{λ1sA1 , λ1sB2 })],

EUN = wN − φ = µmax{λ1sA1 , 0}+ (1− µ)min{λ1sA1 , 0} − φ

= min{λ1sA1 , 0}+ µ(max{λ1sA1 , 0} −min{λ1sA1 , 0})− φ,

where wS , wE , and wN are the expected wages from specialization, experimentation, and not
sampling a talent, respectively.

The proposition below shows the agent’s optimal sampling strategy.

Proposition 3 i Let µ > 1
2 . Then the agent experiments.

ii Let µ = 1
2 . Then the agent is indifferent between experimenting and specializing.
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iii Let µ < 1
2 . When (1− 2µ)VS(0) ≤ φ the agent specializes. Otherwise, there exist cutoffs, sA1 < 0 and

sA1 > 0, such that the agent specializes when sA1 ≤ sA1 or sA1 ≥ sA1 , and does not sample a talent when
sA1 ∈ (sA1 , s

A
1 ). Furthermore, |sA1 | and |sA1 | are decreasing in µ and φ.

Proposition 3 says that an agent (efficiently) experiments as long as her bargaining power to
extract surplus is sufficiently high. The cutoff that induces experimentation (µ = 1

2 ) lies right in
the middle of the two polar cases: µ = 1 (where the agent is the residual claimant) and µ = 0

(where the agent’s wage is her next best option).
To gain intuition for Proposition 3, it’s useful to make two separate comparisons: one com-

parison between experimentation and specialization and the other between sampling and not
sampling a talent.

Consider experimentation versus specialization first, and focus on the two extremes of bar-
gaining power. When µ = 1 (so that the agent is the residual claimant) the agent’s wage for a
given realization s2 is the maximum of her talents across sectors. Because the posterior means
are linear (from normally distributed talents and signals) and because the max function is con-
vex, the agent’s wage as a function of s2 is convex. In fact, the wages from specialization wS =

max{λ1sA1 + λ2ŝ
A
2 , 0}, and experimentation wE = max{λ1sA1 + λ1s

B
2 , 0} (modified using Lemma

1) resemble call options with ‘strike prices’ of −
λ1s

A
1

λ2
and −sA1 respectively. For this case with

convex payoffs, experimentation – with its larger variance when the talent is sampled for the first
time and a steeper upside – dominates specialization.

When µ = 0, on the other hand, the agent’s wage is concave in s2 so that this function can
be thought of as a put option. Receiving a high signal in the second period yields no benefit as
wages are capped above by the non-sampled sector, while low signals entail a downside because
they reduce the agent’s next best option. For this case with concave payoffs, specialization –
which involves a lower residual variance from sampling a talent for the second time and a flatter
downside – dominates experimentation.

For an intermediate µ ∈ (0, 1), the agent’s expected payoff is a convex combination of these
two polar cases: for µ > 1

2 , expected wages are piecewise linear and convex in the second period
signal so that experimentation dominates specialization, for µ < 1

2 , wages are piecewise linear and
concave in the second period signal so that specialization dominates experimentation, and finally
for µ = 1

2 , expected wages are linear with the agent being indifferent between both strategies.
Figures 4 and 5 sketch wages for the two polar cases, µ = 1 and µ = 0, and expected wages

for the intermediate case of µ = 1
2 for a positive first period signal.

Next, let’s turn to the comparison between sampling a talent or not in period 2. While spe-
cialization slows down learning relative to experimentation, not sampling a talent in period 2
completely brings learning to a halt. Thus this strategy has more value when learning by the mar-
ket is used to penalize the agent for a bad draw relative to rewarding the agent for a good one.
Or put differently, this strategy is useful when the agent’s wage is piecewise linear and concave
in s2 with µ < 1

2 . The last part of Proposition 3 confirms this intuition. In addition, the proposi-
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Figure 4: Bargaining Power and Wages:
µ ∈ {0, 1}, sA1 > 0.
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Figure 5: Bargaining Power and Wages:
µ = 1

2 , sA1 > 0.

tion above says that not sampling can only be optimal for intermediate draws of talent. For a low
signal, the wage from not learning is low to begin with so that the downside matters less. For a
high signal, once again, the downside from sampling a talent matters less, in this case because the
downside is less likely.

5 A Role for Specialization

Our main result in Proposition 1 is that experimentation is efficient regardless of the initial draw of
talent. This result, however, relies on some assumptions made in our paper: talents are symmetri-
cally and normally distributed, and there is no human capital acquired during the learning phase.
In this subsection, we show that specialization has a role to play from an efficiency viewpoint
when these assumptions are relaxed.

5.1 Human Capital

We now introduce human capital into our analysis. When an agent samples a sector, she does
not just get a signal of her talent; she also acquires human capital H > 0. Output in each sector
is the agent’s talent plus her human capital. Given this specification, we can rewrite the surplus
function as:

TSHS = max{λ1sA1 + λ2ŝ
A
2 + 2H, 2αH}

and

TSHE = max{λ1sA1 + (1 + α)H,λ1s
B
2 + (1 + α)H},

where α ∈ [0, 1] is a spillover parameter that captures the extent to which the human capital is
specific or general across sectors.6 When α = 1, human capital is fully general across sectors, and

6Alternatively we could model human capital accumulated in a sector as a sum of two terms: the innate talent in
the sector and a fixed term αH . The results for this case are qualitatively similar to Proposition 4.
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when α = 0, it is fully specific to a sector. The value from specialization for this case with human
capital is defined as V H

S ≡ EŝA2 [TS
H
S ] and the value from experimentation as V H

E ≡ EsB2 [TS
H
E ].

The following proposition characterizes the efficient sampling strategy with human capital.

Proposition 4 i When α = 1, so that human capital is fully general across sectors, experimentation is
efficient.

ii When α < 1, there exist cutoffs, s∗A1 and sA∗1, such that specialization is efficient when sA1 ≥ s∗A1 , and
experimentation is efficient when sA1 ≤ sA∗1.

In this setup with human capital, the difference in value between experimentation and spe-
cialization V H

E − V H
S can be decomposed into the sum of two parts: a difference in value from

learning VE − VS , and a difference in value from allocating human capital. With specialization,
human capital is concentrated in sector A whereas experimentation spreads human capital equally
across both sectors.

When human capital in one sector completely spills over to the other sector, so that it is fully
general across sectors (α = 1), experimentation and specialization generate the same surplus in
terms of allocating human capital. Thus, experimentation, which leads to more efficient learning
from Proposition 1, is efficient.

