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One of the more curious features of American democracy is that electoral boundaries are 
drawn by political parties. In order to ensure a notion of equal representation, the Constitution of 
the United States provides that “Representatives and direct Taxes shall be apportioned among the 
several States which may be included within this Union, according to their respective Numbers.”� 
Since populations change over time, the Constitution also provides a time frame according to 
which representation shall be adjusted—“… within every subsequent Term of ten Years, in such 
Manner as they shall by Law direct”—where “they” represents the states. In practice, this leaves 
the process of redistricting to state legislatures and governors.

History has shown that political parties act in their own interests; redistricting is no exception, 
and the advantages gained can be large. From Massachusetts’s Elbridge Gerry in 1812 (after 
whom the term “Gerrymander” was coined) to the recent actions of Texas Representative Tom 
DeLay, American politicians have used the redistricting process to achieve partisan political 
ends. Most recently, the much publicized Republican redistricting in Texas in 2003 caused four 
Democratic congressmen to lose their seats and would have been even more extreme but for 
the Voting Rights Act, which effectively protected nine Democratic incumbents. Other particu-
larly stark current examples include Florida, Michigan, and Pennsylvania—states that are evenly 
divided, but whose delegations to the 109th Congress collectively comprised 39 Republicans 
and 20 Democrats. Democrats are also familiar with the practice; although President George W. 
Bush won Arkansas by more than 10 points in 2004, the state’s delegation to the 109th Congress, 

� Article I, section 2, clause 3.

Optimal Gerrymandering: Sometimes Pack, But Never Crack

By John N. Friedman and Richard T. Holden*

Standard intuitions for optimal gerrymandering involve concentrating one’s 
extreme opponents in “unwinnable” districts (“packing”) and spreading one’s 
supporters evenly over “winnable” districts (“cracking”). These intuitions 
come from models with either no uncertainty about voter preferences or only 
two voter types. In contrast, we characterize the solution to a problem in which 
a gerrymanderer observes a noisy signal of voter preferences from a continu-
ous distribution and creates N districts of equal size to maximize the expected 
number of districts she wins. Under mild regularity conditions, we show that 
cracking is never optimal—one’s most ardent supporters should be grouped 
together. Moreover, for sufficiently precise signals, the optimal solution 
involves creating a district that matches extreme “Republicans” with extreme 
“Democrats,” and then continuing to match toward the center of the signal 
distribution. (JEL D72)

* Friedman: University of California at Berkeley, Evans Hall, 5th floor, Berkeley, CA 94720 (e-mail: jfriedman@
post.harvard.edu); Holden: Massachusetts Institute of Technology, Sloan School of Management, E52-410, 50 Memorial 
Drive, Cambridge, MA 02142 (e-mail: rholden@mit.edu). We owe special thanks and a large intellectual debt to Paul 
Milgrom. We would also like to thank three anonymous referees, Philippe Aghion, Alberto Alesina, Doug Bernheim, 
Steve Coate, Eddie Dekel, Rosalind Dixon, Allan Drazen, Glenn Ellison, Drew Fudenberg, Luis Garicano, Matt 
Gentzkow, Ed Glaeser, Christine Jolls, Kevin Murphy, Barry Nalebuff, Torsten Persson, Jesse Shapiro, Andrei Shleifer, 
and Jeremy Stein for helpful suggestions and participants in seminars at UC Berkeley, University of Chicago, Cornell 
University, Harvard Law School, Harvard University, MIT, Northwestern University, Stanford University, University 
of Pennsylvania, Yale University, and the NBER political economy group meetings. Friedman acknowledges the sup-
port of the NSF and NBER grant NIA T32-AG00186.

American Economic Review 2008, 98:1, 113–144
http://www.aeaweb.org/articles.php?doi=10.1257/aer.98.1.113



March 2008114 THE AMERICAN ECONOMIC REVIEW

bolstered by the Democratic state legislature’s redistricting in 2001, contained three Democrats 
and one Republican.

Although gerrymandering using unequal district sizes is unlawful, partisan gerrymandering 
remains legal, though controversial. In Davis v. Bandemer (1986), the Supreme Court declared 
partisan gerrymandering inimical to norms of fair and equal representation; but the majority 
was unable enunciate a workable test for where redistricting stops and gerrymandering begins. 
Nearly two decades later, despite numerous attempts to find such a standard, four members of 
the court (Chief Justice Rehnquist and Justices O’Connor, Scalia, and Thomas) found in Vieth v.  
Jubelirer (2004) (a 4-1-4 decision) that the test laid down in Bandemer was not practicable, in 
that it gave no guidance to legislatures and lower courts, and, absent such a test, partisan redis-
tricting was not justiciable.�

In the wake of this decision and the controversial Texas redistricting in 2003, there has been 
renewed interest in legislative reform to change the partisan nature of redistricting. Currently, 
two states, Iowa (since 1980) and Arizona (since 2000), include nonpartisan commissions in their 
decennial redistricting processes, but only Arizona completely excludes political bodies. More 
than 20 states have considered similar amendments in the past decade, though, and movements 
advocating such changes seem to be gaining momentum.

Recently, three states, California, Florida, and Ohio, held referenda that proposed that panels 
of retired judges take charge of the redistricting process. None of these passed. But despite the 
great impact of gerrymandering on the American political system and the surge of recent interest 
in reform, few authors have attempted to understand the basic incentives at work.

In this paper, we view the issue of redistricting through the lens of an economist concerned with 
the endogenous formation of political institutions. In particular, we frame the issue as a maximi-
zation problem by the gerrymanderer where the choice variables are the allocations of voters to 
districts. In contrast, most previous analyses model the problem as a trade-off between “biased-
ness”—the degree to which an evenly divided population would elect an uneven slate of legisla-
tors—and “responsiveness”—the sensitivity of the share of seats held by a party to the share of 
voters supportive of that party (Guillermo Owen and Bernard Grofman 1988; Katerina Sherstyuk 
1998; Gary W. Cox and Jonathan N. Katz 2002). In these models, the gerrymanderer optimally 
concentrates those least likely to vote for her in districts that are “thrown away” or “packed,” and 
spreads remaining voters evenly over the other districts, which are “smoothed” or “cracked.” A 
major limitation of these models is that they are not micro-founded; the gerrymanderer chooses 
properties of the redistricting plan, as a whole, rather than the placement of voters into districts. 
Since there is no one-to-one mapping from these aggregate characteristics to individual district 
profiles, there is no guarantee that the solution from these models is actually optimal.

Thomas W. Gilligan and John G. Matsusaka (1999) take an alternative approach, instead ana-
lyzing a micro-founded model in which individuals with known party affiliations vote for those 
parties with probability one. Since one party wins a district comprising n 1 1 of its supporters 
and n opponents with certainty, the optimal strategy is to make as many districts like this as 
possible. Indeed, if one party holds a bare majority of the population, then they win all districts! 
Though the assumptions of observability and deterministic voting simplify the analysis greatly, 
they clearly do so at some cost.

Kenneth W. Shotts (2002) considers the impact of majority-minority districting. He develops 
a model with a continuum of voters whose identities are perfectly known to the gerrymanderer, 
and imposes a constraint he calls the “minimum density constraint.” This requires the gerryman-
derer to put a positive measure of all voter types in each district. This is a reduced form way of 

� “… the legacy of the plurality’s test is one long record of puzzlement and consternation,” Scalia J.
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modelling the constraint that districts be contiguous and the fact that in practice the gerryman-
derer receives a noisy signal of voter preferences.

We analyze a model in which there is a continuum of voter preferences, and where the ger-
rymanderer observes a noisy signal of these preferences. We show that the optimal strategy 
always involves concentrating one’s most ardent supporters together. Intuitively, since district 
composition determines the median voter, smoothing districts makes inefficient use of extreme 
Republicans as right-of-the-median voters in many districts, rather than having them be the 
median in some districts. This contrasts with the “cracking” intuition, which calls for the cre-
ation of identical profiles among districts the gerrymanderer expects to win. When the signal a 
gerrymanderer receives is sufficiently precise, we obtain a sharper characterization. The optimal 
strategy creates districts by matching increasingly extreme blocks of voters from opposite tails 
of the signal distribution. Intuitively, extreme Democrats can be best neutralized by matching 
them with a slightly larger mass of extreme Republicans.

This analysis is a first step toward a more complete understanding of the phenomenon of ger-
rymandering. There are important issues this paper does not address. Most notably, we abstract 
from geographical considerations, such as the legal requirement of contiguity (see Section I 
below, however), as well a preference for compactness or the recognition of communities of inter-
est. Second, we focus exclusively on partisan incentives, to the exclusion of the motivations of 
incumbents (i.e., incumbent gerrymandering). Finally, we do not model the constraints imposed 
by the Voting Rights Act. Of course, this does not mean that racial and partisan gerrymandering 
are distinct phenomena. Given that race is a component of the signal of voter preference observed 
by the gerrymanderer, there may be circumstances where they are essentially the same practice. 
Ultimately this is an empirical question, which depends on the joint distribution of voter prefer-
ences and voter characteristics. (These issues are further explored in Section VI).

The remainder of the paper is organized as follows, Section I details the legal and institutional 
backdrop against which redistricting takes place. In Section II we present some basic examples 
to illustrate the primary intuitions of the solution to our more general model, which we present in 
Section III along with comparative statics. Section IV reports the result of a number of numeri-
cal examples of the model in order to illustrate further the optimal strategy and its comparative 
statics. In Section V we explore a number of extensions to the basic model, including alterna-
tive partisan objective functions, the effects of gerrymandering on policy outcomes, candidate 
specific advantages, and uncertain voter turnout. Finally, Section VI contains some concluding 
remarks and suggests directions for future work.

I.  Institutional Background�

The process of redistricting was politicized in America as early as 1740 (in favor of the Quaker 
minority in the colony of Pennsylvania). Until the landmark Supreme Court decision Baker v. 
Carr in 1962, the major legal constraint on gerrymandering was that districts be contiguous. 
Many states, particularly in the South, had not redrawn Congressional districts after each decen-
nial Census. Since population growth was much greater in urban areas, this inertia served to 
dilute the urban vote—often poor and black—and enhance the political power of rural white 
voters who traditionally supported the Democratic Party. After the 1960 Census, the popula-
tion disparities between congressional districts had become as great as 3 to 1 in Georgia (and as 
extreme as 1,000 to 1 for state legislature seats in some states). The decision in Baker declared 
that challenges to such districting plans were justiciable, and two years later the Court clarified its 

� This section details the legal and political backdrop against which gerrymandering occurs today. Readers uninter-
ested in, or already familiar with, this material may wish to skip directly to the analysis in Section II.
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position on the standard for unlawful redistricting plans, stating in Wesberry v. Sanders that only 
congressional districts with populations “as nearly equal as possible” were acceptable under the 
Equal Protection clause.� Furthermore, federal district courts were empowered, as part of their 
remedial discretion, to draw district boundaries themselves should a state prove either unable or 
unwilling to produce a satisfactory plan.

Consensus over the practical implications of the Court’s decisions solidified over the next 15 
years. Though federal district courts initially experimented with strict upper bounds on the max-
imum population deviation across districts, by the late 1970s states were subject to a more flex-
ible set of criteria, in which concerns such as the compactness of districts or the preservation of 
“communities of interest” justified small deviations in representation. As of 1980, though, conti-
guity and population equality across districts were the principle constraints on redistricting.

In the 1990s, debates around gerrymandering shifted to the issue of “race conscious” redis-
tricting. While it had long been clear that intentional dilution of the voting strength of racial 
minorities violated the Equal Protection clause, it was less clear that states could draw boundar-
ies such that racial minorities could elect their preferred candidates (Samuel Issacharoff, Pamela 
S. Karlan, and Richard H. Pildes 2002). In a number of cases, culminating in Shaw v. Reno 
(1993), the Court found that redistricting plans would be held to the same strict scrutiny with 
respect to race as other state actions. In practice, this means that, once plaintiffs demonstrate 
that racial concerns were a “predominant factor” in the design of a districting plan, the plan is 
illegal unless the state can justify the use of race and show that such factors were considered 
only when necessary. This places a heavy burden on the states. Some federal courts initially 
interpreted these decisions as requiring states to ensure minority representation through the 
creation of majority-minority districts, but the Supreme Court declared that this practice would 
violate Section 2 of the Voting Rights Act. In more recent cases, the Court has continued to 
downplay the importance of racial considerations; for instance, litigation surrounding the 1991 
North Carolina redistricting ended when the Court ruled, in Easley v. Cromartie (2001), that 
partisan concerns, not racial concerns, “predominated” in the construction of the heavily black 
and Democratic 12th district, and thus the plan was legal.

