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Abstract
We analyze a model of optimal gerrymandering in which two parties simultaneously 
redistrict in a competition for influence in a legislature. Parties allocate geographic 
blocks to districts, in which the median voter determines the winner. The form of the 
optimal gerrymander involves “slices” of right-wing blocks paired with “slices” of 
left-wing blocks, as in Friedman and Holden (Am EconRev 98(1):113–144, 2008). 
We also show that, as one party controls the redistricting process in more states, that 
party designs districts such that the most extreme districts within its control become 
more extreme. We show that this comparative static holds for a broad class of objec-
tive functions.

Keywords  Gerrymandering · redistricting

JEL Classification  D72

1  Introduction

A growing literature analyzes gerrymandering, the process by which politicians 
draw the boundaries of their own electoral districts. To simplify the analysis, most 
of this literature assumes that one party controls the redistricting process (Owen 
and Grofman 1988; Shershtyuk 1998; Gilligan and Matsusaka 1999; Friedman and 
Holden 2008). In practice, Republicans and Democrats each control the districting 
process in a number of states. In this context, the environment is best represented as 
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a two-player game rather than a control problem. In this paper, we build on our work 
in Friedman and Holden (2008) to provide a treatment of the two-player strategic 
districting game.

Historically, redistricting was primarily a local affair: parties relied upon block 
captains and local politicians with intimate knowledge of their neighborhood to 
determine likely voter behavior. In recent years, however, coordination across states 
has become prevalent. National party organizations have built ever more detailed 
voter databases;1 the digitization of districts through TIGERLine files and electronic 
Census records has made it easier for national officials to participate in local redis-
tricting; and national parties have organized inter-state redistricting efforts, such as 
the so-called “REDMAP” project. These factors have allowed national strategic con-
cerns to play an important role in redistricting.2 These concerns are the focus of this 
paper.

Our analysis has two parts. First, we extend Friedman and Holden (2008) to a 
multi-state, multi-party environment. We also explicitly consider geographic con-
straints on redistricting by assuming that parties may only allocate whole “blocks” 
to districts, rather than voters individually. The key result is that the form of the opti-
mal gerrymander in Friedman and Holden (2008) is the same in the richer environ-
ment: when within-block voter distributions are sufficiently concentrated, the party 
in control forms districts by matching a group of right-wing voter blocks with blocks 
of left-wing voter blocks, with these “slices” becoming progressively less extreme 
as the district becomes less favorable to the redistricting party.

Second, we compute comparative statics on optimal district formation with 
respect to key parameters of the redistricting game. Control over districting can 
vary substantially between elections: for instance, in 2002, the G.O.P won control 
of redistricting in seven states, giving them a net gain in control of 95 districts.3 We 
show that as one party controls the redistricting in more states, that party redraws 
electoral boundaries such that the most extreme districts within its control become 
more extreme. This party stretches the range of district median voters in the states it 
controls, whereas its opponent compresses the range of district median voters in the 
states it controls.

The work most closely related to ours is an elegant paper by Gul and Pesendorfer 
(2010). They characterize the set of redistricting equilibria by restating the game 
as a control problem involving maximizing the number of seats won at the cutoff 
values of an aggregate shock to voter preferences. This also allows them to provide 
the important comparative static of the effect of a change in the number of states dis-
tricted by a particular party on the optimal gerrymander. One simplifying assump-
tion in Gul and Pesendorfer (2010) is that there are only two types of voters. In a 
single state model, it is known that the familiar pack-and-crack strategy obtains with 

1  For a recount of the Obama campaign’s use of data, see for instance https​://www.techn​ology​revie​
w.com/s/50902​6/how-obama​s-team-used-big-data-to-rally​-voter​s/.
2  See, for instance https​://www.theat​lanti​c.com/polit​ics/archi​ve/2017/10/gerry​mande​ring-techn​ology​
-redma​p-2020/54388​8/.
3  See Friedman and Holden (2009) for a detailed breakdown.

https://www.technologyreview.com/s/509026/how-obamas-team-used-big-data-to-rally-voters/
https://www.technologyreview.com/s/509026/how-obamas-team-used-big-data-to-rally-voters/
https://www.theatlantic.com/politics/archive/2017/10/gerrymandering-technology-redmap-2020/543888/
https://www.theatlantic.com/politics/archive/2017/10/gerrymandering-technology-redmap-2020/543888/
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only two voter types, but not with more types (Friedman and Holden 2008, Proposi-
tion 3). Our first result on the matching slices strategy contrasts with this. Despite 
the additional complexity of a continuum of voter types, we also analyze signifi-
cantly more general objective functions than the simple majoritarian function in Gul 
and Pesendorfer (2010).

Our results also interact more broadly with the growing literature on districting. 
A number of papers analyze the impact of majority-minority districts (see Cameron 
et al. 1996; Epstein and O’Hallaran 1999; Shotts 2001; Bailey and Katz 2005). We 
show that, even when redistricters are strategically interacting, majority–minor-
ity districts are optimal for neither the party favored by minorities, nor the party 
opposed by them. Gilligan and Matsusaka (2005) and Coate and Knight (2007) 
analyze districting from a normative perspective. Shotts (2002), Besley and Preston 
(2007), and Cox and Holden (2011) analyze the interaction between redistricting 
and policy.