With spillovers across sectors (α < 1), on the other hand, the initial signal plays an important
role. When sA1 is high, the probability that the agent eventually works in sector A is large, so that
concentrating human capital in sector A through specialization leads to a more efficient allocation
of human capital. By contrast, a low sA1 increases the likelihood of working in sector B so that
experimentation allocates human capital efficiently.

The second part of Proposition 4 reflects a tradeoff between allocating human capital in an
efficient way and learning. When the initial signal is very large, human capital plays a more
important role relative to learning. Indeed, in the limit, when sA1 tends to infinity, the probability of
working in sector A approaches 1, so that the human capital gain in value from specializing is (1−
α)H , whereas the gains from learning via experimentation vanish in the limit (from Proposition
2). As a result, specialization is efficient for this case. For a very low signal, on the other hand,
experimentation does better, both in terms of learning and human capital, so that it is efficient.

Under some additional conditions, the cutoffs in the second part of Proposition 4 coincide so
that there is a unique threshold above which specialization is efficient and below which experi-
mentation is efficient. Furthermore, this cutoff is increasing in α and in the limit tends to infinity.7

7The reason the cutoff may not be unique is that VE − VS is non-monotone in sA1 . A sufficient condition that guar-
antees a unique cutoff is that H is small enough so that (VE − VS)|sA1 =

2(1−α)H
λ2

≥
∫ 0
−2(1−α)H

λ2

2λ2ŝ
A
2 (1− α)HdFA. This

condition ensures that experimentation is efficient for all negative first period signals so that there is a unique cutoff
that is positive. Using the implicit function theorem, the sign of the derivative of the cutoff with respect to α is positive
if and only g2(sA1 , α) =

∫ 0
−(λ1s

A
1 +2(1−α)H)

λ2

dFA is positive which holds for any positive sA1 .
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5.2 Asymmetric Model

So far in our model, sectors are symmetric: talents in both sectors have the same mean and the
same variance. In this section, we allow for asymmetries across sectors.

Let ηA ∼ N(0, σ2η) and ηB ∼ N(b, vσ2η) where v > 0 and where b is any real number. As
before, let εit ∼ N(0, σ2ε ) for i = A,B, t = 1, 2. Thus, the unconditional distribution of the signal sB2
is normal with mean b and variance vσ2η + σ2ε . Given these asymmetries across sectors, the agent’s
choice of which sector to sample initially is made endogenous.

The following proposition characterizes conditions under which experimentation is efficient.

Proposition 5 Let v > 0 and let b be a real number. Then experimentation is efficient if and only if
σ2
η

σ2
ε
≥ |v−1|v . Otherwise, specialization in sector A is efficient when v < 1, and specialization in sector B is

efficient when v > 1.

Notice that the parameter b plays no role in the necessary and sufficient condition for ex-
perimentation – only the variances of talents matter. Second, the condition in the proposition for
efficient experimentation has a simple interpretation. The left hand side σ2

η

σ2
ε

is the signal to noise

ratio. The right hand side |v−1|v reflects the degree of asymmetry across talents as v moves away
from 1. The condition above then says that experimentation is efficient if and only if the signal
to noise ratio is sufficiently large relative to the degree of asymmetry across sectors. In particular,
a larger variance in a sector may lead to that sector being sampled repeatedly as there is more to
learn: for a small v it is efficient to specialize in sector A and for a large v it is efficient to specialize
in sector B.

5.3 How Sensitive is the Result to the Normal-Normal Model?

The fact that the result that experimentation is more efficient than specialization is independent
of the realization of the signal drawn in the first period is surprising. We conjecture that the inde-
pendence on the first period signal is specific to the normal-normal model and, more specifically,
to the property that the variance of the updated normal distribution is independent of the first
period signal.

To explore this conjecture we analyze a slightly more general information structure. We as-
sume that the agent’s talent, ηi, in sector i = {A,B} follows a Student t-distribution with ν > 2

degrees of freedom, a mean of zero and scale parameter of ν−2ν σ2η, i.e.,

ηi ∼ tν(0, ν−2ν σ2η).

As before, conditional on ηi, signals are normally distributed with mean ηi and variance σ2ε .When
the prior distributions for the agent’s talents follow a t-distribution and signals are normally dis-
tributed, the posterior distributions for the agent’s talents are also t-distributions DeGroot (1970).
The posterior means of the agent’s talents are the same as for the normal-normal model.
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Figure 6: The difference in expected surplus from experimentation over specialization (VE − VS)

Similarly, the unconditional distribution of the first signal and the conditional distribution of
the second signal given the first signal follow Student t-distributions. More specifically,

sB2 ∼ tν(0,
ν−2
ν (σ2η + σ2ε ))

and

ŝA2 |sA1 ∼ tν+1(0, (
ν−2
ν + 1

ν+1
(sA1 )2

σ2
η+σ

2
ε
)(1− λ21)(σ2η + σ2ε ))

These posterior distributions are very similar to the ones obtained in the normal-normal model.
Posterior means are identical and, as ν → ∞, the variances and distributions converge to the
normal-normal model.

The crucial difference to the normal-normal model is that the posterior variance of the second
signal in sector A depends on the first signal. The greater the magnitude of the first signal, the
greater the posterior variance of the second signal. If sA1 is very high or very low, the posterior
variance of the second signal from sector A can get larger than the unconditional variance of
the signal from sector B. In this case it can be efficient to sample from sector A again and, thus,
specialize.

This is illustrated in Figure 6, which shows the difference in expected surplus from experi-
mentation and specialization. Here, σ2η = σ2ε = 1, λ1 = 0.5, λ2 = 0.33 and ν = 3.

Figure 6 confirms our conjecture: The result that experimentation is more efficient than spe-
cialization for all realizations of the first signal relies on the normal-normal model. In Figure 6
specialization is more efficient when the first signal is below -3.4 or above 3.4. Note that for the
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parameter values used in Figure 4, the signal sA1 follows a t-distribution with 3 degrees of free-
dom, mean zero and standard deviation of

√
2.Given this distribution, the probability of choosing

a signal below -3.4 or above 3.4 is less than 10%. Thus, for the vast majority of realized signals,
experimentation is still efficient.