The history of attempts to ban partisan gerrymandering have proven less successful still. In 
Davis v. Bandemer, the Supreme Court attempted to limit the impact of partisan concerns in 
redistricting processes by stating that such claims were, in theory, justiciable (though they did 
not decide the merits). Though the years following this decision saw many attempts to define 
the level and shape of such a standard, there was little agreement, and no claim of partisan ger-
rymandering ever succeeded. In Vieth v. Jubelirer, four members of the Court found that such 
attempts were doomed. While Bandemer is still good law, the future justiciability of partisan 
gerrymandering claims seems far from assured.

The current reality of political redistricting reflects the past 40 years of case history. States 
now use increasingly powerful computers to aid in the creation of districts, and, accordingly, 
Baker’s “as nearly equal as possible” population requirement is extremely strict. A Pennsylvania 
redistricting plan was struck down in 2002 for having one district with 19 more people than 
another without justification! On the other hand, the law does allow for some slight deviations, 
provided there is adequate justification. In Iowa, for instance, congressional districts must com-
prise whole counties; the current maximum population deviation of the Iowa redistricting plan 
is 131 people, but the legislature rejected an earlier plan with a 483-person deviation. Such cases 
are not common, though. The current Texas districting plan is more representative and has, 

� See Wesberry v. Sanders 376 US 1 (1964). The court applied a similar standard to districts for statewide legislative 
bodies in Reynolds v. Sims 377 US 533 (1964), and for general purpose local governments in Avery v. Midland County 
390 US 474 (1968).
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to integer rounding, equal population in each 
district.

As previously mentioned, districts must be 
contiguous. This requirement first appears in 
the Apportionment Act of 1842, though it was 
standard long before then. While technology 
has tightened the population equality con-
straint, computers have effectively loosened the 
contiguity requirement, as legislators can now 
draw districts more finely than ever before. In 
the 1970s, districting plans were laborious to 
create and difficult to change, as each required 
hours of drawing on large floor-maps using 
dry-erase markers; now lawmakers use Census 
TIGERLine files to create and analyze many 
alternative districting schemes both quickly 
and accurately. Contiguity has been stretched 
to the limit in such recent cases. Florida’s 19th, 
22nd, and 23rd districts, shown in Figure 1, are 
one such case. The 22nd comprises a coastal 
strip not more than several hundred meters 
wide in some places but 90 miles long, while 
tentacles from the 19th and 23rd intertwine to 
divide the voters of West Palm Beach and Fort 
Lauderdale. Even more striking is the shape of 
the Illinois 4th (shown in Figure 2), drawn to 
include large Hispanic neighborhoods in the 
North and South of Chicago but not much in 
between. Each of these districts is, in some 
places, no more than one city block wide, and 
such necks are often narrower than 50 meters.

State law governs procedures for redrawing 
district boundaries. In most states, redistricting 
plans are standard laws, proposed by the mem-
bers of the legislature and subject to approval 
by the legislatures and the governor. Arizona 
and Iowa delegate redistricting to independent 
commissions, though in Iowa legislators must 
still approve the plan and may edit proposed 
schemes after several have been rejected. In 2001, for instance, the legislature rejected the first 
proposed plan along partisan lines.� Arizona and Iowa also instruct their redistricting commis-
sions to make districts “compact,” respect the boundaries of existing “communities of interest,” 
and use geographic features and existing political boundaries to delineate districts “to the extent 
practicable.” Finally, Arizona mandates that “competitive districts should be favored where to 
do so would create no significant detriment” to other objectives.� No other states have explicitly 
defined redistricting goals along these lines.

� “Senate Rejects Districts,” Des Moines Telegraph Herald, May 3, 2001.
� See Arizona Proposition 106, and 1981 Iowa Acts, 2nd Extraordinary Session, Ch. 1.

Figure 1.  
Florida 16th to 23rd Congressional Districts

http://www.atypon-link.com/action/showImage?doi=10.1257/aer.98.1.113&iName=master.img-000.jpg&w=186&h=417
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There are three key messages to understand from the backdrop against which gerrymander-
ing takes place. First, contiguity may well not be a binding constraint because of the fine lines 
gerrymanderers use to create districts. Second, other spatial/geographic concerns such as com-
pactness and communities of interest have found little legal traction. As such, they are really 
not constraints on gerrymanderers. Third, the Supreme Court has consistently considered par-
tisan and racial gerrymandering to be analytically distinct—Cromartie even going so far as to 
allow racial gerrymandering if it is not deemed the predominant motive. The first two of these 
points suggest that spatial/geographic considerations are not first-order concerns. Accordingly, 
our model omits them. The third rests on the premise that signals of voting propensity and race 
are sufficiently uncorrelated that an optimal gerrymandering strategy does not conflate the two 
issues. This is a point to which we return later in the paper.

II.  Some Simple Examples

In order to illustrate the intuition behind the theory in this paper, we now provide some very 
simple examples that capture the basic features of the more general model in Section III. In these 
examples, for simplicity, voters have single-peaked preferences. In the general model, voter pref-
erences satisfy single-crossing—an arguably less restrictive condition. For instance, when voters 
have a convex loss function over the distance of their bliss point from the actual policy, then 
single-peakedness implies that single-crossing is satisfied.

A. Example 1

Consider the problem faced by a gerrymanderer in a state in which a population of voters 
has single-peaked preferences that are symmetric about a policy b, within a one-dimensional 
policy space. We assume that each voter has bliss point b, and that, across the population, b is 

nationalatlas.govTM
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Figure 2. Illinois 4th Congressional District
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distributed uniformly on 321, 14 . These assumptions imply that, in a two-party election, each 
voter supports the candidate located closest to her on the ideological spectrum. To begin, we 
assume that the gerrymanderer can directly observe b for each voter. We assume that all can-
didates—the right-wing “Republican” candidates and the left-wing “Democrats”—locate sym-
metrically about zero, and so the percent of votes captured by the Republican candidate in any 
election is simply the proportion of voters to the right of zero.

The gerrymanderer—suppose she is a Republican—must break up the population into equal-
sized districts in which different elections take place with the goal of maximizing the expected num-
ber of seats won by her party. Since we abstract from geographic concerns here, the gerrymanderer 
can match any pieces of the population into a district. Suppose, for simplicity, that the gerryman-
derer must form two districts, so that each district must comprise a one-half mass of voters. Since 
all voters for whom b $ 0 support the Republican candidate with certainty, Republicans win all 
districts containing one-quater or more mass of such voters.� From Gilligan and Matsusaka (1999), 
the optimal gerrymander makes exactly half of the voters in each district have preferences b $ 0;  
in this basic setup, Republicans win each district with certainty. It does not matter which right-
wing voters go into each district.

B. Example 2

We now add some noise to the preferences in Example 1. Suppose that, after candidates are 
positioned, an aggregate preference shock A affects the population so that preferences are now 
single-peaked about b̂ 5 b 2 A. The gerrymanderer observes only b and not A or b̂. Suppose 
that A is distributed uniformly on 321, 14 . While voters for whom b . 0 now vote for the right-
wing candidate in expectation, only those for whom b 5 1 support the Republican candidate 
with certainty; a voter with b 5 0.5, for instance, prefers the right-wing candidate only if A , 
0.5, which happens 75 percent of the time.

In this example we can make a sharper prediction about the form of the optimal gerrymander. 
Half of the voters in each district should have b . 0, but it now matters which of these voters go 
into which district. The optimal gerrymander groups all extreme voters for whom b [ 30.5, 14 
into one district (denoted as District 1) and more moderate right wingers with b [ 30, 0.54 into 
District 2. These blocks of right-wing voters are then grouped with any mass of voters for whom 
b , 0; since the preference of the median voter in each district ( m1 5 0.5 in District 1 and m2 5 
0 in District 2) is already determined, the composition of the left-wing voters does not matter. 
Republican candidates now win District 1 with probability 0.75 and District 2 with probability 
0.5. Any other distribution of right-wing voters between the two districts (with one-quarter mass 
to each) would dilute the power of the extreme right-wing voters by wasting some in District 
2, since that median voter would still have b 5 0 while the preferences of the median voter of 
District 1 would fall. Only by concentrating the most extreme right-wing voters together can the 
gerrymanderer make the most effective use of her supporters.

C. Example 3

Finally, suppose (in addition to the setup in the second example) that individual preferences 
are measured with noise by the political parties. That is, let the gerrymanderer observe only s, 
a signal of preferences, instead of b itself. Across the population, let s be distributed uniformly 
on 321, 14 , and let b Z s be distributed uniformly on 3s 2 0.5, s 1 0.54 , with an independent draw 

� For the sake of simplicity, we resolve all “ties” in this example in favor of the Republican candidate. Voters with 
b 5 0 support the right-wing candidate, and if the candidates have equal vote shares, the Republican wins.
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of b for each voter with a given signal s. Suppose the gerrymanderer creates districts as above 
(grouping voters for whom s [ 30.5, 14 into District 1 and s [ 30, 0.54 into District 2), and, fur-
thermore, groups the most extreme left-wing voters into District 1 and the others in District 2. 
Because the measurement of preferences is noisy, the median voter in District 1 falls to m1 5 0; 
the Republicans gain no advantage over proportional representation. Intuitively, the Republicans 
are “cutting it too close” in District 1. Although District 1 contains the most extreme right-wing 
voters, there are only one-quarter mass of them, and so the most left-wing voter with a right-wing 
signal is the median voter. Since some of those right-wing voters end up with more moderate 
preferences than their signal suggested, the median voter in the district is a moderate.

Instead, consider a gerrymander who groups all voters with s [ 3 p, 14 into District 1 and s [ 
30, p 4 into District 2. Because of the intuition developed in the second example, this districting 
scheme still keeps the most extreme right-wing voters together. Now, though, the Republicans 
have more than just a bare majority of supporters in District 1, reducing the problem caused by 
preference mismeasurement above.

To complete this optimal districting, the gerrymanderer must allocate the left-wing voters. Her 
problem here is exactly opposite that faced with the right-wing voters: she must decide how best 
to neutralize the voting power of the extreme left-wingers. The key to this problem is that, since 
the majority of District 2 voters are left-wingers (assuming p , 1/2), m2 is far more sensitive to 
the allocation of these voters than m1. Thus, the optimal gerrymanderer should concentrate those 
least likely to vote for the Republican candidate into District 1, where they affect the median 
voter least.

Combining these insights, consider a districting plan such that voters for whom s [ 321, 21 1 
p 4 < 3 p, 14 make up District 1 and the rest are placed in District 2. The particular distributional 
assumptions made above imply that

	 m1 5 p 1 "1 2 2p 2
1
2

 and m2 5 p 2 
1
2

 .

The optimal gerrymander sets p* 5 3/8; Republican candidates win 11/8 seats in expectation. By 
including more right-wingers in District 1, m1 becomes less sensitive to the mismeasurement of 
preferences, and thus increases quite a bit, while m2, which depended less on the precision of the 
signal, does not decrease by as much. Furthermore, the right-wing voters of District 1 determine 
that m1 5 !1/4 2 1/8 5 3/8, and so the inclusion of the most extreme left-wingers has no effect. 
If, for instance, the gerrymanderer had included these least favorable voters into District 2 and 
placed voters with s [ 321 1 p, 21 1 2p 4 into District 1, m2 would fall while m1 would not 
change.

These three simple examples illustrate how key features of an optimal partisan gerryman-
der differ from the standard “throwing away” and “smoothing” intuitions. First, it is not best 
to “smooth” extreme and moderate right-wing voters across many districts; rather, one should 
concentrate the most extreme right-wingers into a single district in order to not waste them all 
as right-of-median voters. Second, it is not efficient to “pack” those least likely to vote for one’s 
candidate into a district that is “thrown away”; instead, these extreme left-winger voters are best 
countered by matching them with a greater number of extreme right-wingers.