The remainder of this paper is organized as follows. Section  2 shows that the 
matching slices strategy of Friedman and Holden (2008) is obtained in the redis-
tricting game. Section 3 considers a general model of competitive redistricting and 
shows how the optimal strategy changes as the proportion of districts controlled by 
one party changes. Section 4 contains some concluding remarks.

2 � The optimal Gerrymander

In this section, we extend the model in Friedman and Holden (2008) to include two 
parties and many states. We also recast the model as one in which parties allocate 
geographic blocks of voters, rather than individuals themselves, to districts.

2.1 � The model

There are a total of S states comprising a total of N districts. Each state contains Ns 
districts. To explicitly account for the geographical constraints on redistricting, we 
further assume that each district must be comprised of whole “blocks.” We use the 
term “block” here to refer to a generic geographical unit; some states (such as Iowa) 
require that districts comprise whole counties, while others allow for much finer dis-
tinctions.4 For simplicity, we assume that in each state, there are a continuum of 
equal-sized infinitessimal blocks. Let Ps denote the total mass of blocks in state s.

Within each block j exists a continuum of voters indexed by i ∈ ℝ . Voters are 
ordered monotonically by their preferences for either of two existing electoral par-
ties, D and R. Preferences are characterized by �i ∈ ℝ . Let voters with a high value 

4  Note that all states require contiguity for districts. We do not model this constraint explicitly due to the 
significant added complexity required in such a model.
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of �i (i.e., more to the right) prefer party R more relative to party D. Let voters actu-
ally vote for R if and only if 𝛽i > 0.5

We assume that each party knows perfectly the distribution of preferences within 
each block. Without loss of generality, let �j ∈ ℝ denote an index of the distribution 
of partisan preference within a block, and let �j be ordered such that a higher signal 
implies a more right-wing block. Let gs

(
�i|�j

)
 denote the distribution of individual 

preferences within block j in state s, which we refer to as the “conditional preference 
distribution.” The marginal distribution of blocks in state s, or the “block distribu-
tion” , is denoted by hs

(
�j
)
 .

The median voter determines the winner in each district. Let �n,s denote the pref-
erence of the median voter in district n in state s. �n,s is further affected by aggre-
gate uncertainty in state s and district n.6 Let bn,s denote this noise, and suppose that 
aggregate noise occurs with CDF B(⋅) and unbounded support. Thus, if the median 
voter holds ex ante bliss point �n,s , she will vote after receiving the shock as though 
she has bliss point 𝜇̂n,s = 𝜇n,s − bn,s , and so the probability that party R wins district 
n in state s is B

(
�n,s

)
.

Each state s is to be redistricted by only one party.7 Each party p has value func-
tion Wp ∶ [0, 1] → ℝ, whose domain is the fraction of districts won in the election. 
We assume that each Wp is weakly increasing and strictly increasing at least some-
where, and that parties maximize expected payoffs, denoted by EWp.

Parties act by choosing �n,s

(
�j
)
 , that is, the distribution of blocks to be placed in 

district n of state s, in each state that they control. Thus, party R and D choose the 
following, respectively:

We impose two constraints on the formation of districts. First, each district in state s 
must contain the same mass of blocks, Ps

Ns

 . Second, each block in state s must appear 
in exactly one district in state s. We assume that parties move simultaneously,8 and 
focus on the Nash equilibria of this game.

To state the optimization problem formally, we define rn,s as a dummy variable 
equal to one if party R wins the election in district n in state s. Then, party R faces 
the problem:

{
�n,s

(
�j
)}s=SR,n=Ns

s=1,n=1

{
�n,s

(
�j
)}s=S,n=Ns

s=SR+1,n=1

(1)max
{�n,s(�j)}

s=SR ,n=Ns

s=1,n=1

EWR

(
1

N

(
SR∑
s=1

Ns∑
n=1

rn,s +

S∑
s=SR+1

Ns∑
n=1

rn,s

))

7  It is trivial to extend these to include a third group of states redistricted exogenously to the model; this 
could represent bipartisan gerrymandering (in which no single party controls the organs of redistricting 
in a state) or court-mandated apportionment. For the sake of simplicity, we focus on the two-party case.
8  This assumption matches the reality that 49 states must (by state law) redistrict within a window of 
about 6 months, after the release of the preliminary census but in time to organize the next Congressional 
elections. Furthermore, redistricting is typically a long and involved process, so that states cannot afford 
to wait for other states to complete their redistricting process.

5  One can model this reduced form “bliss point” approach as the implication of an assumption that vot-
ers have preferences over policy outcomes that satisfy “single-crossing” and that all candidates from a 
given party in a given state share a policy position. See Friedman and Holden (2008) for this treatment.
6  The composition of this uncertainty will be elaborated upon in Sect. 3.
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and party D solves a parallel problem where dn,s is a dummy variable equal to one 
if party D wins the election in district n in state s. Analogously, the choice variables 
for party D are the districting schemes in states s ∈

[
SR+1, S

]
.

We now make two assumptions about the distribution of voters within each block. 
First, we require that the block index �j is informative about the underlying distribu-
tion of individual preferences �i , in a specific sense.