6 Richer Labor Market Settings

6.1 A Third Sector

In our model, the agent’s reservation utility from not working in either sector A or sector B is
minus infinity. In this subsection, we allow for a third sector, sector C, with a firm in the sector that
the agent can work in. The agent’s talent in this sector is given by ηC and is normally distributed
with mean 0 and variance V ar(ηC) and is independent of the talents in the other sectors.

We allow for two possibilities for this third sector based on the variance of talent. The first
possibility is V ar(ηC) = σ2η . In this case – which we refer to as a symmetric sector case – the
agent can sample her talent in this sector in period t, t = 1, 2, by drawing an informative signal
sCt = ηC + εCt at the end of the period, where εit is an idiosyncratic error term which is normally
distributed with mean 0 and variance σ2ε > 0.

The second possibility is where the talent in sector C is known with V ar(ηC) = 0 – in which
case we call the sector a safe sector.

As before, the agent can sample at most one sector in each period and there are costs to not
sampling a talent in each period.

Given that sector C is symmetric when the talent in the sector is unknown, there is no loss
of generality in assuming that the agent does not sample sector C, and that the agent starts by
sampling sector A.

The total surplus functions from specialization and experimentation are then

TSS = max{E(ηA|sA1 , ŝA2 ), E(ηB|sA1 , ŝA2 ), E(ηC |sA1 , ŝA2 )}

= max{λ1sA1 + λ2ŝ
A
2 , 0} ,

and

TSE = max{E(ηA|sA1 , sB2 ), E(ηB|sA1 , sB2 ), E(ηC |sA1 , sB2 )}

= max{λ1sA1 , λ1sB2 , 0}.

Notice that the surplus function for specialization is exactly the same as the two sector case
– the presence of the third sector adds no value as a fallback option as sector B (with the same
mean of zero) already plays that role. Under experimentation, however, the agent can fallback on
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sector C when the draws in the other two sectors are bad. This raises the value of experimentation
relative to specialization. Thus, experimentation is once again efficient so that our main result in
Proposition 1 goes through.

To examine incentives to sample talent, we consider the two polar cases in terms of the agents
bargaining power: µ = 1 where the agent has all of the bargaining power and µ = 0 where
competition across sectors leads to the agent’s wage equaling her talent in her next best sector.
The following proposition characterizes the agent’s optimal choice for these two polar cases.

Proposition 6 Suppose the agent has access to a third sector, sector C, with E[ηC ] = 0 and V ar(ηC) ∈
{0, σ2η}.

i Let µ = 1. Then the agent experiments.

ii Let µ = 0. Then the agent experiments if and only if sA1 ≥ 0. Otherwise she specializes.

The first part of the proposition above is intuitive and in line with our earlier result in Propo-
sition 3. When an agent has all the bargaining power (µ = 1), she is the residual claimant, giving
her incentives to sample efficiently by experimenting. Where the results are different from Propo-
sition 3 is for the case where the agent has no bargaining power. For this case, unlike in Proposition
3, experimentation is optimal for positive initial draws in sector A.

To see the intuition for this proposition, it is useful to note that the agent’s wage – which is
her talent in her next best sector – lies between the means of the two non-sampled sectors in period
2. The lower of these two means forms a wage floor, and the higher of the two, a wage ceiling.
Under specialization, the symmetry in the prior means across sectors imply that the floor and the
ceiling coincide at 0, so that the agent’s wage is always 0. Under experimentation, a positive initial
signal in sector A imposes a positive ceiling from sector A and a floor of 0 from sector C so that on
average the wage is positive. And for a negative initial signal in sector A, the floor from sector A
is negative and the ceiling from sector C is 0 so that the expected wage is negative. Taken together,
the agent experiments (efficiently) if and only if the initial signal is non-negative. Otherwise, she
specializes and gets a wage of 0.

There are two other ways we can modify this extension. First, we can vary the mean of the
third sector so that it is less than 0. Second, we can add multiple sectors, once again with a mean
less than 0. In both of these cases, experimentation is once again efficient. Furthermore, there
are thresholds of the initial signal, one above which experimentation is optimal for the agent, and
another below which specialization is optimal.

6.2 Correlated talents

In our main model, talents are independent of one another. In many real world settings, however,
talents can be correlated. We consider this case with correlation now.
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Let talents in sectors A and B be correlated with correlation coefficient ρ ∈ [−1, 1]. The surplus
from specialization is then given by:

TSρS = max{E(ηA|sA1 , ŝA2 ), E(ηB|sA1 , ŝA2 )}

= max{λ1sA1 + λ2ŝ
A
2 , ρ(λ1s

A
1 + λ2ŝ

A
2 )} .

Similarly, the surplus from experimentation is given by:

TSρE = max{E(ηA|sA1 , sB2 ), E(ηB|sA1 , sB2 )}

= max{κ1sA1 + κρs
B
2 , κ1s

B
2 + κρs

A
1 } ,

where κ1 = λ1
1−λ1ρ2
1−λ21ρ2

and κρ = ρλ1(1−λ1)
1−λ21ρ2

.8 For ρ = 0, κ1 = λ1 and κρ = 0 and, thus, we are back at
our baseline model.

Proposition 7 If talents in the two sectors are correlated with correlation coefficient ρ ∈ (−1, 1), exper-
imentation, where the agent samples different sectors in each period, is efficient. If ρ = −1 or ρ = 1,

experimentation and specialization are equally efficient.

To see the intuition for the proposition, let’s start with the two extreme cases where talents
are perfectly correlated with ρ = −1 or ρ = 1. For both of these cases κ1 = |κρ| = λ1

1+λ1
=

λ2 so that the weights put on the signals sA1 and si2, i = A,B, are the same regardless of the
sector sampled in period 2.9 Furthermore, the posterior variance of talent at the end of period
1 is the same across sectors and equals (1 − λ1)σ

2
η . Put differently, when talents are perfectly

correlated, the informational content of a signal is the same for both sectors so that specialization
and experimentation are equally efficient.