We now turn to our model, which provides a more general characterization of the optimal 
partisan gerrymander, but the intuitions brought out in our examples are still prominent. Indeed, 
under certain regularity conditions, the optimal districting scheme has exactly the same form as 
in the final example above, matching increasingly extreme slices of voters from opposite sides of 
the signal distribution for the population.
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III.  The Model

A. Overview

There are two parties, D and R, which can be interpreted as the Democratic Party and the 
Republican Party. One of these parties (without loss of generality, we assume it to be R) is 
the gerrymanderer and creates districts. There is a unit mass of voters with preferences over a 
one-dimensional policy space. The gerrymanderer does not observe a voter’s preferences, but, 
instead, receives a noisy signal of them. Also, she observes the posterior distribution of policy 
preferences conditional on the signal. We will sometimes refer to the marginal distribution of the 
signal as the “signal distribution.” Thus, her problem is to create N voting districts by allocating 
voters from the signal distribution. Her objective is to maximize the expected number of districts 
won. The probability that each party wins a district is determined by the median voter in that 
district. The only constraints we place on the gerrymanderer are that: (a) each voter must be allo-
cated to one and only one district; and (b) all districts must contain an identical mass of voters.

B. Statement of the Problem

There is a unit mass of voters who differ in their political preference over two candidates who 
locate on the real line such that D , R. We assume that this location happens prior to observing 
any signals about voters preferences. Denote the payoff to voter i of candidate x being elected 
as ui 1x 2 .

Definition 1: Voter preferences satisfy Single-Crossing if, for any two voters i and j such that 
i , j and any two candidate locations D , R, the following hold: (i) uj 1D2 . uj 1R2 1 ui 1D2 . 
ui 1R2 and (ii) ui 1R2 . ui 1D2 1 uj 1R2 . uj 1D2.

We assume voters have preferences satisfying single-crossing. Let bi 5 ui 1R2 2 ui 1D2 , for 
each voter type i [ R. Without loss of generality, we reorder the voters so that b is monotonic. 
From this point on, the indexing of voters will reflect this reordering.�

These preferences are not observed by the gerrymanderer, who instead receives a noisy sig-
nal, s [ R. Let the joint distribution of b and s be given by F 1b, s 2 , which is assumed to have 
full support on R2. Let player R be the gerrymanderer. Let R have a Bayesian posterior G 1b Z s 2 
for the distribution of preferences given an observed signal. We refer to this distribution as the 
“conditional preference” distribution. We assume that both F and G are absolutely continuous. 
Define the marginal distribution of s as

	 h 1s 2 5 3f 1b, s 2 db.

Since there is a continuum of voters, we can interpret h not only as characterizing a single 
draw from the population of voters, but also the mass of voters in the population. We refer to 
h as the “signal distribution.” R allocates mass from this distribution in order to form districts. 
Normalize the median of s in the population to zero.

Since preferences satisfy single-crossing, the median voter determines a Condorcet winner 
(Paul Rothstein 1991). As a reduced form representation of electoral uncertainty, we assume 
that, in each election, after R observes the signal s, there is an aggregate shock decreasing all 

� In the Appendix, we offer a result, which is of independent interest, that under single-crossing preferences the 
probability that a voter votes Republican is increasing in her type.
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preferences by A. Thus, if the median voter in district n has preferences such that b 5 mn, she 
votes for the Republican candidate if and only if A # mn, which occurs with probability B 1mn 2 , 
where B 1 · 2 denotes the c.d.f of A. We assume that A can take any value in R with positive prob-
ability, so that B is strictly increasing.� One can also think of A as an “electoral breakpoint” 
such that voters positioned above (to the right) of the realization of the breakpoint vote for the 
Republican candidate, while those on the left vote democratic. Importantly, once the breakpoint 
is determined, all uncertainty is resolved and the position of voters relative to A determines for 
whom they vote with certainty. The uncertainty about whom a particular voter will vote for 
comes from the fact that A is stochastic.

Our assumptions about the location of candidates imply: (a) that all candidates of a given party 
and state locate in the same place; and (b) that this location takes place before receiving signals 
of voter preferences. In essence, these assumptions imply that there is nothing “local” about an 
election. Though perhaps counterintuitive, research suggests that this may not be far from the 
truth. Stephen Ansolabehere, James M. Snyder, and Charles Stewart III (2001) argue that, while 
district-to-district competition may exert some influence on the candidate platforms, the effect 
is “minor compared to the weight of the national parties.” Allowing for state-to-state differ-
ences would surely leave even less variation in local platforms. Similarly, David S. Lee, Enrico 
Moretti, and Matthew J. Butler (2004) demonstrate that exogenous shifts in electoral preferences 
do not affect the menu of candidates offered to voters, perhaps because politicians have no way 
to credibly commit to campaign promises. We discuss the effects of certain departures from this 
assumption in Section V.

R divides the population into N equal-sized districts to maximize the expected number of seats 
won in the election. Let cn 1s 2 denote the mass of voters from the population placed in district n. 
Formally, R solves the program

(1) 	  max
5cn1s26n51

  
e1

N
 a

N

n51
B 1mn 2 f

	 s.t. 3
`

2`

cn 1s 2 ds 5 
1
N

 , 5n    a
N

n51
cn 1s 2 5 h 1s 2 , 5s    0 # cn 1s 2 # h 1s 2 , 5n, s,

where

(2) 	  mn 5 b̂    s.t. 3
`

2`

G 1b̂ Z s 2cn 1s 2 ds K Gn 1b̂ 2 5 
1

2N
 .

It will be useful to define the following for notational purposes:

(3) 	  gn 1b 2 5 
'Gn 1b 2
'b

 .

Given a district profile cn 1s 2 , equation (2) determines mn with certainty. Though R could not 
identify any single voter as the median voter in a district, there is nothing stochastic about the 
preference parameter of the median voter.10

� This implies that the shock is independent of voter type. It may be the case that more “extreme” types are less 
affected by such shocks. This could be explored in future work.

10 This model structure is isomorphic to the inclusion of further levels of uncertainty between signals and prefer-
ences. For instance, suppose that the gerrymanderer believed that, with 50 percent probability, preferences had a con-
ditional distribution G11b Z s 2 , and otherwise they were conditionally distributed as G2(b Z s 2 . Equation (2) would then 

NN
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C. Characterization of the Optimum

No Cracking.—In order to analyze the problem, it is necessary to place some structure on 
the conditional distribution of preferences. The first restriction we require is that the signal be 
informative in the following sense.

Condition 1 (Informative Signal Property) : Let 0G 1b Z s 2/0s 5 z 1b Z s 2 . Then,

	
z 1b 0s r 2
z 1b 0s 2  , 

z 1b r 0s r 2
z 1b r 0s 2 , 5s9 . s, b9 . b.

This property is similar to the Monotone Likelihood Ratio Property (MLRP) due to Samuel 
Karlin and Herman Rubin (1956) (see also Paul R. Milgrom 1981). In fact, if a higher signal 
simply shifts the mean of the conditional preference distribution, then this property is equivalent 
to MLRP.11 When this is the case, the condition essentially states that higher and higher signals 
(more right-wing) are more and more likely to come from voters who have underlying prefer-
ences that are farther to the right. Many common distributions satisfy it, including: the normal, 
exponential, uniform, chi-square, Poisson, binomial, noncentral t, and noncentral F. If a higher 
signal also changes the shape of the conditional distribution, then this property, like MLRP, 
becomes less intuitive. Condition 1 does, in general, imply first-order stochastic dominance,12 
and as such rules out cases where observing a higher signal makes both the probability of the 
voter being extreme left-wing and the probability of being extreme right-wing increase.

The second condition we require is a form of unimodality.

Condition 2 (Central Unimodality): g 1b Z s 2 is a unimodal distribution where the mode lies 
at the median.

Also note that, without loss of generality, we can “rescale” s such that s 5 maxb  g 1b Z s 2 . 
Though many distributions that satisfy Condition 1 are unimodal, some are not, and we rule 
these out. Furthermore, Condition 1 implies that the mode of g 1b Z s 2 must lie below the mode of 
g 1b Z s92 if s , s9. We can thus “relabel” the signals such that the mode of g 1b Z s 2 lies at s. The two 
properties in Condition 2, taken together, intuitively imply that, conditional on signal s, prefer-
ences are distributed “near” s and not elsewhere.

Step 1: Slicing

Lemma 1: Suppose Condition 1 holds, and consider two districts, i and j, such that mi , mj. 
Consider any two voter types, s19, s29 [ ci (i.e., in district i ). Then, any districting plan such that 
s [ cj for any s [ 3s19, s294 cannot be optimal, except perhaps on a set of measure zero.

become e
`
2` 1/2 3G11mn Z s 2 1 G2 1mn Z s 2 4cn 1s 2 ds 5 1/2N, which is isomorphic to our original problem, if instead G 1b Z s 2 

5 1/2 3G11mn Z s 2 1 G2 1mn Z s 2 4 .
11 To see this, note that, if changing s shifts only the mean of the conditional preference distribution, then G 1b Z s 2 5 

G 1b Z 1s9 2 s 2 2 . Therefore, z 1b Z s 2 5 2g 1b Z s 2 , and hence Condition 1, imply MLRP.
12 MLRP always implies this as well.
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Lemma 1 shows that we can restrict attention, without loss of generality, to a much smaller 
strategy space. Districts are constructed from vertical slices of h—either whole slices (as in 
districts 1, 2, and 3 in the figure below), or a slice shared between districts that have the same 
median (“parfaits”) (as in districts 4 and 5). Furthermore, in the optimal gerrymander, the voters 
in higher-median districts must lie outside—that is, have more extreme preferences—those in 
lower-median districts. The intuitions here are very similar to those discussed in the examples 
above. Extreme right-wing voters should be concentrated to maximize their voting strength—
that is, the optimal districting scheme places an unbroken mass of voters with higher signals into 
the higher-median district rather than alternate smaller slices into all districts.

Step 2: No Parfaits

Lemma 2: Suppose that Conditions 1 and 2 
hold. If j Z i, then mj Z mi.

This penultimate step rules out parfaits, as 
defined above. Parfaits appeared stable above 
because the split equated both the medians and 
the sensitivity of the median to changes across 
the two districts. But this is not so. One can 
reallocate mass between two such districts to 
maintain the equality of medians and make 
one district more sensitive to change than the 
other. Then, a profitable deviation exists which 
lowers the less sensitive median by some but increases the other by more. Hence, parfaits cannot 
be optimal.

Once again, the driving intuition in this case in that of concentrating extreme voters together 
to maximize their electoral power. In a way, parfaits are the least efficient use of extreme voters, 
and so it cannot be surprising that they are not optimal. Thus, the optimal gerrymander must 
contain only vertical slices of the signal distribution h that do not violate the ordering restriction 
from Lemma 1.

Step 3: No Intermediate Slices

Lemma 3: Suppose Condition 1 holds and 
consider three districts j, i, and k such that mj 
. mi . mk. Now, fix h 1s 2 and N. Then, for a 
sufficiently precise signal, there does not exist 
a voter type s* [ cj such that s9 . s* . s0 
where s9 [ ci and s0 [ ck, except perhaps on 
a set of measure zero.

This final step expands Lemma 2 by show-
ing that voters in a higher-median district 
cannot lie within the set of all voters in lower-
median districts. That is, by ruling out cases 
like that in Figure 4, it shows that optimal dis-
tricts must comprise either a single slice or two slices matching mass from opposite tails of the 
distribution. The intuition is very similar to that of Lemma 2, that lower medians (such as those 

Figure 4.  
An Example of a Strategy Ruled Out by Lemma 3

Figure 3. Slices and Parfaits
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in Districts 2 and 3 in Figure 4) are more positively affected by the inclusion of moderate instead 
of extreme left-wing voters. On the other hand, the higher medians (such as that of District 1) are 
hardly lowered by the substitution of extreme left-wingers. In order for these arguments to hold, 
though, the signal distribution must have high enough quality. If it does not, then intermediate 
slices are possible.