Condition 1  (Informative Signal Property). Let �Gs(�i∣�j)
��j

= zs
(
�i ∣ �j

)
 . Then

This property is similar to the Monotone Likelihood Ratio Property, and if the 
signal shifts only the mean of the conditional preference distribution, then this prop-
erty is equivalent to MLRP.9 As applied to the distribution of voters within a block, 
Condition  1 implies that blocks can be categorized easily on a left-to-right basis. 
In other words, Condition 1 rules out the situation in which a single block contains 
voters on the extreme in both directions but no moderates. While this assumption 
cannot literally be true, the literature on the geographic distribution of voter prefer-
ences broadly supports this condition. It is difficult to directly measure the strength 
of partisan preferences; although donors differ from voters in certain respects, cam-
paign contributions are one proxy. Gimpel et al. (2006) show that there is significant 
geographic concentration in the distribution of party donations across counties. At a 
more local level, fund-raising maps show distinct clusters of Democratic and Repub-
lican support in large cities where blocks are densest. For instance, contributions to 
Republican candidates in the Boston Metro Area are clearly clustered in area such 
as Wellesley and Belmont Hill rather than evenly distributed throughout the area.10

Second, we require a technical condition on a particular form of unimodality.

s.t. �
∞

−∞

�n,s

(
�j
)
d�j =

Ps

Ns

∀n, s

Ns∑
n=1

�n,s

(
�j
)
=hs

(
�j
)

∀�j, s

0 ≤�n,s

(
�j
) ≤ hs

(
�j
)

∀n, �j, s,

zs

(
𝛽i ∣ 𝜎

�
j

)

zs
(
𝛽i ∣ 𝜎j

) <

zs

(
𝛽�
i
∣ 𝜎�

j

)

zs
(
𝛽�
i
∣ 𝜎j

) , ∀𝜎�
j
> 𝜎j, 𝛽

�
i
> 𝛽i, s

9  See footnote 11 of Friedman and Holden (2008) for a simple proof of this.
10  See https://web.archive.org/web/20121217195343/http://fundrace.huff-
ingtonpost.com/.
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Condition 2  (Central Unimodality) For all s, gs
(
�i ∣ �j

)
 is a unimodal distribution 

where the mode lies at the median.

Note that, without loss of generality (given Condition  1), we can “re-scale” �j 
such that �j = max�i gs

(
�i ∣ �j

)
 . The two parts of Condition 2 essentially require that 

�i is distributed “near” �j , and not elsewhere.11

2.2 � The form of the optimal Gerrymander

We can now state the first of two main results of this section.

Proposition 1  Suppose that Conditions 1 and 2 hold. Then for a sufficiently concen-
trated distribution of voters within blocks, the optimal districting plan in any equilib-
rium, for each party p, in each state s, can be characterized by breakpoints 

{
un,s

}Ns

n=1
 

and 
{
ln,s

}Ns

n=1
 (ordered such that u1,s > u2,s > … > uNs−1,s

> lNs−1,s
> … > l1,s ≥ −∞ ) 

such that

Furthermore, the preferences of median voters in each district of state s under the 
optimal district plan are such that 𝜇1,s > 𝜇2,s > … > 𝜇Ns,s

.

This result establishes that “cracking” is not optimal, so that parties find it opti-
mal to instead group the most partisan blocks into one district within a given state. 
However, parties still may wish to “pack” those least favorable into segregated dis-
tricts, such that each district comprises of only one continuous “slice ” of the mar-
ginal block distribution. We now provide conditions under which packing too is not 
optimal.

Proposition 2  Suppose that Conditions 1 and 2 hold, and there is a sufficiently con-
centrated distribution of voters within blocks.Then in any set of equilibrium redis-
tricting strategies, there exists n and 𝜎j < 𝜎′

j
 such that 𝜇n,s > 𝜇Ns,s

 and 
𝜓n,s

(
𝜎j
)
> 0,𝜓Ns,s

(𝜎�
j
) > 0 for all s.

We refer to the equilibrium strategy in its purest form (as in Proposition 2) 
as a matching slices strategy, since the parties find it optimal to match slices 
together from extreme ends of the signal distribution, working in to the middle 

𝜓1,s =

{
hs
(
𝜎j
)
if 𝜎j < l1,s or 𝜎j > u1,s

0 otherwise
,

𝜓n,s =

{
hs
(
𝜎j
)
if ln−1,s < 𝜎j < ln,s or un−1,s > 𝜎j > un,s

0 otherwise
for 1 < n < N,

and 𝜓Ns,s
=

{
hs
(
𝜎j
)
if 𝜎j > lN−1,s and 𝜎j < uN−1,s

0 otherwise.

11  For a more detailed discussion on this property, see Friedman and Holden (2008).
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of the distribution. The intuition behind this result is as follows.12 We may devi-
ate from a districting plan that “packs” by redistricting the most left-wing blocks 
on the farthest left of the block distribution to the district encompassing the 
furthest right slice, while “sliding ” all other districts to the right. While this 
decreases the likelihood of winning in the (initially) far right district, the likeli-
hood of winning all other districts rise as the median voters’ preferences rise in 
expectation. As the within-block voter distribution becomes more concentrated 
around its median/mode, the gains from redistricting rise somewhat consistently, 
while the losses do not rise as quickly. At some point, it becomes optimal to 
allow the right-most district to encompass two extreme slices at either end of 
the distribution. We may proceed to apply the same logic to the redistricting 
of all other remaining single-sliced districts to obtain the matching slices result 
described in Proposition 2, where each district, excluding the middle-most dis-
trict, will contain two slices.