For intermediate cases of correlation ρ ∈ (−1, 1) the intuition comes across most clearly when
the initial signal sA1 = 0. For this case, the difference in values across experimentation and special-
ization V ρ

E − V
ρ
S can be expressed as:

V ρ
E − V

ρ
S |sA1 =0 = EsB2

[max{κρsB2 , κ1sB2 }]− EŝA2 [max{λ2ŝA2 , ρλ2ŝA2 }]

= EsB2
[max{(κ1 − κρ)sB2 , 0}]− EŝA2 [max{(1− ρ)λ2ŝA2 , 0}]

= EsB2
[max{ (1−ρ)λ1s

B
2

1−λ1ρ , 0}]− EŝA2 [max{ (1−ρ)λ1ŝ
A
2

1+λ1
, 0}],

where the second line follows from the symmetry of the normal distribution. As in Proposition 1,
more weight is placed on a signal when sector B is sampled for the first time: (1−ρ)λ1

1−λ1ρ > (1−ρ)λ1
1+λ1

when ρ ∈ (−1, 1). And similarly, the signal ŝA2 second-order stochastically dominates the signal sB2 :
the signal ŝA2 ∼ N(0, (1− λ21)(σ2η + σ2ε )), whereas the signal sB2 ∼ N(0, (1− λ21ρ2)(σ2η + σ2ε )). Taken
together, experimentation is more efficient than specialization even when talents are correlated.

8See DeGroot (1970) pp.175.
9Note that λ1s

A
1 + λ2ŝ

A
2 = λ2s

A
1 + λ2s

A
2 .

18



The proof in the Appendix shows that this reasoning continues to hold when the initial signal is
not zero.

Interestingly, the gains from experimenting over specializing are not maximized when talents
are independent across sectors. To see why, it is useful to consider two effects: the effect of a signal
on its own sector (captured by the coefficients κ1 and λ2 above) and the effect of a signal on the
other sector (captured by the coefficients κρ and ρλ2 above). The gains from experimenting over
specializing that arise from the own sector effects are symmetric around ρ = 0. The gains from
the other sector effects are however asymmetric. For a positive ρ, experimentation, with a lower
downside effect for the other sector (as κρ < ρλ2), dominates specialization. For a negative ρ, on
the other hand, specialization, with its larger upside effect for the other sector (as |ρλ2| > |κρ|),
dominates experimentation. There is thus an asymmetry in the overall gains from experimenting
over specializing which is maximized for some positive ρ.10

Finally, it is also useful to note that the difference in expected utilities across experimentation
and specialization can be written as (2µ − 1)(V ρ

E − V ρ
S ) so that the results from Proposition 3

qualitatively hold for this case where talents are correlated.

6.3 Endogenous Bargaining Power

So far, the bargaining power of an agent to extract surplus µ is exogenous and independent of
the sampling profile. In some settings bargaining power may be endogenous. For instance, if we
think of sampling vertically across degrees in the case of education then it seems plausible that a
specialist may have more bargaining power relative to an agent with a mixed background.

In this subsection, we allow for bargaining power to depend on the sampling profile and on
the sector that the agent works in. The way we do this is to assume that the agent’s bargaining
power in a sector is increasing in the number of times talent is sampled in that sector. With this
specification, the bargaining power is constant across sectors when the agent experiments: µAE =

µBE = µ. But for specialization, the agent’s bargaining power is larger in sector A: µBS = µ whereas
µAS = µ+ δ, with 0 ≤ δ ≤ 1− µ.

Proposition 8 Suppose δ > 0.

i Let µ > 1
2 . For sA1 sufficiently large, the agent prefers specialization over experimentation.

ii Let µ ≤ 1
2 . Then the agent prefers specialization over experimentation.

The proposition above says that endogenous bargaining power that favors a specialist makes
inefficiencies in sampling talents worse. In particular, the agent prefers specialization over ex-
perimentation for a range of initial signals even when µ > 1

2 which is in contrast to Proposition
3.

10Numerical examples suggest that this asymmetric effect where the gains are maximized for some positive ρ contin-
ues to hold for sA1 6= 0.
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6.4 Labor Market Competition

In our simple model, we assume that the labor market is monopsonistic with one firm in each
sector. In this subsection, we allow for more firms in each sector to introduce labor market com-
petition within a sector. In particular, suppose there are N ≥ 2 firms in each sector. Once again,
with probability µ the agent offers a take it or leave it offer to the firm she chooses to work in.
With probability 1− µ, a set of active firms in the labor market makes offers simultaneously to the
agent. Suppose that with probability γ ∈ [0, 1] this set of active firms includes more than one firm
in each sector whereas with probability 1 − γ the agent, as before, gets offers from only one firm
in each sector. The parameter γ can be thought of as how thick labor markets in a sector are.

With this setup, with probability µ̂ = µ + (1 − µ)γ the agent is a residual claimant and with
probability 1 − µ̂ = (1 − µ)(1 − γ) the agent’s wage is her next best talent in another sector. The
parameter µ̂ can be thought of as the agent’s effective bargaining power, and is increasing in the
probability of her making a take it or leave it offer µ and in γ which measures market thickness
and thus competition in the labor market.

With more firms in a sector, Proposition 3 continues to hold, but with µ replaced by the
agent’s effective bargaining power µ̂. The key point to note is that as long γ and µ are small
enough, the agent does not efficiently sample her talents.

7 Discussion

Two key features underpin our model. First, talents are publicly sampled prior to the agent work-
ing. Second, an agent’s bargaining power and the structure of the labor market affects her incen-
tives to learn about her talents. In this section we highlight economic settings where these features
play a prominent role. In particular, we provide details of the sampling process, and spell out the
sources from which incentives arise in these settings. This allows us to apply the main results
from our model to these settings and derive policy implications.

The most natural setting where we believe talents are sampled prior to work is education.
Experimentation in this context can involve broader course work which is the defining feature of
higher education in countries like the U.S.11 Or it could be thought of as a vertical switch in fields
across degrees: for example, a switch from an undergraduate degree in engineering to a graduate
degree in business or law. Recent evidence in Malamud (2011) suggests that learning does play an
important role in an educational context. Comparing education systems across England (where
students specialize early) and Scotland (where students specialize late) Malamud (2011) finds that
early specialization is associated with a larger probability of working in a different field from the
one the student has specialized in.

With grades and references publicly observable, incentives arise from an external labor mar-

11For example, with a liberal arts structure students have the flexibility to divide their courses across a major and
other electives (or minors), or even choose a dual major.
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ket.12 Our main policy implication within this context is that an education system that encourages
experimentation is not enough to lead to efficient choices at the individual level. These systems
have to go hand in hand with labor market institutions that encourage residual claimancy and
thus induce risk taking through experimentation.