Proposition 1: Suppose that Conditions 1 and 2 hold, and that the signal distribution is of 
sufficiently high quality (as defined in Lemma 3). Consider a districting plan with N districts 
labelled such that mj . mi if and only if j , i. This plan is optimal if and only if it can be char-
acterized by “breakpoints” 5un6 n

N
5
2

1
1 and 5 ln6 n

N
5
2

1
1 (ordered such that u1 . u2 . … . uN21 . lN21 

$ lN22 $ … l1 $ 2`) such that

	 h 1s 2  if s , l1 or s . u1
	 c1 5 •	 ,
	 0      otherwise

	 h 1s 2  if ln21 , s , ln or un21 . s . un

	 cn 5 •	 for 1 , n , N,
	 0      otherwise

and

	 h 1s 2  if s . lN21 or s , uN21
	 cN 5 •	 .
	 0      otherwise

At this point, we have established that cracking is not optimal, although some form of packing 
may still be. That is, we have not yet ruled out the type of strategy depicted in Figure 5. We will 
now provide conditions under which packing is not optimal—and show that matching of extreme 
supporters with extreme opponents is.

No Packing.—We now offer a result which shows that if the signal quality is sufficiently high, 
the optimal strategy cannot involve packing, by which we mean concentrating one’s most ardent 
opponents into a single district—a notion we immediately make precise.

Proposition 2: Suppose Conditions 1 and 2 hold and the signal is of sufficiently high quality. 
Then, there exists n, and s , s9, such that mn . mN and s [ cn, s9 [ cN .

To understand the intuition for this result, first consider a potential deviation from a district-
ing plan that “packs,” as in Figure 5: R could 
take the most left-wing voters from District 3 
into District 1, and then “slide” Districts 2 and 
3 to the right, thereby gaining in Districts 2 
and 3 but losing ground in District 1. Now, 
consider how this strategy changes in value as 
we remove noise from the signal. As the sig-
nal becomes more precise, the cost of the pro-
posed change in District 1 decreases, since the 
voters R removes from District 1 are less likely 
to be actually right-of-median. (The voters R Figure 5. Proposition 2 Rules Out This Strategy
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adds can be so far to the left that they are always left-of-median.) But the gains in Districts 2 and 
3 stay roughly constant, since the entire districts are sliding to the right. At some point, when the 
signal is precise enough, the steady gains must begin to outweigh the shrinking loss. In the limit, 
as the signal becomes perfect, there is no cost to R in District 1 from this deviation, and R seeks 
to match an infinitesimally larger slice of right-wing voters with left-wing voters in each district, 
as in Example 2 in Section II.

Figure 6 is an example of a potentially optimal strategy. District 1 comprises a slice of extreme 
Republicans and a slice of extreme Democrats, and this slicing proceeds toward the center of the 
signal distribution. The slices from the right 
tail of the signal distribution contain more 
mass than the matched slice from the left tail, 
lest Republicans “cut it too close” in account-
ing for the noisy measurement of preferences. 
This follows the intuition developed in the 
third example in Section II.

We are unable to offer an analytical solu-
tion for the “breakpoints” 5ui6 n

N
5
2

1
1 and 5li6 n

N
5
2

1
1. 

However, they are easily computed numeri-
cally, given a signal distribution (as Section 
IV demonstrates). We also conjecture that as 
the spread of the noise distribution increases, 
the ratio of mass in upper slices to lower slices 
increases—limiting to the case where districts 
are comprised of whole slices, rather than 
matching ones. This is certainly the case in a wide variety of numerical examples we have 
explored, and we are yet to find a counterexample. It does, however, remain a conjecture.

D. Comparison with Received Literature

Previous work has considered two types of models which are both special cases of our model. 
The approach most similar to ours is that of Gilligan and Matsusaka (1999), in which voters 
always vote for a given party and their preferences are known with certainty to the gerryman-
derer. Our model simplifies to this case (as shown in the first example in Section II) if the 
conditional preference distribution limits to a point-mass at the true preference (so that prefer-
ences are observable) and if the breakpoint distribution B 1 · 2 is a point mass (so that voters are 
either Democrats or Republicans). As such, our model is more general and captures an important 
intuition—that more noise leads the gerrymanderer to create a larger buffer. Furthermore, our 
model has a continuum of preferences, and therefore is instructive not only as to the optimal 
number of Republicans and Democrats in a district, but also as to which types of Republicans 
and Democrats should be combined.

The second approach to modelling gerrymandering—one perhaps more popular than that of 
Gilligan and Matsusaka—is a binary signal model with noise. In such a model (e.g., Owen and 
Grofman 1988), the optimal strategy involves “packing” some districts and “cracking” others. 
Owen and Grofman refer to this as a “bipartisan gerrymander,” since there are Democratic 
districts (those thrown away) and Republican districts (the others). For instance, if 60 percent of 
the population have signal r and 40 percent signal d, then the optimal strategy involves creating 
a certain number of districts that contain only those with signal d, and spreading the r voters 
uniformly over the remaining districts. This result is also a special case of our model, with addi-
tional assumptions, as shown in Proposition 3.

Figure 6. An Example of the Optimal Strategy
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Proposition 3: Suppose s [ 5d, r6 and that Conditions 1 and 2 hold. Suppose further that 
B 1 · 2 is unimodal, with mode greater than d and less than r. Then, the optimal gerrymander 
involves creating some districts with all voters of type d, and others with a constant propor-
tion of r and d, and possibly one “odd district” with a nonzero but less-than-half proportion 
of r (from integer rounding problems). When N S ,̀ the optimal solution is a pure “bipartisan 
gerrymander.”

Thus, our model nests the solution of “bipartisan gerrymandering,” but the conclusions of 
such a model are very sensitive to several extreme assumptions. Furthermore, the intuitions this 
special case highlights are very misleading. For instance, suppose that there are three signals: 
r, d, and i (Independents). As Proposition 2 shows, the optimal strategy matches increasingly 
extreme segments from the right and left tails (in this case Republicans and Democrats) into the 
same districts. The district where Republicans have the lowest chance of winning is not one that 
contains many Democrats, but rather one that contains many Independents. That is, these least 
Republican districts contain voters from the middle of the signal distribution, not the extreme 
left tail. It is also clear that “smoothing” is not a robust intuition. It is true only in the special case 
of a binary signal, because there is no heterogeneity among potential Republican voters.

E. Comparative Statics

In this subsection, we consider how the value of being the gerrymanderer responds to changes 
in the underlying distribution of voter preferences and signals. We also consider how this value 
changes as the number of districts to be created changes.

Our first comparative static shows that more precise signals are always better for the 
gerrymanderer.

Definition 2: Consider two conditional preference distributions g and g9. The distribution 
g provides a More Precise signal than g9 if there exists a conditional distribution c 1s9 Z s 2 such 
that

	 3g 1b Z s92 c 1s9 Z s 2 ds9 5 g 1b Z s 2 .

Proposition 4: The expected number of districts won by the gerrymanderer is increasing in 
the precision of the signal.

This result shows that the gerrymanderer wins more districts in expectation as the signal 
received becomes more precise. Intuitively, as the gerrymanderer receives a better signal, the 
need for a large “buffer” of voters in a district declines. Instead, she can construct districts of a 
given median with a smaller proportion of voters from the right hand tail, leaving more right-
wingers for other districts. Mathematically, the gerrymanderer could always lower the quality 
of the signal, while the reverse operation is not possible. Thus, it cannot be that a lower quality 
signal is better.

Our second comparative static result shows that the gerrymanderer does better as the distribu-
tion of voters becomes more spread out.

Proposition 5: Consider two joint distributions F 1b, s 2 and F̂ 1b, s 2 , with marginal distribu-
tions of b given by F 1b 2 and F̂ 1b 2 , such that F̂ 1b 2 is a symmetric spread of F 1b 2. Then, the 
expected number of districts won by the gerrymanderer is higher for F̂ than for F.
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Intuitively, suppose that all signals have the same variance of preferences conditional on the 
signal. But, if the breakpoint is more likely to be near the center of the preference distribution, 
there is less uncertainty as to the voting patterns of extreme voters. For instance, suppose the 
breakpoint is normally distributed. If a voter has either b 5 20.5 or b 5 0.5, she will vote 
Republican either 31 percent or 69 percent of the time, quite a bit of uncertainty; but if a voter has 
either b 5 1.5 or b 5 2.5, she will vote Republican either 93 percent or 99 percent of the time. 
Extreme voters are thus more valuable to the gerrymanderer. Since an increase in the variance 
of the voter preference distribution increases the share of extreme voters in the population, the 
expected number of seats won increases.

The final comparative static concerns the number of districts.

Proposition 6: Suppose that the number of districts increases by an integer multiple (that is, 
doubles or triples). Then, the expected percentage of districts won by the gerrymanderer strictly 
increases.

In previous analyses in this literature, proportional increases in the number of districts has 
little import; if twice the number of districts are required, the existing districts are split into 
equal parts, and so the voter profiles of the districts do not change. Our model implies that such 
parfaits are inefficient. Instead, the gerrymanderer can do better by slicing within previous dis-
tricts, grouping the most and least Republican voters from an old district into one new district, 
and giving the all less extreme voters to the other.

IV.  Numerical Examples

In order to illustrate the characterization of the optimal gerrymandering strategy and its com-
parative statics, we report the results of a number of numerical examples in this section. The 
examples all assume that there are five districts and that the gerrymanderer is Republican. In 
these examples, we assume that the joint distribution of preferences and signals, F 1b, s 2 , is mul-
tivariate normal with parameters mb 5 ms 5 0 and covariance matrix g, with

	 sb
2	 rsbss

	 a 5 °            ¢ .
	 rsbss	 ss

2

This implies that both the signal distribution and the conditional preference distribution are 
themselves normal. Note that this assumption satisfies Conditions 1 and 2. In this base case, we 
assume a distribution of F 1b, s 2 such that b , N 10, 52 and r 5 0.5. Furthermore, we assume that 
ss 5 rsb so that G 1b Zs 2 , N As, sb

2
 Z s 5 sb

2 11 2 r 2 B . In all examples, we let B , N 10, 12 and set 
N 5 5. Note that these assumptions imply that, nominally, half the voters are Republicans and 
half are Democrats—without gerrymandering, each party would win 2.5 seats, in expectation.

Panel A of Table 1 highlights a number of features of the optimal strategy. First, the highest 
median district (District 1) consists of 62 percent from a slice from the right tail of the distribu-
tion and 38 percent from a slice from the left tail. These upper slices get progressively larger for 
the lower median districts. While District 4 comprises a whole slice, Districts 1 through 3 are 
formed by matching slices from the right and left tails. (District 5 consists of a whole slice con-
taining those voters remaining after removing the first four districts from the signal distribution, 
and so the fraction in the upper and lower slice is not relevant.) Second, note that the probability 
of winning District 1 is very high—87.5 percent. This means that those in the left-most part of 
the distribution have very little chance of gaining representation. Third, no districts are “thrown 
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away”; the gerrymanderer has more than a 13 percent chance of winning even the district least 
favorable to her. If she had “thrown away” the district—that is, put those with the lowest signal 
into it—then, in this example, she would win it only 1.4 percent of the time. Finally, the number 
of districts won in expectation in this case is 2.8, compared with a non-gerrymandered equal 
representation benchmark of 2.5. Hence, in this case, the ability to be the gerrymanderer leads 
to a 13 percent increase in the expected number of districts won.

Panel B illustrates how a change in the spread of the conditional preference distribution affects 
the gerrymanderer. In accordance with our comparative static results, the gerrymanderer does 
worse as the quality of her signal deteriorates. This is reflected in a lower probability of winning 
each district, and hence a lower overall value to being the gerrymanderer. For instance, note that 
when the signal is very coarse, sb

2
 Z s 5 4.5, the gerrymanderer wins only 2.54 districts in expec-

tation—barely more than the 2.5 won under proportional representation. Also, in the sb
2
 Z s 5 0.5 

case, the gerrymanderer has a 31 percent chance of winning district 5—if she “threw it away” 
that would be just 0.2 percent. Finally, although the expected districts won, and hence the value 
function is monotonic in sb

2
 Z s (as we have shown analytically), the probability of winning each 

district is not monotonic. Intuitively, as the signal becomes more informative, the gerrymanderer 
can cut the districts finer, but the probability of winning the votes of those with the lowest signals 
decreases. These two effects work in opposite directions, which leads to the potential nonmono-
tonicity of the probability of winning districts with “low” medians (here Districts 4 and 5).