Figure 1 is an example of such a strategy for an arbitrary marginal block dis-
tribution in state s (with five districts, each represented by a different shade of 
gray, redistricted by party R) that satisfies the conditions in Propositions 1 and 
2. The right-hand slice making up each district is larger than the left-hand slice 
to ensure that party R, whose voters lie more to the right, have a majority in 
expectation. Furthermore, districts with medians more favorable to party R have 
smaller right-hand slices. Intuitively, those voters far to the right vote more reli-
ably for party R; thus, the party needs fewer of them in a district in order to 
guarantee a victory. In the extreme, where voters on the right support party R 
with probability 1, redistricting would occur such that the right-most slice only 
contains � more voters than the left wing.

These results extend those in Friedman and Holden (2008) to the richer set-
ting in which each party controls only a fraction of districts and allocates blocks, 
rather than voters. To understand intuitively why the original results extend to 
this broader case, consider the gain to party R from winning a given district, as 
opposed to losing it. If the value function is non-linear, this value will depend 
on the set of states controlled by party D and party D’s districting plan for 
those states. But holding all else fixed—which is precisely what happens in a 
Nash equilibrium—an increase in the probability of winning the given district 
increases the value function linearly . Thus, the trade-offs between districts in 
this more complicated model differ only from those in the simpler model by 
constant terms. While a party may alter the number of right-wing blocks in the 
upper “slice” of each district, the fundamental strategy in equilibrium, as in 
Propositions 1 and 2, remains the same.

12  An analogous discussion of this result is present in Friedman and Holden (2008).
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3 � Strategic interactions in redistricting

Propositions 1 and 2show that the optimal gerrymander will always take the form of 
“matching slices.” We can therefore abstract to some degree from the precise micro-
foundation of the constraints on district formation when considering comparative 
statics.

At the most basic level, each party constructs districts so as to choose median vot-
ers in those districts, subject to constraints given by the primitives of the problem. 
Therefore, we now rewrite the redistricting problem as one with choice variables 
being the district-level medians 

{
�n,s

}
. We then capture the constraints from above; 

let the feasible set of medians for player R be ΩR . This constraint set ΩR embodies 
all of the constraints faced by party R in the fully microfounded problem stated for-
mally above in equation (1 ). Even though the parties cannot observe each voter’s 
type individually, they may rearrange voters to generate a range of district medians 
in each state. Define the CDF of all district medians as M(�) . Denote by 

{
�nR

}
 and {

�nD

}
 the medians of all districts in states controlled by party R or D, respectively.

To analyze strategic interactions in redistricting, it now becomes impor-
tant to expand upon the components of aggregate uncertainty, bn,s . Suppose that 
bn,s = �n,s − � , where �n,s corresponds to a local shock in state s and district n with 
CDF C(⋅) and PDF c(⋅) , and � corresponds to a national shock with CDF Y(⋅) and 
PDF y(⋅) , both with unbounded support. Both shocks are independent, have a mean 
of zero and are symmetrically distributed. Given this, the median voter in district n 
in state s votes with ex post preferences is 𝜇̂n,s = 𝜇n,s − 𝜈n,s + 𝜙.

In order to focus the analysis on complementarities across states, we use the 
national shock as a summary statistic for the “state” of the election. We therefore 
assume that each party has control over an infinite number of districts, allowing us 
to integrate over the distribution of local shocks rather than account for them indi-
vidually through a combinatorial equation.13 Define

as the share of districts controlled by party R. This assumption, alongside that of 
which shocks are independent, allows us to write the share of districts won by party 
R as

The party values the fraction of seats won by the function W(⋅) , which is weakly 
increasing. We may therefore rewrite the optimization problem faced by party R as

� =

∑SR
s=1

Ns∑S

s=1
Ns

X(�) = ∫ C(� + �)dM(�).

13  While this is mostly a technical assumption, in practice, both the Republican and Democratic parties 
control over 150 districts, and so this assumption is not unreasonable on its face. Furthermore, it seems 
natural for parties to spend considerably more time anticipating possible national shocks, such as a major 
recession or war, rather than the national influence of many uncorrelated local shocks.
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3.1 � Optimal Gerrymandering under shocks

In general, the share of districts won by R is given by

We may use this expression to restate the problem that the parties solve. To begin, 
define �∗

({
�nD

}
,
{
�nR

}
,X

)
 as a function of the strategies chosen by the parties, that 

is, 
{
�nD

}
and 

{
�nR

}
 such that

We may interpret �∗ as the “pivotal value” of the shock that, given each party’s strat-
egy, just allows R to win X share of districts. Proposition 3 then shows that each 
party acts as though they maximize vote shares over a weighted average of possible 
outcomes of the aggregate shock �.

(2)
max
{�nR}

EW = ∫ W(X(�))dY(�)

such that
{
�nR

}
∈ ΩR.