Monopsonistic labor markets in a sector, on the other hand, hinder efficient risk taking. Im-
plicit in the monopsonistic structure are two assumptions. The first assumption is that outside
options from other sectors matter for wage determination in a monopsonistic market – an assump-
tion which as we discussed in our introduction is consistent with recent evidence in Schubert et
al. (2020). The second assumption is that signals of talent can be interpreted across sectors. We
believe this assumption is reasonable when talents across sectors are ‘close’ enough (or positively
correlated) to one another. For instance, it seems plausible that a firm that hires economics majors
can interpret grades and references in fields such as business, math, or computer science. Even
when talents are independent of one another, we believe that employers get better through expe-
rience at assessing the outside options of applicants with broad backgrounds.

The logic of our paper extends to the talent sampling that takes place inside an organization.
Many firms maintain trainee programs where new recruits or interns are assigned to different jobs
(or tasks) prior to choosing their career path in the organization. Job rotation (which corresponds
to experimentation in our framework) is a common feature in ‘talent factories’ like General Electric
(GE), but has been criticized because it results in a lack of specialized human capital, leading GE
to reconsider high-intensity job rotation.13

Assuming, for simplicity, that talents are specific to a firm or that signals are only observable
inside an organization, the paper can be used to highlight the incentive problems created by job
rotation in an internal labor market. If we think of the sectors (and the corresponding firms) in our
model as divisions or functions that utilize different types of talent, it becomes clear that even if job
rotation is optimal for learning purposes (dominating the potential losses in specialized human
capital), a firm needs to think about a workers incentives to engage in such a rotation program.
In particular, if moving an agent from one division to another – and thus, drawing an informative
signal of talent in the new division – requires the consent of the worker, then incentives have to be
designed to induce the worker to experiment. One way to do this is to credibly commit – say by
developing a reputation – to share the surplus from talent that the agent generates. Another way,
is to centralize wage determination in the organization to mute competition for workers across
divisions or functions in the organization. Offering the worker a flat wage, for instance, that is
independent of talent, ensures efficient sampling outcomes.

12There may be informative ‘private’ signals of talent as well, such as interviews. Our model with publicly observable
signals abstracts from this problem of private information and its implications for incentives.

13The Wall Street Journal (March 7, 2012) came up with the headline New GE Way: Go Deep, Not Wide. After several
decades, General Electric (GE) ended the practice of job rotation — or job hopping every two years — for future top
executives or ’high potentials’.
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8 Conclusion

People’s talents are the driving force for innovation and growth. But in many cases these talents
are unknown. Various institutions impact how individuals learn about their talents, and conse-
quently it is important that these are designed to provide incentives for individuals to learn about
their talents in an efficient way. Our paper is a deliberately abstract attempt to make this link be-
tween institutions—particularly those governing competition in the labor market—and incentives
to discover talents. We develop a tractable model to compare the relative merits of experimenta-
tion (where different types of talent are sampled) and specialization (where the same type of talent
is sampled repeatedly). We also find that while competitive labor markets induce efficient learning
of talents, monopsonistic labor markets move incentives towards specialization.

Our focus has mainly been on incentives provided by labor market institutions. But there
are other institutions that matter for discovering talent: education systems, regulations that en-
trepreneurs are subject to, access to finance, and taxation, are all arguably important. We hope
that our framework will serve as a useful starting point to better understand the role that these
institutions play in discovering talent.
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Appendix

Proof of Lemma 1: Let F denote the distribution function of x. Since the normal distribution
is symmetrical around zero, F (x) = 1− F (−x). Then

Ex[max{ax+ c, d}]− Ex[max{ax+ d, c}] = F (d−ca ) d+ a

∫ ∞
d−c
a

xdF + (1− F (d−ca )) c

− F ( c−da )c− a
∫ ∞
c−d
a

xdF − (1− F ( c−da ))d

= a

∫ ∞
d−c
a

xdF − a
∫ ∞
c−d
a

xdF

= 0 ,

where the last step again follows from the symmetry of the normal distribution.�
Proof of Proposition 2: We first prove that:

VE − VS =

∫ λ1|s
A
1 |

λ2σA

|sA1 |
σB

(λ1σBz − λ1|sA1 |)fzdz +
∫ ∞
λ1|sA1 |
λ2σA

(λ1σBz − λ2σAz)fzdz ,

where z is distributed normally with mean 0 and variance 1, σA is the standard deviation of the
random variable ŝA2 , and σB is the standard deviation of the random variable sB2 .

Consider two cases. Suppose sA1 ≥ 0. Then:

VE − VS = EsB2
[max{λ1sA1 , λ1sB2 }]− EŝA2 [max{λ1sA1 + λ2ŝ

A
2 , 0}]

= EsB2
[max{λ1sA1 , λ1sB2 }]− EŝA2 [max{λ1sA1 , λ2ŝA2 }]

= EsB2
[max{λ1sA1 , λ1sB2 } − λ1sA1 ]− EŝA2 [max{λ1sA1 , λ2ŝA2 } − λ1sA1 ]

=

∫ λ1|s
A
1 |

λ2σA

|sA1 |
σB

(λ1σBz − λ1sA1 )fzdz +
∫ ∞
λ1|sA1 |
λ2σA

(λ1σBz − λ1sA1 )fzdz −
∫ ∞
λ1|sA1 |
λ2σA

(λ2σAz − λ1sA1 )fzdz

=

∫ λ1|s
A
1 |

λ2σA

|sA1 |
σB

(λ1σBz − λ1|sA1 |)fzdz +
∫ ∞
λ1|sA1 |
λ2σA

(λ1σBz − λ2σAz)fzdz ,

where the second line above follows from Lemma 1, and the fourth line makes use of the transfor-
mation sB2 = σBz and ŝA2 = σAz.
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Next, suppose sA1 < 0. Then:

VE − VS = EsB2
[max{λ1sA1 , λ1sB2 }]− EŝA2 [max{λ1sA1 + λ2ŝ

A
2 , 0}]

= EsB2
[max{λ1sA1 + λ1s

B
2 , 0}]− EŝA2 [max{λ1sA1 + λ2ŝ

A
2 , 0}]

=

∫ − λ1sA1
λ2σA

−
sA1
σB

(λ1σBz + λ1s
A
1 )fzdz +

∫ ∞
−
λ1s

A
1

λ2σA

(λ1σBz + λ1s
A
1 )fzdz −

∫ ∞
−
λ1s

A
1

λ2σA

(λ2σAz + λ1s
A
1 )fzdz

=

∫ λ1|s
A
1 |

λ2σA

|sA1 |
σB

(λ1σBz − λ1|sA1 |)fzdz +
∫ ∞
λ1|sA1 |
λ2σA

(λ1σBz − λ2σAz)fzdz .