Panel C shows how a change in the spread of the voter preferences affects the gerrymanderer. 
As voter preferences become more spread out, the gerrymanderer does better, as our comparative 

Table 1—Numerical Examples of Optimal Gerrymandering

Panel A. Baseline example
	 District

			1	    2	 3	 4	 5

	 Upper Slice	 0.62	 0.73	 0.91	1	  n/a
	 Lower Slice	 0.38	 0.27	 0.09	 0	 n/a
	 Prob (win)	 87.5%	 74.8%	 65.7%	 41.7%	1 3.7%

Panel B. Signal coarseness
	 Probability of winning district

Signal variance	 E[Districts won]	1	  2	 3	 4	 5

0.50	 3.46	 97.4%	 86.9%	 74.3%	 56.6%	 30.9%
2.50	 2.83	 87.5%	 74.8%	 65.7%	 41.7%	1 3.7%
4.50	 2.53	 68.2%	 61.9%	 55.7%	 41.8%	 25.9%

Panel C. Spread of voter preferences
	 Probability of winning district

Preference variance	 E[Districts won]	1	  2	 3	 4	 5

3.0	 2.55	 71.0%	 62.3%	 55.6%	 41.2%	 25.1%
5.0	 2.83	 87.5%	 74.8%	 65.7%	 41.7%	1 3.7%
25.0	 3.78	1 00.0%	 97.1%	 90.6%	 73.9%	1 6.4%

Panel D. Partisan bias of the population
	 Probability of winning district

% Republican	 E[Won]	 “Value”	1	  2	 3	 4	 5

30%	 2.04	 0.58	 49.4%	 47.0%	 40.7%	 27.8%	1 0.2%
40%	 2.44	 0.48	 87.0%	 73.0%	 52.3%	 25.1%	 6.2%
50%	 2.83	 0.33	 87.5%	 74.8%	 65.7%	 41.7%	1 3.7%
60%	 3.24	 0.20	 87.8%	 76.1%	 67.3%	 58.6%	 34.5%
70%	 3.67	 0.12	 90.2%	 79.6%	 71.7%	 65.0%	 59.1%
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static results showed. There is a monotonic increase in the probability of winning Districts 1–4 
as voter preferences become more spread out, since fewer extreme voters are necessary to pro-
vide a solid margin of victory (in expectation). A similar nonmonotonicity, as discussed above, 
is at work here with the probability of winning District 5.

Panel D reports how changes in the mean affect gerrymandering. A natural interpretation of 
a change in the mean is that it is a change in the number of nominal Republicans/Democrats. 
With the mean at zero, there are 50 percent nominal Republicans. As the mean increases, the 
share of nominal Republicans increases, and vice versa. Note that as the proportion of nominal 
Republicans increases, the expected number of seats won increases, and the value to being the 
gerrymanderer decreases. This value represents the difference in expected seats won compared 
to proportional representation.

V.  Extensions

In this section, we discuss some extensions to the basic model.

A. Majority Power, Risk Aversion, and District-Specific Objectives

Our analysis thus far has considered a gerrymanderer whose payoff function is equal to the 
expected number of districts won. This is likely a good approximation for congressional dis-
tricting, where the uncertainty over the eventual party balance in the House of Representatives 
makes each district in a given state equally important. But in state legislatures, other objectives 
may play an important role. For instance, a party might derive great benefit from remaining in 
the majority, in which case the gerrymanderer’s value function would include a positive discon-
tinuity at 50 percent of the seats. The marginal benefit to the gerrymanderer from each seat won 
might also be diminishing as she wins more seats, in which case the objective function would 
become concave. Finally, some districts may be more important than others, since different 
incumbents may be more valuable to the party than others. The next proposition shows that 
Propositions 1 and 2 characterize the optimum in all of these cases.

Proposition 7: Suppose that the gerrymanderer constructs districts so as to maximize

	 E sV a 1
N

  a
N

n51
wndnb t ,

where dn 5 1 if the Republicans win district n and dn 5 0 otherwise; V is any strictly increasing 
function; and 5wn6N

n51 are a strictly positive set of weights which add to 1. Then Propositions 1 
and 2 characterize the optimal partisan gerrymander.

Proposition 7 shows that our earlier analysis is robust to most any plausible gerrymanderer 
objective function. The key to this result is the fact that the domain of the underlying objec-
tive function comprises only a discrete subset of values, since one of the parties must actually 
win each seat in the election. Taking an expectation over this underlying function smooths out 
the problem, so that increasing the probability of winning any one district, holding the others 
constant, has a linear impact on the expected value of the redistricting scheme. Our earlier 
assumption of a linear objective function made this marginal impact the same across all districts. 
Extending our results to this broader case, where the slope of each impact may vary across dis-
tricts, merely adds a constant in our proofs, but the linearity ensures the proofs still go through.
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The only restriction we must place on the objective function is that the gerrymander must gain 
from winning another district. If, at some point, V were flat or decreasing, so that the gerryman-
derer was indifferent or averse to winning, our result would not hold. Similarly, we require that 
the weights 5wn6N

n51 be bounded away from zero, lest the gerrymanderer not care at all about a 
certain district.

Though Propositions 1 and 2 still hold, the effect of the optimal redistricting plan will vary 
as the underlying objective function changes. For instance, suppose the objective function were 
linear but for a positive discontinuity at winning a majority. Under normal circumstances, where 
the gerrymander possesses a commanding popular majority in the state, redistricters would now 
be risk averse and thus seek to win fewer districts but hold the majority with greater probabil-
ity. Practically, such a change would mean grouping larger numbers of Republican voters (the 
right-hand “slice”) into a small majority of the districts. On the other hand, if the gerrymanderer 
faces a hostile population (perhaps due to the inequities of gerrymanders past), the party would 
become risk-loving. The other two alternative objective functions we mentioned above—concav-
ity and unequal weighting among districts—manifest themselves in more straightforward ways 
in district composition, with incumbents making some districts more secure at the expense of 
others.

Risk-aversion also provides a simple rationale for ruling out cracking. As previously noted, 
a districting plan determines the probability of winning each district; and in the previous sec-
tions we have considered the mean of these probabilities. However, a celebrated theorem of 
Siméon-Denis Poisson (1837) allows us to analyze the variance as well. Substantially gener-
alizing the work of Bernoulli, Poisson showed that the variance of nonidentical independent 
trials p1, … , pn is

	 Var 1x 2 5 np̄11 2 p̄2 2 nsp
2,

where p̄ 5 1g n
i51 pi 2/n and sp

2 is the variance of p1, … , pn. It is immediate that, fixing p̄, the vari-
ance is reduced by “spreading out” (p1, … , pn). That is, the maximum variance of the number of 
successes (i.e., districts won) is achieved when p1 5 p2 5 … 5 pn. Further, Wassily Hoeffding 
(1956) showed that, fixing p̄, any increasing concave function of the number of successes is 
minimized when p1 5 p2 5 … 5 pn. These theorems show that cracking is suboptimal for a 
risk-averse gerrymanderer, since cracking involves making a number of districts have the same 
median voter type, and hence the same probability of winning. Under a pack-and-crack strategy, 
probabilities of winning districts are as follows:

(4)  	 p1
c 5 … 5 pk

c . pk
p
11 . … . pN

p ,

where superscripts p and c denote packed districts and cracked districts, respectively. The dis-
trict winning probabilities under the strategy of Propositions 1 and 2 is

(5)	 p1 . … . pN.

Now, consider a deviation toward (5) from the pack-and-crack strategy which generates (4). 
In particular, suppose two cracked districts are altered so that p̂1

c . p1
c and p̂2

c , p2
c, with p̂1

c 1 
p̂2

c 5 p1
c 1 p2

c. Proposition 2 tells us that there exists such a deviation with p̂1
c 1 p̂2

c . p1
c 1 p2

c, 
but to apply combinatoric theorems with the expected number of successes constant, we address 
the case where p̂1

c 1 p̂2
c 5 p1

c 1 p2
c. By Poisson’s Theorem the variance of the number of districts 

won under pack-and-crack is Np̄11 2 p̄2 2 N · Var 1p1
c, … , pN

p 2 . Under the proposed deviation, the 
variance is Np̄11 2 p̄2 2 N · Var 1p̂1

c, … , p̂N
p 2 . To show that the number of districts won under the 
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deviation is lower, we require Var 1p1
c, … , pN

p 2 , Var 1p̂1
c, … , p̂N

p 2 . That is, 1/NgN
i511pi 2 p̄22 , 1/N

gN
i511p̂i 2 p̄22. Removing common terms, this becomes 1p1

c 2 p̄22 1 1p2
c 2 p̄22 , 1p̂1

c 2 p̄22 1 1p̂2
c 

2 p̄22, or, equivalently, 1p2
c 2 p̄22 2 1p̂2

c 2 p̄22 , 1p̂1
c 2 p̄22 2 1p1

c 2 p̄22. Since p̂1
c . p1

c 5 p2
c . p̂2

c, 
the inequality holds.

Cracking, therefore, not only lowers the mean number of districts won, it also increases the 
risk borne by the gerrymanderer.

It is important to note that, since the aggregate shock affects all districts, the probabilities 
of winning districts are not independent trials. As we show, however, in Proposition 8 below, 
the analysis leading to Propositions 1 and 2 applies to the case where there are district-specific 
shocks. Therefore, treating the trials as we have here as independent is arguably a more general 
approach.

Applying Hoeffding’s Theorem to the kind of deviational argument just made, a deviation 
such as the one above is preferred by a gerrymanderer whose payoff function is increasing and 
concave in the number of districts won. Thus, pack-and-crack is suboptimal for any gerryman-
derer whose payoff is an increasing concave function of the number of districts won.

B. Policy Consequences

Our analysis has thus far considered only a districting scheme’s impact on party representa-
tion in the legislature. In this section, we consider the potential distance between the median 
voter’s preference and the actual outcome under the optimal partisan gerrymander.13 We have in 
mind a setting where district medians determine the preferences of legislators, who then vote on 
policy alternatives. To illustrate this, we consider the case where voter preferences are perfectly 
observable (i.e., b 5 s). Let each voter have a most preferred policy given by the c.d.f. H 1s 2 with 
continuous p.d.f. h 1s 2 . Assume that the median voter is given by H 1sm 2 5 1/2. Let the ideal policy 
of the median voter in district d be sm

d . Ordering these median voters within a district as sm
1 $ … 

$ sm
1N112/2 $ … sm

N, we have what we will refer to as the “representative median voter” sm
1N112/2. 

We take this to be the preference of the median legislator. For simplicity, we assume that N is 
odd—although nothing important hinges on this.

The question we ask here is: what is the difference in preferences between the representative 
median voter and the population median voter under the optimal gerrymander? That is, what is 
the magnitude of 0H 1sm

1N112/22 2 H(sm 2 0?
If the gerrymanderer maximizes H 1sm

1N112/22 , then—since the signal is perfect—Proposition 2 
tells us that this is achieved by combining a mass of voters with the highest bliss points with an 
(infinitesimally smaller) mass of voters with the lowest bliss points, and then continuing to match 
into the center of the distribution. Under this gerrymander, the median voter in the median dis-
trict is the left-most voter in the right-hand slice of district 1N 1 12/2. It is immediate that, under 
this gerrymander, limNS`H 1sm

1N112/22 5 limNS` 1N 1 12/4N 5 1/4, and hence 0H 1sm
1N112/22 2 H 1sm 2 0 

5 1/4. Therefore (for states with large numbers of districts14), under the optimal gerrymander, a 
minority constituting just 25 percent of the population can constitute a winning coalition.

Interestingly, the “dominance of the 25 percent majority” under representative systems was 
conjectured in the seminal work of James M. Buchanan and Gordon Tullock (1962, 221–22).