X
({

�nR

}
,
{
�nD

}
;�
)
= �

[∑
nR

C
(
�n,s + �

)]
+ (1 − �)

[∑
nD

C
(
�n,s + �

)]
.

�
∑
nR

C
(
�n,s + �∗

)
+ (1 − �)

∑
nD

C
(
�n,s + �∗

)
= X.

Fig. 1   The form of the optimal gerrymander
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Proposition 3  Suppose that W(X) is continuous and differentiable.Then the optimal 
gerrymander 

{
�∗
nR

}
 will satisfy the necessary conditions to the problem

while 
{
�∗
nD

}
 satisfies the necessary conditions to the parallel problem.

The advantage to the alternative maximization above is that it does not involve 
anything about the districts designed by the opponent party, conditional on 
�∗(X) . If we can specify the set of �∗(X) values, then Proposition 3 allows us to 
restate the maximization problem in a way that does not involve the other party’s 
choices. This simplifies the analysis greatly. Of course, the optimal sets of district 
medians 

{
�∗
nD

}
 and 

{
�∗
nR

}
 and the set of �∗(X) values are jointly determined. But 

if we can identify variables that shift the �∗(X) values, then we can trace through 
the implications for the optimal district medians.

This result is a generalized version of Theorem  1 in Gul and Pesendorfer 
(2010), who focus on the case where parties care only about winning a majority 
in the legislature. The following Corollary links our result above to theirs.

Corollary 1  Suppose that the party’s value function over seats won is

Then

and likewise for party D, so that parties simply maximize the share of seats won at 
one specific value of the aggregate shock, which is the “pivotal value.”

These two results are, at some level, quite intuitive. If, for instance, a party 
controls very few states, then it must turn out to be an extremely favorable state 
of the world in order for it to win. In such a situation, it is natural for the party to 
simply assume that it receives such a shock when redistricting.

But these results are also far more precise than the preceding intuition might 
suggest. Suppose, for instance, that two parties control the same number of dis-
tricts, and so the aggregate shock must simply be above average for party R to 
win, and vice versa for party D. Corollary 1 shows that parties do not maximize 
over all such winning values of the shock; rather, they do so only with respect to 
the one pivotal value at which the parties are evenly matched.

(3)
max
{�nR}∫

[
W �(X)y(�∗(X))

∑
C
(
�n,s + �∗

({
�∗
nD

}
,
{
�∗
nR

}
,X

))]
dX

such that
{
�∗
nR

}
∈ ΩR,

W(X) =

⎧⎪⎨⎪⎩

1 X >
1

2
1

2
X =

1

2

0 X <
1

2

.

{
�∗
nR

}
= arg max

{�nR}

∑
C
(
�n,s + �∗

(
1

2

))
,
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3.2 � Comparative statics

We now consider whether a party that controls redistricting in more states acts 
differently in equilibrium to a party that controls fewer states. Proposition 3 has 
rephrased each party’s problem as maximizing vote share conditional on the 
pivotal value �∗ . Of course, this requires knowing �∗ , which is jointly deter-
mined with the optimal strategy. We will show that, if c is log-concave, then as 
� increases, �∗ decreases; a party that is advantaged with more districts gerry-
mandered needs less “luck” from the aggregate shock. Thus, we can solve for the 
comparative static of � by solving for the comparative static of �∗ . While we can-
not actually solve for �∗ itself, we can assume a value of �∗ and see the effect of 
changing that value on the optimal districting scheme.

Proposition 4  Assume that W(X) takes on the form presented in Corollary 1 and that 
c is log-concave. Recall that the number of districts in state s is Ns . As � increases so 
that party R redraws more districts, �∗

1,s
 increases and �∗

Ns,s
 decreases if state s is 

controlled by party R, whereas �∗
1,s

 decreases and �∗
Ns,s

 increases if state s is con-
trolled by party D.

The intuition behind this result stems from the fact that parties optimize their 
districts relative to the marginal value of the aggregate shock. If parties control 
an equal number of states, then the aggregate must be better than average for 
that party to win. In this case, both favorable and unfavorable districts may be in 
focus, since the local shock necessary to tip a district to one party or another is 
not so big. By contrast, if a party controls many states, then the aggregate shock 
will have to be very negative for the party to lose the election. Since the aggregate 
shock is so negative, unfavorable districts are now essentially unwinnable, and so 
increasing the median voter for the right party in these states is of little help.

This result implies that the control of redistricting matters crucially for the 
nature of representation in the legislature. There are two main effects. First, par-
ties redistrict so as to maximize their own representation, so more equal control 
of state districting has a straightforward effect on the balance of representation in 
the legislature. But Proposition 4 shows that there is another effect in play chang-
ing the way parties draw districts in states they do control. As one party controls 
more states, it draws districts such that the most extreme districts, that is, the 
districts with the right-most and left-most medians, become even more extreme. 
This increases polarization in each state they control, where polarization is meas-
ured as the distance between median voters in the most extreme districts. If the 
positions of candidates are tied to the distribution of voters in their district—for 
instance, through competitive primary processes—then, for a given party, con-
trolling redistricting in a larger number of states increases the representation of 
extreme voters and stretches out the distribution of district medians in a given 
state. The opposite features are exhibited by the party losing control of the redis-
tricting process.
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A more detailed view of polarization would consider medians in the intermediate 
districts. However, the complexity of the problem prevents a more systematic char-
acterization. For instance, suppose a given state controlled by party R includes three 
districts. As party R gains more control over redistricting in other states, the middle 
median should move down relative to the upper median, but up relative to the lower 
median. These competing forces make the direction of movement for this middle 
median theoretically ambiguous.