Now consider the comparative static results with respect to σ2η and |sA1 | respectively.

i

∂(VE − VS)
∂σ2η

=
∂
λ1|sA1 |
λ2σA

∂σ2η
(
λ1σB − λ2σA

λ2σA
)λ1|sA1 |fz(

λ1|sA1 |
λ2σA

)−
∂
|sA1 |
σB

∂σ2η
(0)

+

∫ λ1|s
A
1 |

λ2σA

|sA1 |
σB

λ1
∂σB

∂σ2η
zfzdz

+

∫ λ1|s
A
1 |

λ2σA

|sA1 |
σB

(
∂λ1

∂σ2η
(σBz − |sA1 |))fzdz

−
∂
λ1|sA1 |
λ2σA

∂σ2η
(
λ1σB − λ2σA

λ2σA
)λ1|sA1 |fz(

λ1|sA1 |
λ2σA

)

+

∫ ∞
λ1|sA1 |
λ2σA

(λ1
∂σB

∂σ2η
+
∂λ1

∂σ2η
σB − λ2

∂σA

∂σ2η
−
∂λ2

∂σ2η
σA)zfzdz .

Notice that the first and fourth lines in the expression above cancel each other out. The third
line is positive since z ≥ |s

A
1 |
σB

. Also, since λ1 > λ2, σB > σA, ∂λ1
∂σ2
η
> ∂λ2

∂σ2
η

and ∂σB
∂σ2
η
> ∂σA

∂σ2
η

, the last

line is positive. Thus ∂(VE−VS)
∂σ2
η

> 0.

ii

∂(VE − VS)
∂|sA1 |

=
λ21|sA1 |
λ22σ

2
A

(λ1σB − λ2σA)fz(
λ1|sA1 |
λ2σA

)

− λ1|sA1 |
σB

(0)fz(
|sA1 |
σB

)

−
∫ λ1|s

A
1 |

λ2σA

|sA1 |
σB

λ1fzdz

− λ21|sA1 |
λ22σ

2
A

(λ1σB − λ2σA)fz(
λ1|sA1 |
λ2σA

) .
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Notice that the first and fourth lines cancel each other out. Thus
∂(VE − VS)

∂|sA1 |
< 0.

Proof of Proposition 3:
We can rewrite the agent’s expected utility from specialization, experimentation, and not

sampling a talent in the following way.

EUS = EŝA2
[µmax{λ1sA1 + λ2ŝ

A
2 , 0}+ (1− µ)min{λ1sA1 + λ2ŝ

A
2 , 0}]

= (2µ− 1)EŝA2
[max{λ1sA1 + λ2ŝ

A
2 , 0}] + (1− µ)EŝA2 [λ1s

A
1 + λ2ŝ

A
2 ]

= (2µ− 1)VS + (1− µ)λ1sA1 ,

where the second line follows from the fact that max{x, y} + min{x, y} = x + y, and third line
follows from ŝA2 having a mean of zero.

EUE = EsB2
[µmax{λ1sA1 , λ1sB2 }+ (1− µ)min{λ1sA1 , λ1sB2 }]

= (2µ− 1)EsB2
[max{λ1sA1 , λ1sB2 }] + (1− µ)EsB2 [λ1s

A
1 + λ1s

B
2 ]

= (2µ− 1)VE + (1− µ)λ1sA1 ,

where the second line, once again, follows from the fact that max{x, y} +min{x, y} = x + y, and
the third line follows from sB2 having a mean of zero. And finally,

EUN =

max{µλ1sA1 , (1− µ)λ1sA1 } − φ if µ ≥ 1
2

min{µλ1sA1 , (1− µ)λ1sA1 } − φ if µ < 1
2 .

To prove parts (i) and (ii) observe that when µ ≥ 1
2 ,

max{EUS , EUE} = (2µ− 1)max{VS , VE}+ (1− µ)λ1sA1
> min{µλ1sA1 , (1− µ)λ1sA1 } − φ

= EUN ,

where the inequality in the second line holds because max{VS , VE} ≥ min{VS , VE} > λ1s
A
1 . Thus

it is optimal for the agent to sample her talent in period 2. Since EUE −EUS = (2µ− 1)(VE − VS),
the agent experiments when µ > 1

2 and is indifferent between experimenting and specializing
when µ = 1

2 .
To prove part (iii), notice that EUS > EUE when µ < 1

2 . Thus, if the agent samples a talent in
period 2, she specializes. To see when specialization is optimal, observe that
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EUS − EUN = (2µ− 1)VS + (1− µ)λ1sA1 − (min{µλ1sA1 , (1− µ)λ1sA1 } − φ)

= (2µ− 1)VS −min{0, (2µ− 1)λ1s
A
1 }+ φ.

Consider two possible cases. Suppose sA1 ≤ 0. Then min{0, (2µ − 1)λ1s
A
1 } = 0. Since

limsA1→−∞
VS = 0 it follows that limsA1→−∞

EUS − EUN = φ. Also, since VS is strictly increas-
ing in sA1 , EUS − EUN is strictly decreasing in sA1 for this case.

Next, suppose sA1 > 0. Then min{0, (2µ−1)λ1sA1 } = (2µ−1)λ1sA1 . Since limsA1→∞
VS−λ1sA1 =

0 it follows that limsA1→∞
EUS − EUN = φ with

(EUS − EUN )′(sA1 ) = (2µ− 1)(VS − λ1sA1 )′(sA1 )

= (2µ− 1)(

∫ ∞
−λ1sA1
λ2

λ2ŝ
A
2 dF

A)′(sA1 )

> 0

ThusEUS−EUN is quasiconvex and is minimized at sA1 = 0 with a value of (2µ−1)VS(0)+φ.
When (1 − 2µ)VS(0) ≤ φ, the minimum value of EUS − EUN (at sA1 = 0) is non-negative so that
specialization is optimal for all realizations of the first period signal (that is, sA1 = sA1 = 0). When
(1 − 2µ)VS(0) > φ, on the other hand, the minimum value of EUS − EUN (at sA1 = 0) is negative
so that EUS − EUN ≥ 0 if and only if sA1 ≤ sA1 < 0 and sA1 ≥ sA1 > 0.�

Proof of Proposition 4:
Observe that

V H
E = EsB2

[TSHE ] = VE + (1 + α)H .