This analysis of policy consequences could be extended to the case of a noisy signal. We 
conjecture that the “buffer” of voters required by the gerrymanderer to equate median-like out-
comes becomes larger as the signal quality decreases, and hence  0H 1sm

1N112/22 2 H(sm 2 0 decreases 

13 We are grateful to an anonymous referee for suggesting this, as well as details of the approach.
14 For a state with 53 districts (e.g., California), H 1sm

1N112/22 5 0.255, and for a state with 5 districts is 0.3.
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monotonically in the quality of the signal. We have found this to be the case in a large number of 
numerical examples—but it remains a conjecture.

C. Candidate Effects

Another empirical regularity of congressional races is the seemingly large electoral advantage 
enjoyed by incumbents—fewer than 3 percent of incumbents are defeated in the typical election 
cycle. There are three possible causes for this edge. First, an incumbent may simply reflect the 
preferences of her constituents, or may generally be of high quality. In this case, incumbency is 
simply a proxy for match quality between a representative and her district, and one can say that 
incumbency, per se, has no effect. Second, the incumbent may be more well known to her con-
stituents in a variety of ways, and thus more easily elected; a (Republican) gerrymanderer would 
respond to this type of incumbent advantage by maintaining Republican incumbent districts as 
constant as possible, while matching Democratic incumbents to new and unfamiliar (though 
not necessarily different, from a signal profile perspective) districts. Indeed, such tactics were a 
key part of the Republican gerrymander of Texas in 2003. This effect is primarily a geographic 
concern, though, and is thus somewhat orthogonal to the predictions of our model.

A third source of advantage for an incumbent may be, broadly speaking, her résumé of con-
gressional experience and the resulting low quality of opponents, an edge which would follow 
her no matter the make-up of her district. Stephen Ansolabehere, James M. Snyder, and Charles 
Stewart III (2000) use the decennial redrawing of district boundaries to estimate that this third 
channel accounts for one-third to one-half of the incumbency advantage, on average, though 
there is surely much individual heterogeneity in the magnitude of the effect. The conclusions 
of our model would change in the presence of large incumbent effects of this third type, which 
would, in effect, make the distribution of the electoral breakpoint district-specific. For instance, 
suppose that a particular Democratic incumbent was universally well liked and assured of elec-
tion regardless of the composition of her district. It would then be optimal for a Republican ger-
rymanderer to “throw away” her district by including in it the most extreme Democrats.

We can model this extension by assuming that incumbent n (from district n) has an electoral 
advantage zn such that voters support the incumbent if b 2 A 1 zn . 0. Republicans have posi-
tive z’s, and Democratic incumbents have negative z’s. Furthermore, suppose that this advantage 
is independent of the voters in the incumbent’s district. As the intuition above suggests, our 
Lemma 3, and thus Proposition 1, fail with this addition. But, as the following proposition shows, 
Lemmas 1 and 2 still hold.

Proposition 8: Suppose that incumbent n in district n has an additional electoral advantage 
zn, and that F 1b, s 2 satisfies Conditions 1 and 2. Then, Lemmas 1 and 2 hold, while Lemma 3, 
in general, does not.

Though the ordering of the slices would be somewhat different, the main force of our results 
still hold. Optimal districts comprise only vertical slices, and such slices may not “interlock,” 
as in Lemma 2. This model does generate the familiar prescription of districts that are “thrown 
away,” but it does not generate “smoothing” across Republican voters, as in standard model. Of 
course, such a deviation depends on the magnitude of a quite particular effect of incumbency 
which, in practice, may be quite limited. Even the most well-liked politicians may have trouble 
attracting votes from affiliates of the opposite party; would Rep. Tom Delay still get elected if 
his district contained the poor inner cities of Houston instead of Sugarland? Nevertheless, this is 
the only extension from our model we discuss that does generate “throwing away” districts, and 
it perhaps deserves further study.
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D. Voter Turnout

In our model, we have implicitly assumed that everyone votes; obviously, in a system with non-
compulsory voting, voter turnout is a real and important issue. In theory, voter turnout could vary 
with any aspect of the individual or district; research on electoral participation suggests two sets 
of factors that might affect turnout. First, the literature has identified a number of individual attri-
butes—including education, age, marriage status, occupation, and ideological extremism—which 
affect the probability of voting (see Orley Ashenfelter and Stanley Kelly, Jr., 1975; Raymond 
Wolfinger and Steven Rosenstone 1980; John G. Matsusaka and Filip Palda 1993; Edward L. 
Glaeser, Giacomo A. M. Ponzetto, and Jesse Shapiro 2005). These factors do not have a direct 
impact on our results, since voter turnout exogenous to the creation of districts will not affect the 
predictions.

The political science literature has also found a number of district-specific effects. For instance, 
Kamhon Kan and C. C. Yang (2001) find that turnout is higher when the perceived differences 
between candidate ideological platforms are higher and when voters “fear” one candidate more 
than the other. But this type of effect will not change our characterization of the optimal strategy 
either, since all voters in a district would turn out more or less, depending on the particulars of 
district construction. Similarly, Ebonya Washington (2006) finds that black candidates increase 
turnout both among black and white voters, and the difference is not statistically significant.

A final class of models of endogenous turnout allows the probability of voting to depend on 
district-specific characteristics, but affects different voters within a district in different ways. For 
instance, people might be more or less likely to vote if their policy bliss point is closer to one of 
the candidate’s platform. Alternatively, moderate voters might be more or less likely to turn out 
if grouped in the same district with extreme voters from their own party, or extreme voters from 
different parties. Such models can change the structure of the optimal gerrymander; for instance, 
if extreme voters of one party make moderate voters from the other party less likely to vote, the 
matching of extreme democrats with extreme republicans may fail. Of course, the structure of 
the optimal strategy in our model could just as easily be reinforced if the opposite were true, and 
incensed Republican moderates turned out to oppose the more extreme Democrats with whom our 
strategy would match them. Since there is little evidence of either the presence or the direction of 
these effects, we do not explicitly model these factors here, but such efforts might be a plausible 
direction for future work.

VI.  Conclusion

This paper shows that existing intuitions for optimal partisan gerrymandering are rather mis-
leading—and are the consequence of simplifying assumptions. We have analyzed a more general 
model with a continuum of voter preferences and noisy signals of those preferences. The model 
nests major models in the literature as special cases. Smoothing supporters evenly is always subop-
timal. When the signal the gerrymanderer receives is precise enough, the optimal strategy involves 
matching extreme Republicans with extreme Democrats. This characterization of the optimal par-
tisan gerrymander is robust to a number of extensions, including alternative partisan objective 
functions.

The primary import of our paper is to suggest a reexamination of widely held intuitions about 
the effects of partisan gerrymandering. These intuitions are not simply academic speculations, 
but give rise to conventional wisdom about partisan gerrymandering which is not wholly accu-
rate. For instance, traditional models imply that groups that have very different preferences from 
the gerrymanderer do not fare so badly—that is, although gerrymandering makes them worse 
off than proportional representation, they are assured of a lower bound of representation due to 
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the gerrymanderer’s “throwing away” some districts. Our model has very different implications. 
Instead, because of the “matching slices” strategy, they are combined into districts with a larger 
group of voters who have extremely different preferences from them, and so they have very little 
representation as a result of gerrymandering. Thus, our model suggests that the negative conse-
quences of partisan gerrymandering for minority representation in government may be far worse 
than currently thought.

A natural question that follows from this analysis is to ask: who are the voters in the opposite tail 
of the distribution to the gerrymanderers? To illustrate this connection, suppose that the gerryman-
derer is a Republican and that African Americans are highly represented in the far-left tail of the 
signal distribution (i.e., they have characteristics that make them very likely to vote for Democrats). 
In this case, under the optimal gerrymander, African Americans would be placed in districts such 
that they receive very little representation. Data from the 2000 US Census and the 2000 presidential 
election suggest that African Americans do, indeed, constitute the far-left tail, and so an implemen-
tation of the optimal strategy, as characterized in this paper, would be severely disadvantageous to 
that population. The unmistakable implication of these facts is that partisan gerrymandering (when 
practiced by Republicans) and racial gerrymandering are basically synonymous in effect. Since the 
1960s, however, the Supreme Court has adopted a test based on intent, rather than effect.

A further implication of our analysis is that gerrymandering can be very valuable, and indeed 
is more valuable today than ever before. Technological advances have allowed gerrymanderers to 
gain better information about voters—in our model, a less coarse signal distribution in the sense 
of Blackwell—and draw boundaries with a finer pen. One would therefore expect parties to use an 
increasingly large amount of resources in order to become the gerrymanderer. Since the practice 
itself probably lowers social welfare (see Stephen Coate and Brian Knight (2006) for an illuminat-
ing analysis of socially optimal districting), spending resources on it merely exacerbates the social 
loss associated with partisan gerrymandering. This implies that the welfare loss from gerryman-
dering is linked to such technologies, and has grown over time.

There are two clear directions for future work. The first involves empirical investigations of ger-
rymandering in light of the theory developed here. The structure provided by our characterization 
of the optimal gerrymandering strategy is important for such empirical work. Previous empirical 
work on gerrymandering (see, for instance, Andrew Gelman and Gary King 1990, 1994) assumes 
a nonmicrofounded structural model which may give inaccurate estimates of the degree of ger-
rymandering. The second set of open issues involves the regulation of gerrymandering. Enriching 
the model to capture spatial considerations would make it possible to analyze the impact of con-
straints such as compactness. Although there is a body of work that attempts to deal with spatial 
considerations, the underlying models of gerrymandering they employ are, as we have discussed, 
insufficiently rich to capture the core intuitions of the optimal strategy.

Ultimately, the effect of gerrymandering is an empirical question. As our model highlights, the 
impact of it depends on the particulars of the signal and preference distribution. One thing this 
paper demonstrates, however, is that empirical investigations alone can be misleading. Without 
understanding the optimal strategy for a gerrymanderer, one cannot properly assess the impact of 
partisan gerrymandering.

Appendix

A. Monotonicity of Voting

We remarked in a footnote in the text that, under the assumption of single-crossing prefer-
ences, the probability that a voter votes Republican is increasing in her type. This is not of direct 
relevance to the other results in the paper, but may be of independent interest.
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Definition 3: Let X and Y be subsets of R, and let K : X 3 Y S R. We say that K is Totally 
Positive of order n (“TPn”) if x1 , … , xn and y1 , … , yn imply

	 K 1x1, y12  )  K 1x1, ym 2
	 ∞	 (	 (	 ∞ $ 0

	 K 1xm, y12  )  K 1xm, ym 2

for each m 5 1, … , n.

Theorem 1 (Karlin 1968): Let K be TPn on X 3 Y and let m be a s-finite measure on X. If 
f : R S R has at most k # n 2 1 sign changes, then for y [ Y,

	 f * 1y 2 5 3 f 1x 2K 1x, y 2 dm 1x 2

has at most k sign changes. Furthermore, if f  * has exactly k sign changes, then f and f  * have the 
same pattern of sign changes.

Total positivity of order two is familiar in economics and has had wide applications in the 
theory of moral hazard, as well as mechanism and market design.

Remark 1: Suppose that K 1x, y 2 is a probability density function, denoted f 1x Z y 2 , with respect 
to a s-finite measure m such that ef 1x Z y 2m 1dx 2 5 1. Then, if f 1x Z y 2 is TP2, then f 1x Z y 2 satisfies 
the MLRP.15

Karlin’s Theorem (commonly referred to as the Variation Diminishing Property (VDP)) allows 
us to observe that voters of higher type (higher i) are more likely to vote Republican provided 
g 1b Z s 2 is TP2. To see this, recall that, since voter preferences satisfy single-crossing (combined 
with our reordering), bi 5 ui 1R2 2 ui 1D2 is a monotonic function with one sign change. The 
stochastic objective f * 1s 2 5 ebg 1b Z s2 db is then also monotonic. Let k be an arbitrary constant 
and consider f * 1s 2 2 k 5 e1b 2 k 2g 1b Z s 2 db. Since b 2 k has only one sign change, the VDP 
implies that f * 1s 2 2 k has only one sign change. This immediately implies monotonicity of f * 1s 2 . 
Monotonicity of f * 1s 2 implies that for any two signals of voter types, i . j, the probability that 
type i votes Republican is greater than the probability that type j does.