Table 1 presents a numerical example that highlights these forces. These findings 
are further illustrated graphically, with respect to a particular block distribution, in 
Fig. 2. In this example, we suppose that there is a unit mass of identical states with 
five districts each. In each state, both the block distribution hs

(
�j
)
 and the condi-

tional preference distribution gs
(
�i ∣ �j

)
 are normal distributions with mean 0 and 

variance 2.5. We assume that Y(�) and C
(
�n,s

)
 are normal distributions with mean 0 

and variance 1
4
.

Each row of Table 1 presents the equilibrium strategy of party R given a share 
of control � . An increase in � pulls the most extreme district medians apart; �∗

1,s
 

increases while �∗
5,s

 decreases. The middle median, �∗
3,s

 , moves up, then down as 
party R’s state control increases. While the intermediate medians, �∗

2,s
 and �∗

4,s
 , dis-

play a similar monotonic movement pattern to that of their most extreme counter-
parts, we do not believe this to be a general result. All districts other than the top and 
bottom could move ambiguously, but we do not have a counterexample.

It is important to note that Proposition 4 relies on the log-concavity of c. Intui-
tively, log-concavity ensures that larger preference shocks, in some sense, are less 
likely than smaller shocks. To show the role of the distribution of c on the redis-
tricting equilibrium, Example  1 considers a highly specialized (and unrealistic) 
case that entirely eliminates any strategic interaction.

Example 1  Suppose that C is a uniform distribution, so that c(⋅) = k (a constant). 
Then each party’s optimal gerrymander maximizes the average of the median voters 
in the districts in their control: the share of states � under the control of party R has 
no impact on the optimal gerrymander.

The intuition is almost precisely the opposite to that above. When C is uni-
form, an aggregate shock of any kind is equally likely: the strategic effect of con-
trolling a larger number of states disappears. This is, in a sense, “the exception 
that proves the rule.”

Note that the intuition here is very similar to that in Gul and Pesendorfer (2010), 
who emphasize the same comparative static. Given the difference in the information 
structure between our model and theirs—leading, importantly, to a very different 
optimal gerrymandering strategy—Proposition  4 demonstrates that the preceding 
intuition—that, as a party controls more states, its favorable districts are drawn to 
be made more favorable—is a robust one. However, since the strategies used by the 
gerrymanderer differ between the two models, it is not a priori obvious that this 
would be the case nor is it clear how to map one result onto the other without per-
forming further analysis.
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3.3 � Generalizing the objective function

The above results have focused on the case when the objective function is a step 
function with a single discontinuity, as in Gul and Pesendorfer (2010). With a more 
complex objective function, each first order condition between two districts i and j 
no longer depends on the simple ratio c(�i+�

∗)
c(�j+�

∗)
 but rather on the ratio of weighted 

averages

Analyzing this expression is difficult in general. In order to sign a similar compara-
tive static with respect to �, this ratio must be weakly monotonic in � . Intuitively, 
we need more than log-concavity of c; instead, we need log-concavity in a weighted 
average of c. It is certainly not the case that this holds for all increasing functions W. 
We can, however, provide a condition on the objective function under which Propo-
sition  5 generalizes. This involves total positivity14 and so-called Pólya frequency 
functions. Hence, some definitions are in order before stating our result.

Definition 1  Let X and Y be subsets of ℝ and let K ∶ X × Y → ℝ. We say that K is 
totally positive of order n ( TPn ) if x1 < ⋯ < xn and y1 < ⋯ < yn imply

for each m = 1,… , n.

Definition 2  A Pólya frequency function of order n ( PFn ) is a function of a single 
real argument f(x) for which K(x, y) = f (x − y) is TPn, with −∞ < x, y < ∞.

Proposition 5  Suppose that W �(X) is PF2, that y is the uniform distribution and that 
c is log-concave. Then as the share of districts controlled by R, � , increases, �∗

1,s
 

increases and �∗
Ns,s

 decreases if state s is controlled by party R, whereas �∗
1,s

 
decreases and �∗

Ns,s
 increases if state s is controlled by party D.

The proof of this result is closely related to the observation that the convolution 
of two log-concave densities is itself log-concave. While W �(X) is clearly not a den-
sity, the appropriate generalization is that it must be PF2 (a condition which log-
concave densities satisfy).

∫ W �(x)y(�∗)c
(
�i + �∗

)
dx

∫ W �(x)y(�∗)c
(
�j + �∗

)
dx

.

||||||

K(x1, y1) ⋯ K(x1, ym)

⋮ ⋮

K(xm, y1) ⋯ K(xm, ym)

||||||
≥ 0

14  Total positivity has wide applications in economics. For instance, when K is a density TP2 is equiva-
lent to the monotone likelihood ratio property.
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A natural question to ask is what objective functions W(X) have derivatives which 
satisfy this requirement. Note that every PF2 function is of the form f (x) = e−�(x), 
for convex �(x) (Karlin 1968: p. 32). One function that satisfies Definition  2, of 
course, is the Normal cumulative distribution function.15 This class of functions has 
intuitive appeal as a continuous legislative value function, since the marginal value 
of a seat is greatest at 50% and falling as one party has a larger and larger majority. 
The logistic function P(x) = 1

1+e−x
 is also PF2.