Similarly, we can write

V H
S = EŝA2

[TSHS ] = VS + (1 + α)H + g(sA1 , α) ,

where g(sA1 , α) =
∫ 0
−(λ1sA1 +2(1−α)H)

λ2

2(1− α)HdFA +
∫ −λ1sA1λ2
−(λ1sA1 +2(1−α)H)

λ2

(λ1s
A
1 + λ2ŝ

A
2 )dF

A.

Thus the expected gain in surplus from experimenting over specializing is given by V H
E −

V H
S = VE − VS − g(sA1 , α) .

Note that limsA1→∞
g(sA1 , α) = (1 − α)H and limsA1→−∞

g(sA1 , α) = −(1 − α)H . Also observe
that
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g1(s
A
1 , α) =

2(1− α)Hλ1
λ2

fA(
−(λ1sA1 +2(1−α)H)

λ2
)

+ λ1

∫ −λ1sA1
λ2

−(λ1sA1 +2(1−α)H)
λ2

dFA

−
2(1− α)Hλ1

λ2
fA(

−(λsA1 +2(1−α)H)
λ2

)

> 0.

i Let α = 1. Then g(sA1 , α) = 0. Thus V H
E − V H

S = VE − VS which is positive from Proposition 1.

ii Let α < 1. From Proposition 2 and the limits above, limsA1→∞
VE−VS−g(sA1 , α) = −(1−α)H <

0. Since VE−VS−g(sA1 , α) is continuous in sA1 , there exists some s∗A1 > 0 for which V H
E −V H

S <

0. Because
∂(VE − VS)

∂sA1
< 0 for sA1 > 0 and g1(s

A
1 , α) > 0, it follows that V H

E − V H
S < 0 for

sA1 ≥ s∗A1 . Thus specialization is efficient when sA1 ≥ s∗A1 .

To show that experimentation is efficient below a threshold level of the initial signal, note that
limsA1→−∞

−g(sA1 , α) = limsA1→−∞
VE −VS − g(sA1 , α) = (1−α)H > 0 (from Propositions 2 and

the limits above). Since VE − VS and g are continuous in sA1 , there exists some sA∗1 for which
V H
E −V H

S > 0 and g(sA1 , α) < 0. As VE−VS > 0 and g1(sA1 , α) > 0, it follows that V H
E −V H

S > 0

for sA1 ≤ sA∗1. Thus experimentation is efficient when sA1 ≤ sA∗1.

Proof of Proposition 5: Define λB1 ≡
vσ2
η

vσ2
η+σ

2
ε

and λB2 ≡
vσ2
η

2vσ2
η+σ

2
ε

. Also note that since we can
switch the order of integration, experimentation yields the same expected surplus regardless of
which sector the agent samples first.

Let v > 1. Consider two cases. First, suppose the agent samples sector A in period 1. Let
ŝB2 = sB2 − b . Then

EŝA2
[max{λ1sA1 + λ2ŝ

A
2 , b}] ≤ EŝB2

[max{λ1sA1 + λ2ŝ
B
2 , b}]

< EŝB2
[max{λ1sA1 + λB1 ŝ

B
2 , b}]

= EsB2
[max{λ1sA1 , (1− λB1 )b+ λB1 s

B
2 }] ,

where the first line follows from the fact that ŝA2 second-order stochastically dominates ŝB2 , the sec-
ond line from the fact that λB1 > λ2, and finally the last line from Lemma 1. Thus experimentation
dominates specializing in sector A.

Second, suppose the agent samples sector B in the first period. Define ŝB
′

2 ≡ sB2 −((1−λB1 )b+
λB1 s

B
1 ). Then
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EsA2
[max{λ1sA2 , (1− λB1 )b+ λB1 s

B
1 }] T E

ŝB
′

2
[max{λ1ŝB

′
2 , (1− λB1 )b+ λB1 s

B
1 }]

T E
ŝB
′

2
[max{λB2 ŝB

′
2 , (1− λB1 )b+ λB1 s

B
1 }]

= EsB2
[max{0, λB2 sB2 + (1− λB2 )((1− λB1 )b+ λB1 s

B
1 )}].

Observe that,

σ2η

σ2ε
T
v − 1

v
⇐⇒ σ2η T

vσ2ησ
2
ε

vσ2η + σ2ε
= (1− λB1 )vσ2η ⇐⇒ λ1 T λ

B
2 .

Thus, using similar arguments based on the convexity of the max function and second order

stochastic dominance, the inequalities in lines 1 and 2 above hold if and only if
σ2η

σ2ε
T
v − 1

v
.

Now let v < 1. Consider two cases. First, suppose the agent samples sector B in period 1.
Then

EsB2
[max{0, λB2 sB2 + (1− λB2 )((1− λB1 )b+ λB1 s

B
1 )}] = E

ŝB
′

2
[max{λB2 ŝB

′
2 , (1− λB1 )b+ λB1 s

B
1 }]

< E
ŝB
′

2
[max{λ1ŝB

′
2 , (1− λB1 )b+ λB1 s

B
1 }]

≤ EsA2
[max{λ1sA2 , (1− λB1 )b+ λB1 s

B
1 }] ,

where the first line follows from Lemma 1, the second line from the fact that λ1 > λB2 , and the
third line from the fact that ŝB

′
2 second order stochastically dominates sA2 . Thus experimentation

dominates specializing in sector B.
Next, suppose the agent samples sector A in period 1. Then

EŝA2
[max{λ1sA1 + λ2ŝ

A
2 , b}] S EŝB2

[max{λ1sA1 + λ2ŝ
B
2 , b}]

S EŝB2
[max{λ1sA1 + λB1 ŝ

B
2 , b}]

= EsB2
[max{λ1sA1 , (1− λB1 )b+ λB1 s

B
2 }] ,

Observe that,

σ2η

σ2ε
T

1− v
v
⇐⇒ vσ2η T

σ2ησ
2
ε

σ2η + σ2ε
= (1− λ1)σ2η ⇐⇒ λB1 T λ2.

Thus, using similar arguments based on the convexity of the max function and second order

stochastic dominance, the inequalities in lines 1 and 2 above hold if and only if
σ2η

σ2ε
T

1− v
v

.

Proof of Proposition 6:
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i As the agent is the residual claimant when µ = 1, her optimal choice is the efficient one, which
is to experiment.

ii Suppose the agent specializes. There are two cases to consider. First, suppose ŝA2 ≥ −
λ1

λ2
sA1 .