B. Proofs

Proof of Lemma 1:
The maximization problem can be described by the Lagrangian

(6) 	  L 5 a
N

n51
B 1mn 2 2 a

N

n51
ln s3

`

2`

cn 1s 2 ds 2 
1
N
t ,

15 For the classic reference to likelihood ratios and their applications to economics, see Milgrom (1981).
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in addition to the boundary constraints. Note that the first-order necessary conditions imply

(7) 	  Dcn 1s 2 ab 1mn 2  
'mn

'cn 1s 2
 2 lnb 5 0 for n 5 i, j,     s 5 s1, s2.

Now, consider districts i and j, and suppose that mi , mj.
Throughout, whenever we speak of removing voters of type s, we refer to an interval 3s 2 e/2, 

 s 1 e/24 . Denote the derivative of the objective function with respect to a switch of voters of 
type s from district j to district i as fji 1s 2 . Then, for any e, the change in the value of the objec-
tive function is

	 DV 1s 2 5 3
s1e/2

s2e/2
fji 1s92 ds9.

Note that, as e S 0, the change in the value of the objective function from such a move approaches 
the derivative of the objective function at s multiplied by e, since

	 lim
eS0

3
s1e/2

s2e/2
fji 1s92 ds9 5 fji 1s 2e.

The derivative of the objective function from moving voters of type s from district j and add-
ing them to district i is

	 fji 1s 2 5 abi

'mi

'ci 1s 2
 2 lib 2 abj

'mj

'cj 1s 2
 2 ljb .

Implicitly differentiating (2), which determines the medians, yields

	 0 5 3
`

2`

g 1mi Z s 2ci 1s 2 ds0mi 1 G 1mi Z s 2 0cj 1s 2 ;

(8) 	
'mi

'ci 1s 2
 5 2

G 1mi 0s 2
e

`

2` 
g 1mi 0s 2ci 1s 2   ds

(9)	 ; 2
G 1mi 0s 2
gi 1mi 2

.

Hence, the change in the value of the objective function is

(10)	 DV 1s 2 5 e a b 1mj 2
gj 1mj 2

 G 1mj Z s 2 2 
b 1mi 2
gi 1mi 2

 G 1mi Z s 2 1 lj 2 lib .

Note that if fji 1s 2 . fji 1s92 , then DV 1s 2 . DV 1s92 for any e . 0. While equation (10) need not 
be positive for all s in district n, it must be, 5s9 [ cj and s [ ci, that fji 1s 2 $ fji 1s92 . Note that 
0fji 1s 2/0s . 0 is equivalent to z 1mj Z s 2/z 1mi Z s 2 , b 1mi 2gj 1mj 2/b 1mj 2gi 1mi 2 , and since the left-hand 
side is monotonically increasing in s from Condition 1, fji 1s 2 cannot be convex. If s1, s2 [ ci, 
then, for any point s9 [ 3s1, s2 4 , fji 1s92 . min 3fji 1s12 , fji 1s22 4 . Thus, s9 o cj, if e . 0.

This implies that any two districts j and i (where, without loss of generality mj . mi ) cannot 
share voters of the same type except on a set of measure zero.
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This also implies that districts must comprise vertical slices. Suppose that there exists an 
interval voter of types 3s 2 a, s 1 a 4 such that all voters of type s9 [ 3s 2 a, s 1 a 4 are in both 
districts j and i. This contradicts the statement above that if s1, s2 [ ci, then, for any point s9 [ 
3s1, s24 , s9 o cj, if e . 0.

Proof of Lemma 2:
    Suppose, by way of contradiction, that there exist districts j and i such that mj 5 mi, and that 
there exist intervals of positive measure about types s1 and s2 (with s1 . s2), which are in both 
districts. Consider moving a small mass from an interval about s1 into district j and a comparable 
mass of voters around s2 back into district i. The first-order conditions imply that the net gain, 
which must equal zero, is proportional to

(11) 	
b 1mj 2
gj 1mj 2

 3G 1mj Z s22 2 G 1mj Z s12 4 2 
b 1mi 2
gi 1mi 2

 3G 1mi Z s22 2 G 1mi Z s12 4

for e . 0. Since mi 5 mj , we know that b 1mj 2 5 b 1mi 2 and G 1mi Z s22 2 G 1mi Z s12 5 G 1mj Z s22 2 
G 1mj Z s12 . Therefore, it must be that gi 1mi 2 5 gj 1mj 2 .

Consider, again, the districts j and i with mi 5 mj. By Lemma 1, those voters in districts j and 
i must make up one or two complete vertical slices of h 1s 2 . Since F has full support and the two 
aforementioned slices contain a positive interval of voter types, there must exist four voter types 
s1 , s2 , mj , s3 , s4 such that G 1mj Z s12 2 G 1mj Z s22 5 G 1mj Z s32 2 G 1mj Z s42 and ci 1s12 . 0, 
ci 1s42 . 0, cj 1s22 . 0, and cj 1s32 . 0. In words, one district contains some of the inner type of 
voters, while the other district contains some of the more extreme types of voters relative to the 
district medians.

Now, consider a perturbation in which an equal mass of voters around type s1 and around type 
s4 are transferred to district j from district i, and similarly an equal mass of voters around type 
s2 and around type s3 are transferred from district j to i. By construction, both mj and mi remain 
unchanged, as does the value function; but gi 1mi 2 and gj 1mj 2 have changed. By definition,

	
'gi 1mi 2
'c 1s 2  5 g 1mi Z s 2 ,

and so the derivative of gi 1mi 2 for perturbations of this type is

	 0gi 1mi 2 5 e a'gi 1mi 2
'c 1s2 2

 2 
'gi 1mi 2
'c 1s1 2

 1 
'gi 1mi 2
'c 1s3 2

 2 
'gi 1mi 2
'c 1s4 2

b

	  5 e 1g 1mi Z s22 2 g 1mi Z s12 1 g 1mi Z s32 2 g 1mi Z s42 2 .

But, by Condition 2, the modes of the lower signals lie below mi. Thus, we know that g 1mi Z s22 . 
g 1mi Z s12 , and similarly that g 1mi Z s32 . g 1mi Z s42 , and so 0gi 1mi 2 . 0, for e . 0. By similar rea-
soning, 0gj 1mj 2 , 0. After performing such a perturbation, the new districting arrangement has 
mj 5 mi, while gi 1b 2 ? gj 1b 2 . This now violates the condition above, which holds that for two 
districts that share a positive mass of voters and for which mj 5 mi, it must be that gi 1b 2 5 gj 1b 2 . 
This new arrangement is not optimal, but the value function is unchanged from the old district-
ing plan, and so the old plan cannot be optimal either—a contradiction.
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Proof of Lemma 3:
Suppose, by way of contradiction, that such a case existed. Without loss of generality, from 

Lemma 1, we can assume that districts i and k each comprise one whole slice. It also must be that 
s* , s9 for all s9 [ ci and that s* . s0 for all s0 [ ck. Denote s̄i 5 sup 5s [ ci6, s̄k 5 sup 5s [ 
ck6, s¯ i 5 inf 5s [ ci6, and s

¯k 5 inf 5s [ ck6. Of course, s̄i . s
¯ i . s* . s̄k . s

¯k.
The Lagrangian from equation (6) implies that, if s [ cj, then

	 e 12aj G 1mj Z s 2 2 lj) $ e  max
n

 12anG 1mn Z s 2 2 ln 2

for all districts n, and, hence,

	 2aj G 1mj Z s 2 2 lj $ max
n

 12anG 1mn Z s 2 2 ln 2 , 5e . 0,

where an 5 b 1mn 2/gn 1mn 2 . These an coefficients represent the sensitivity of the median of district 
n to changes. For each district n, denote these expressions by hn. We know that

	 hi 1 s̄i 2 $ hj 1 s̄i 2 and hj 1s*2 $ hi 1s*2 ,

which implies that

	 G 1mi Z s
*2 2 G 1mi Z s̄i 2(12) 	  aj # ai                          .

G 1mj Z s
*2 2 G 1mj Z s̄i 2

Equation (12) states that district j must not be too sensitive compared to district i. Were this so, a 
profitable deviation would exist by shifting district i down to include s* and giving voters of type 
s̄i to district j. Similar arguments imply that

G 1mk Z s¯k 2 2 G 1mk Z s
*2

(13)  	 aj $ ak                            ,
	 G 1mj Z s¯k 2 2 G 1mj Z s

*2

which has the interpretation that district j must be sensitive enough relative to district k so that 
shifting district k up to include s* is not profitable. Of course, (12) and (13) can hold simultane-
ously only if the right-hand side of (12) is greater than or equal to the right-hand side of (13). 
This requires

	 G 1mi Z s
*2 2 G 1mi Z s̄i 2	 G 1mj Z s¯k 2 2 G 1mj Z s

*2
(14) 	

ak

ai
 5 

b 1mk 2gi 1mi 2
b 1mi 2gk 1mk 2

 #                                     .
	 G 1mk Z s¯k 2 2 G 1mk Z s

*2	 G 1mj Z s
*2 2 G 1mj Z s̄i 2

Now, consider what happens to this ratio as we increase the precision of the signal (which 
can be thought of here as shrinking the conditional preference distribution G into the median). 
Since district i contains voters closer in signal to the median of district j, the ratio 3G 1mj Z s¯k 2 2 
G 1mj Z s

*2 4/ 3G 1mj Z s
*2 2 G 1mj Z s̄i 2 4 will shrink, going to 0 in the limit. On the other hand, both 

G 1mi Z s
*2 2 G 1mi Z s̄i 2 and G 1mk Z s¯k 2 2 G 1mk Z s

*2 rise to 1, since s
¯k , mk , s* , mi , s̄i . Thus, the 

right-hand side of (14) shrinks to 0 as the precision of the signal increases. Note, however, that 
the ratio ak  /ai is bounded away from 0, since gi 1mi 2/gk 1mk 2 will limit to 1 (by the definition of 
g 1m 2) and b 1mk 2 /b 1mi 2 is bounded away from 0 since the medians mi and mk are bounded and 
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the c.d.f. B is strictly increasing. Thus, for sufficiently high signal quality, the inequality in (14) 
cannot hold—a contradiction.

Proof of Proposition 1:
Apply Lemmas 1–3.

Proof of Proposition 2:
Suppose not. Consider the districting plan that entirely packs. That is, consider the districting 

plan described by N 2 1 cutoffs 5tn6 n
N

5
2

1
1 (where t1 . t2 . … . tN21) such that s [ cn if and only 

if s [ 3tn, tn214 . (For notational ease, suppose that t0 5 ` and tN 5 2 .̀) Consider the marginal 
gain from moving voters of type tn from district n to district n 1 1 and moving voters from the 
far-left tail to district 1. Following the first-order condition in equations (7) and (9) (contained in 
the Appendix in the proof of Lemma 1 p. 137), the impact on mn for n . 1 is

	 Dmn 5 e a b 1mn 2
gn 1mn 2

  3G 1mn Z tn 2 2 G 1mn Z tn212 4 b . 0,

since tn , mn , tn21 and, therefore, G 1mn Z tn 2 . 0.5 . G 1mn Z tn212 . We use e here to denote 
the small positive mass of voters moved in each shift, as we discuss in detail in the proof of 
Lemma 1. The impact on m1 will be

	 Dm1 5 e a b 1m1 2
g1 1m1 2

  3G 1m1 Z t12 2 G 1m1 Z tN2 4 b , 0,

where, for these purposes,

	 G 1m1 Z tN2 5 lim
sS2`

 G 1m1 Z s 2 5 1.

Note further that, by the definition of t1 and m1, G 1m1 Z t12 . 0.5.
Now, consider increasing the signal quality, which is to say decreasing the spread of the condi-

tional distribution of b given s about the center of that distribution. Note that G 1b Z s 2 is centered 
around s by Condition 2, and so, if G 1mn Z s 2 . 0.5, then 0G 1mn Z s 2/0s2

b Z s , 0, so that G 1mn Z s 2 
increases as the signal quality increases. (When we shrink s2

b Z s , we refer to a reduction in the 
spread of the distribution around the median and mode of s, rather than the mean, so as to main-
tain Condition 2.) If G 1mn Z s 2 , 0.5, then 0G 1mn Z s 2 /0s2

b Z s . 0. The term g11m12 will also increase, 
but it is (by definition) bounded above by the marginal distribution of b in the population. Thus, 
we know that, at least for high enough signal quality,

0Dmn	        . 0  5n,
	 s2

b Z s

which implies that

	 0
	       a

N

n51
Dmn 5 e 

b 1m1 2
g1 1m1 2

 . 0.
s2

b Z s
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The aggregate impact on the expected number of seats won from the proposed deviation becomes 
more positive or less negative as the signal quality increases. Finally, note that

	 lim  G 1m1 Z t12 5 1,
                                            s2

b Z sS0

so that

	 lim  Dm1 5 0,
                                                 s2

b Z sS0

while

	 lim  Dmn . 0, n Z 1,
                                           s2

b Z sS0

and therefore

	 lim    a
N

n51
Dmn . 0.