16 This function has the attractive 
property that it is first convex and then concave, which seems like a natural objective 
function for a redistricter.

Table 1   Numerical examples of optimal competitive gerrymandering

Share of 
states con-
trolled

Pr[Win Majority] District median (probability of winning district)

1 2 3 4 5

� = 0.25 37.6% 0.69 (84%) 0.43 (73%) 0.31 (67%) 0.04 ( 52%) −0.79 (13%)
� = 0.50 50.0% 0.87 (89%) 0.60 (80%) 0.49 (76%) −0.15 (42%) −1.02 (7%)
� = 0.75 62.4% 1.00 (92%) 0.78 (87%) 0.53 (77%) −0.29 (34%) −1.20 (4%)
� = 1.00 74.7% 1.15 (95%) 0.92 (90%) 0.45 (74%) −0.36 (31%) −1.30 (3%)

Fig. 2   Graphical illustration of comparative statics; numerical example

15  Of course, Φ ∶ ℝ → [0, 1] while our W ∶ [0, 1] → ℝ . But the domain restriction is unimportant.
16  To see this, note that e− log

(
1

1+e−x

)
=

1

1+e−x
, and that − log

(
1

1+e−x

)
 is convex.
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It is also informative to think about objective functions W that do not satisfy this 
definition. An extreme example is that of a two-step double-discontinuity func-
tion. We explore a particular specification of this at the end of the appendix section 
(Example 2).

4 � Discussion and conclusion

We have presented a model of competitive gerrymandering in which two parties 
control redistricting across many states. After confirming that the “matching slices” 
strategy from Friedman and Holden (2008) obtains in this richer setting, we showed 
that this redistricting game can be restated as a control problem, in the manner of 
Gul and Pesendorfer (2010). We then showed that an increase in the number of dis-
tricts whose boundaries are drawn by a party tends to spread out the distribution of 
optimal district medians in states controlled by that party, and compress the distribu-
tion of optimal district medians in states controlled by the other party.

These results bear on a number of broader topics in American politics. In recent 
years, Republicans have gained control of a number of key state legislatures, allow-
ing them to design partisan gerrymanders in large states such as Pennsylvania, Flor-
ida and Texas. Our results imply that this shift in power may well have affected the 
nature of representation in other states as well.

Our results also speak to the phenomenon of independent redistricting commis-
sions. Such non-partisan bodies handle apportionment in seven states, including 
California and Arizona; three further states passed ballot initiatives in favor of inde-
pendent redistricting in 2018, which will be implemented in the near future.17 Our 
results imply that there is both a direct and an indirect effect of these commissions: 
with California’s districts constructed by an independent commission, the strate-
gies of Democrats and Republicans should change in other states. In principle, such 
effects could be large—particularly since the state in question has a large number of 
districts. Since the change in strategies leads to districts being constructed with less 
extreme median voters in other states, this may be seen as an additional benefit of 
independent commissions.

Appendix

Proof of Proposition 1  This result follows the proof of Proposition 7 in Friedman and 
Holden (2008). Note that the objective function, for each district a party R must cre-
ate, can be factored, such that

EWp = B
(
�n,s

)
Kn,s +

(
1 − B

(
�n,s

))
Ln,s,

17  The ballot initiatives were passed in Utah, Colorado and Georgia.
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where Kn,s = E
[
Wp|rn,s = 1

]
 and Ln,s = E

[
Wp|rn,s = 0

]
 denote the expected value if 

party R were to win or lose district n in state s , respectively. Now, fix the districting 
plan (for both parties) and consider the change in the objective function resulting 
from a small deviation from the existing plan in district n with an offsetting change 
in district m, with both districts in state s . The derivative of the value function, with 
respect to this change (which, in shorthand, we denote � ), is

which must equal 0 for the plan to be optimal. At this point, we note that, but for the 
constants Kn,s , Ln,s , Km,s , and Lm,s , this expression is identical to that in equation (7) 
of Friedman and Holden (2008). Thus, we can directly apply Lemmas 1 through 3 
from that paper, which imply Proposition 1 in that paper, which is the result here. 
Since any optimal strategy must have this form, it must be that all equilibria are such 
that each party employs a strategy of this form. 	�  ◻

Proof  of  Proposition  2  The proof follows exactly along the lines of Proposition 2 
from Friedman and Holden (2008). Since all optimal districting schemes have this 
feature, it must be that all equilibria involve strategies with this feature. 	� ◻

Proof of Proposition 3  Using the definition of �∗ , the maximization problem for party 
R can then be written as

In words, the party gets W �(x) if the aggregate shock is higher than �∗(X) , and we 
must add up across all of the values X. At an optimum it cannot be the case that real-
locating voters with positive mass between (say) district i to district j increases the 
value function and is still within the constraint set. However, consider such a real-
location and denote the increase in the median of district i of Δ�i and the decrease 
in the median of district j of Δ�j. Since the value function is differentiable it must be 
that for any two districts i and j in the same state

where the limit is taken such that the profile of switching voters is held constant. 
But, by our definition of �∗ above, we know that

�E
[
Wp

]
��

= b
(
�n,s

)(
Kn,s − Ln,s

)��n,s

��
− b

(
�m,s

)(
Km,s − Lm,s

)��m,s

��
,

max
{�nR}∫ W �(X)

[
1 − Y

(
�∗

[{
�nR

}
,
{
�nD

}
;X
])]

dX

such that
{
�nR

}
∈ ΩR.