Then expected output is the largest for sector A and the agent’s wage is the mean of her talent

in the next best sector which is 0. Second, suppose ŝA2 < −
λ1

λ2
sA1 , then expected output is the

largest for sector B or sector C, both of which equal 0. The agent’s wage is thus 0, once again,
for this case. Thus the agent’s expected utility from specialization is 0. Note that specialization
dominates not sampling a talent where the agent gets a wage of 0 and has to incur the cost φ.

Next, suppose the agent experiments. Consider two possible cases. First, suppose sA1 > 0.
Then the agent’s output is max{λ1sA1 , λ1sB2 } and the agent’s wage is max{min{λ1sA1 , λ1sB2 }, 0}.
Thus the agent’s wage is non-negative (and positive for sB2 > 0). As a result, the agent’s
expected utility is positive and so experimentation is optimal.

Second, suppose sA1 ≤ 0. Then the agent’s output is max{λ1sB2 , 0} and the agent’s wage is
max{min{λ1sB2 , 0}, λ1sA1 }. Thus the agent’s wage is non-positive so that specialization does at
least as well as experimentation. In fact, when sA1 < 0, the agent’s wage is negative for sB2 ≤ 0

so that specialization does strictly better than experimentation.�

Proof of Proposition 7: Note first, that the expected surplus from specialization can be writ-
ten as

V ρ
S = EŝA2

[ρ(λ1s
A
1 + λ2ŝ

A
2 ) + max{(1− ρ)(λ1sA1 + λ2ŝ

A
2 ), 0}]

= ρλ1s
A
1 + EŝA2

[max{(1− ρ)(λ1sA1 + λ2ŝ
A
2 ), 0}].

Let ŝB2 = sB2 −ρλ1sA1 , such that the distribution of signal ŝB2 isN(0, (1−λ21ρ2)(σ2η+σ2ε ). The expected
surplus from experimentation can then be expressed as:

V ρ
E = EŝB2

[max{λ1sA1 + κρŝ
B
2 , ρλ1s

A
1 + κ1ŝ

B
2 }]

= EŝB2
[ρλ1s

A
1 + κρŝ

B
2 +max{(1− ρ)λ1sA1 + (κ1 − κρ)ŝB2 , 0}]

= ρλ1s
A
1 + EŝB2

[max{(1− ρ)λ1sA1 + (κ1 − κρ)ŝB2 , 0}]

The expected advantage of experimentation over specialization is then

V ρ
E − V

ρ
S = (1− ρ)λ1

(
EŝB2

[max{sA1 +
κ1−κρ
(1−ρ)λ1 ŝ

B
2 , 0}]− EŝA2 [max{sA1 + λ2

λ1
ŝA2 , 0}]

)
= (1− ρ)λ1

(
EŝB2

[max{sA1 +
ŝB2

1−λ1ρ , 0}]− EŝA2 [max{sA1 +
ŝA2

1+λ1
, 0}]

)
.

Clearly, V ρ
E − V

ρ
S = 0, for ρ = 1.

For ρ < 1, using a second-order stochastic dominance argument, V ρ
E−V

ρ
S > 0, if Var( ŝB2

1−λ1ρ) >
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Var( ŝA2
1+λ1

). The difference between these variances is

Var( ŝB2
1−λ1ρ)− Var( ŝA2

1+λ1
) =

1 + ρ

1− λ1ρ
2λ1

1 + λ1
(σ2η + σ2ε ).

This difference is zero for ρ = −1 and positive for all ρ > −1.
Finally, note that (1−ρ) is strictly decreasing in ρ and Var( ŝB2

1−λ1ρ)−Var( ŝA2
1+λ1

) is strictly increas-
ing in ρ. Thus, experimentation dominates specialization for all ρ ∈ (−1, 1), and experimentation
and specialization are equally efficient for ρ ∈ {−1, 1}. �

Proof of Proposition 8:
LetEU δE andEU δS be the value from experimenting and specializing when bargaining weights

are endogenous. We first show that

EU δE − EU δS = EUE − EUS − δVS = (2µ− 1)(VE − VS)− δVS .

When the agent experiments, bargaining weights stay are the same across sectors and equal
µ. From the proof of Proposition 3, it follows that EU δE = EUE = (2µ− 1)VE + (1− µ)λ1sA1 .

When the agent specializes, on the other hand,

EU δS = (µ+ δ)

∫ ∞
−
λ1s

A
1

λ2

(λ1s
A
1 + λ2ŝ

A
2 )dF

A + (1− µ)
∫ −λ1sA1

λ2

−∞
(λ1s

A
1 + λ2ŝ

A
2 )dF

A

= (µ+ δ)(

∫ ∞
−
λ1s

A
1

λ2

max{λ1sA1 + λ2ŝ
A
2 , 0}dFA +

∫ −λ1sA1
λ2

−∞
max{λ1sA1 + λ2ŝ

A
2 , 0}dFA)

+ (1− µ)(
∫ −λ1sA1

λ2

−∞
min{λ1sA1 + λ2ŝ

A
2 , 0}dFA +

∫ ∞
−
λ1s

A
1

λ2

min{λ1sA1 + λ2ŝ
A
2 , 0}dFA)

= EŝA2
[(µ+ δ)max{λ1sA1 + λ2ŝ

A
2 , 0}+ (1− µ)min{λ1sA1 + λ2ŝ

A
2 , 0}]

= EŝA2
[µmax{λ1sA1 + λ2ŝ

A
2 , 0}+ (1− µ)min{λ1sA1 + λ2ŝ

A
2 , 0}] + δEŝA2

[max{λ1sA1 + λ2ŝ
A
2 , 0}]

= (2µ− 1)VS + (1− µ)λ1sA1 + δVS ,

where the last line follows from the fact that max{x, y}+min{x, y} = x+ y and ŝA2 having a mean
of zero. Thus EU δE − EU δS = EUE − EUS − δVS = (2µ− 1)(VE − VS)− δVS .

i Suppose µ > 1
2 . Since limsA1→∞

(2µ − 1)(VE − VS) − δVS = −∞, and since VE and VS are con-
tinuous in sA1 , the agent prefers specialization over experimentation for sA1 sufficiently large.

ii Suppose µ ≤ 1
2 . Since VE − VS > 0 from Proposition 1, it follows that (2µ − 1)(VE − VS) ≤ 0.

Thus EU δE − EU δS ≤ −δVS < 0. As a result, specialization dominates experimentation for the
agent.
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