                                              s2
b Z sS0

Since the sum converges to the limit as s2
b Z s decreases, we know that there exists s–

2 such that 
gN

n51Dmn . 0 whenever s2
b Z s , s–

2.

Proof of Proposition 3:
Suppose not. The choice variable for each district can be summarized by cn, the proportion 

of R in the district. Then, there exist two districts j and i such that cj Z ci and cn . 0 for n 5 
5  j, i6. Without loss of generality, let mj . mi. By Condition 1, G 1b Z r 2 first-order stochastically 
dominates G 1b Z d 2 , and so cj . ci.

In order that there be no profitable deviations, it must that 0mi  /0ci 5 0mj  /0cj . But, in general,

	 A 3g 1m Z d 2 2 g 1m Z r 2 4b 1m 2 1 3G 1m Z d 2 2 G 1m Z r 2 4b9 1m 2 B
	

'2m

'c2
n
 5 

'mn

'cn

g 1m 2 2  µ	    3 3cn 1g 1m Z r 2 2 g 1m Z d 2 2 1 g 1m Z d 2 4	 ∂ ,

	     2 b 1m 2 3G 1m Z d 2 2 G 1m Z r 2 4 3g9 1m 2 1 g 1m Z r 2 2 g 1m Z d 2 4

which is positive when m , 0 and negative when m . 0. Since m . 0 3 c . 0.5, the concavity 
of m implies that one could never have cj . ci $ 0.5, since then 0mi  /0ci . 0mj  /0cj , and so R 
could do better by increasing i and decreasing j. It also implies that there cannot be 0.5 . cj $ 
ci, since then 0mi  /0ci , 0mj  /0cj and the opposite deviation would improve R’s representation. 
Thus, there can be only one “odd district” with 0 , c , 0.5, and all districts with c . 0.5 must 
have equal proportions of r and d.

Suppose that N S .̀ Note that there can be only one odd district. Let the mass of voters in this 
district have Lebesgue measure t. Since each district must have an equal mass of voters, t 5 1/N. 
Clearly, limNS`t 5 0.

Proof of Proposition 4:
First, note that signal precision provides a partial ordering on conditional preference distribu-

tion. If the signal contains no information, the expected number of seats won by the gerrymanderer 
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is the population share. If the signal is perfectly precise such that s 5 b, it is possible (see 
Proposition 1) to create districts such that only the lowest median district has a median equal to 
the population median, while all others lie above. Hence, the gerrymanderer wins more seats in 
expectation with a perfect signal. Now, consider any two conditional preference distributions g 
and g9 such that g provides a more precise signal than g9. The gerrymanderer must win at least as 
many seats in expectation under g than g9 since the value function has the Blackwell Property. 
That is, she could construct a distribution c such that from g she could generate g9.

Proof of Proposition 5:
Fix the optimal districting plan under F 1b, s 2 and consider the construction of the highest 

median district (without loss of generality, District 1) with median m1 given by es[c1
G 1m1 Z s 2h 1s 2 

ds 5 1/2N, comprising an upper and lower slice. Let the upper slice contain w1 share of the voters 
in the district. Suppose that, under F̂ 1b, s 2 , the gerrymanderer sets m̂1 5 m1. This can be achieved 
with at least as small an upper slice ŵ1 # w1, since the Republican voters (who make up more 
than half of the district) are at least as likely to vote Republican as before. If ŵ1 , w1, then note 
that all other districts 2, … , N have a higher medians even if we set ŵi 5 wi for all i, that is, with-
out reoptimizing their construction. If ŵ1 5 w1, then repeat this procedure until finding a district 
n* such that ŵn* , wn* . By assumption that F̂ has greater symmetric spread than F, this must be 
true for at least one district. Hence the value function under F̂ 1b, s 2 is higher than under F 1b, s 2 . 
This reasoning must hold for any such pair of distributions.

Proof of Proposition 6:
Consider an increase from N districts to mN, where m is an integer. By replication, the ger-

rymanderer could do at least as well with mN districts as with N—but this replication involves 
creating parfaits. From Lemma 2, this is a suboptimal strategy. Hence, the value function under 
the optimal strategy must be higher.

Proof of Proposition 7:
Suppose that the objective function is now

	 E sVq1
N

  a
N

n51
 wn dnr t ,

and suppose that V is a strictly increasing function. We can rewrite this expression as the sum 
of V 1D2 , where D 5 0, … , N, weighted by the combinatorial probability that the Republicans 
win exactly D districts. Note that this expression can be factored into two parts: those outcomes 
where R wins some district n, and those where R loses district n. Since the probability of winning 
a district is just B 1mn 2 , this expression is just

	 B 1mn 2Kn 1 11 2 B 1mn 2 2Ln  ,

where Kn 5 E 3V 0dn 5 14 , the expected value if the Republican candidate wins in district n; and 
Ln 5  E 3V 0dn 5 04 , the expected value if the Democrat wins in district n. Now, fix the districting 
scheme and consider the marginal benefit from a small deviation x in district n, which is

	
'E 3V 4
'x

 5 b 1mn 2 1Kn 2 Ln 2  
'mn

'x
 .
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The conditions from (7) must still hold for these new first-order conditions, but note that this 
expression is identical to the value derived in equation (7) but for the term 1Kn 2 Ln 2 , which is 
fixed for all deviations from a districting plan. Thus, the “sensitivities” 5an6N

n51 (as in Lemma 3) 
are now differently scaled, but the constant does not affect any proofs. Propositions 1 through 
6 hold.

Proof of Proposition 8:
Suppose candidates are each associated with an electoral benefit zn such that voters support 

them if b 2 A 1 zn . 0. In this case, the Republican candidate wins district n if and only if mn 
1 zn . A, which occurs with probability B 1mn 1 zn 2 . The marginal benefit to R from a small 
deviation x in district n would be

	
'V
'x

 5 b 1mn 1 zn 2
'mn

'x
 .

Since the district-specific constant b 1mn 1 zn 2 cancels out in Lemma 1, the proof still holds. 
Lemma 2 is similarly unaffected, as the constant does not affect the proofs. In Lemma 3, the 
ratio ak /ai 5 b 1mk 1 zk 2gi 1mi 1 zi 2  / b 1mi 1 zi 2gk 1mk 1 zk 2 is no longer bounded away from 0, 
because gi 1mi 1 zi 2 need not limit to 1 as the precision of the signal increases.

References

Ansolabehere, Stephen, James M. Snyder, and Charles Stewart III. 2000. “Old Voters, New Voters, and 
the Personal Vote: Using Redistricting to Measure the Incumbency Advantage.”  American Journal of 
Political Science, 44(1): 17–34.

Ansolabehere, Stephen, James M. Snyder, and Charles Stewart III. 2001.  “Candidate Positioning in the 
U.S. House Elections.” American Journal of Political Science, 45(1): 36–59.

Ashenfelter, Orley, and Stanley Kelly, Jr. 1975. “Determinants of Participation in Presidential Elections.” 
Journal of Law and Economics, 18(3): 695–733.

Buchanan, James M., and Gordon Tullock. 1962. The Calculus of Consent: Logical Foundations of Con-
stitutional Democracy. Ann Arbor: University of Michigan Press.

Coate, Stephen, and Brian Knight. 2007. “Socially Optimal Districting: A Theoretical and Empirical 
Exploration.” Quarterly Journal of Economics, 122(4): 1409–71.

Cox, Gary W., and Jonathan N. Katz. 2002. Elbridge Gerry’s Salamander: The Electoral Consequences 
of the Apportionment Revolution. Cambridge, MA: Cambridge University Press.

Downs, Anthony. 1957. An Economic Theory of Democracy. New York: Harper and Row.
Gelman, Andrew, and Gary King. 1990. “Estimating the Electoral Consequences of Legislative Redis-

tricting.” Journal of the American Statistical Association, 85(410): 274–82.
Gelman, Andrew, and Gary King. 1994.  “Enhancing Legislative Redistricting Through Legislative Redis-

tricting.” American Political Science Review, 88(3): 541–59.
Gilligan, Thomas W., and John G. Matsusaka. 1999. “Structural Constraints on Partisan Bias under the 

Efficient Gerrymander.” Public Choice, 100(1–2): 65–84.
Glaeser, Edward L., Giacomo A. M. Ponzetto, and Jesse M. Shapiro. 2005. “Strategic Extremism: Why 

Republicans and Democrats Divide on Religious Values.” Quarterly Journal of Economics, 120(4): 
1283–1330.

Hoeffding, Wassily. 1956. “On the Distribution of the Number of Successes in Independent Trials.” Annals 
of Mathematical Statistics, 27(3): 713–21.

Issacharoff, Samuel, Pamela S. Karlan, and Richard H. Pildes. 2002.  The Law of Democracy: Legal 
Structure of the Political Process. New York: Foundation Press.

Kan, Kamhon, and C. C. Yang. 2001. “On Expressive Voting: Evidence from the 1988 U.S. Presidential 
Election.” Public Choice, 108(3-4): 295–312.

Karlin, Samuel, and Herman Rubin. 1956. “The Theory of Decision Procedures for Distributions with the 
Monotone Likelihood Ratio.” Annals of Mathematical Statistics, 27(2): 272–99.



March 2008144 THE AMERICAN ECONOMIC REVIEW

Lee, David S., Enrico Moretti, and Matthew J. Butler. 2004. “Do Voters Affect or Elect Policies? Evidence 
from the U.S. House.” Quarterly Journal of Economics, 119(3): 807–59.

Matsusaka, John G., and Filip Palda. 1993. “The Downsian Voter Meets the Ecological Fallacy.” Public 
Choice, 77(4): 855–918.

Milgrom, Paul R. 1981. “Good News and Bad News: Representation Theorems and Applications.” Bell 
Journal of Economics, 12(2): 380–91.

Owen, Guillermo, and Bernard Grofman. 1988. “Optimal Partisan Gerrymandering.”  Political Geogra-
phy Quarterly, 7(1): 5–22.

Poisson, Siméon-Denis. 1837. Recherches sur la probabilité des jugements en matière criminelle et en 
matière civile, précedées des regles générales du calcul des probabilités. Paris: Bachelier.

Rothstein, Paul. 1991. “Representative Voter Theorems.” Public Choice, 72(2–3): 193–212.
Sherstyuk, Katerina. 1998. “How to Gerrymander: A Formal Analysis.” Public Choice, 95(1–2): 27–49.
Shotts, Kenneth W. 2002. “Gerrymandering, Legislative Composition, and National Policy Outcomes.” 

American Journal of Political Science, 46(2): 398–414.
Washington, Ebonya. 2006. “How Black Candidates Affect Turnout.” Quarterly Journal of Economics, 

121(3): 973–98.
Wolfinger, Raymond, and Steven Rosenstone. 1980. Who Votes? New Haven: Yale University Press.


	Optimal Gerrymandering: Sometimes Pack, But Never Crack
	I. Institutional Background
	II. Some Simple Examples
	A. Example 1
	B. Example 2
	C. Example 3

	III. The Model
	A. Overview
	B. Statement of the Problem
	C. Characterization of the Optimum
	D. Comparison with Received Literature
	E. Comparative Statics

	IV. Numerical Examples
	V. Extensions
	A. Majority Power, Risk Aversion, and District-Specific Objectives
	B. Policy Consequences
	C. Candidate Effects
	D. Voter Turnout

	VI. Conclusion
	Appendix
	A. Monotonicity of Voting
	B. Proofs

	REFERENCES