∫ W �(X)y(�∗(X))
��∗(X)

��i

dX

∫ W �(X)y(�∗(X))
��∗(X)

��j

dX
= lim

�→0

Δ�j

Δ�i

,
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Therefore the above ratio can be rewritten as

where �∗ is that value associated with the equilibrium strategies. But these are the 
just the necessary conditions to the problem in which the gerrymanderer maximizes 
the alternative objective function

The proof for party D follows precisely the parallel logic. 	�  ◻

Proof of Corollary 1  Consider the situation in which party R’s value function is

Note that, as n → ∞, W limits to the desired function. By Proposition  3, party R 
solves the alternative maximization

which is identical to equation (3) above but for scaling by the constant term W ′
n

(
1

2

)
 . 

But as n → ∞ , the weights

Thus the necessary conditions are simply that

��∗

��i

=
c
�
�∗
i
+ �∗(X)

�

�
∑

nR c
�
�∗
d
+ �∗(X)

�
+ (1 − �)

∑
nD c

�
�∗
d
+ �∗(X)

� .

∫ W �(X)y
(
�∗

[{
�∗
nR

}
,
{
�∗
nD

}
;X
])
c
(
�i + �∗

[{
�∗
nR

}
,
{
�∗
nD

}
;X
])
dX

∫ W �(X)y
(
�∗

[{
�∗
nR

}
,
{
�∗
nD

}
;X
])
c
(
�j + �∗

[{
�∗
nR

}
,
{
�∗
nD

}
;X
])
dX

= lim
�→0

Δ�j

Δ�i

,

max
{�nR}∫ W �(X)y

(
�∗

[{
�∗
nR

}
,
{
�∗
nD

}
;X
])∑

C
(
�n,s + �∗

[{
�∗
nR

}
,
{
�∗
nD

}
;X
])
dX.

such that
{
�nR

}
∈ ΩR.

Wn =
xn

xn + (1 − x)n

W �
n
=
((x − 1)x)n(log x − log (1 − x))

(xn + (1 − x)n)
2

max
{�dR}∫

⎡
⎢⎢⎢⎣

W �
n
(x)

W �
n

�
1

2

�y(�∗(x))
�

C
�
�n,s + �∗

��
�∗
dD

�
,
�
�∗
dR

�
, x
��⎤⎥⎥⎥⎦

dx

such that
�
�nR

�
∈ ΩR.

lim
n→∞

W �
n
(x)

W �
n

(
1

2

) →

{
0 x ≠ 1

2

1 x =
1

2

.
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These are the same necessary conditions as if party R simply maximized the number 
of seats won at critical value �∗

({
�∗
nD

}
,
{
�∗
nR

}
,
1

2

)
 , which could be written

	�  ◻

Proof of Proposition 4  First consider a state redistricted by party R. Suppose Ns = 2. 
Following Corollary 1, there are two FOCs that combine to imply

Writing �2

(
�1

)
 one can substitute into the objective function above, so that the FOC 

becomes

Of course, d𝜇2(𝜇1)
d𝜇1

< 0 . Then, by the implicit function theorem, we know that 𝜕𝜇
∗
1

𝜕𝜙∗
< 0 

if and only if the LHS is decreasing in �∗, which is true if and only if

Note that by the equal mass constraint it must be that ��2

��∗
 is of the opposite sign as 

��∗
1

��∗
 . Moreover, ��

∗
1

��∗
 depends entirely on whether the ratio c

�(�)

c(�)
 is increasing or decreas-

ing in � . This ratio being decreasing is precisely the definition of log concavity and 
hence 𝜕𝜇

∗
1

𝜕𝜙∗
< 0.

To prove the result for Ns ≥ 2, note that we maximize the objective function

Consider a deviation in which one shifts �1 upwards by amount Δ�1 and then shifts 
all other medians down by Δ�−1 . The no-benefit condition from such a deviation is

c
(
�i + �∗

)

c
(
�j + �∗

) =
Δ�j

Δ�i

max
{�nR}

∑
nR

C
(
�n,s + �∗

({
�∗
nD

}
,
{
�∗
nR

}
,
1

2

))

such that
{
�nR

}
∈ ΩR.

c
(
�1 + �∗

)

c
(
�2 + �∗

) =
Δ�2

Δ�1

.

�∗
1
= argmax

{�1}

{
C
(
�

1
+ �∗

)
+ C

(
�2

(
�

1

)
+ �∗

)}

⇒

c
(
�1 + �∗

)

c
(
�2 + �∗

) = −
d�2

(
�1

)
d�1

.

c�
(
𝜇1 + 𝜙∗

)

c�
(
𝜇2 + 𝜙∗

) <
c
(
𝜇1 + 𝜙∗

)

c
(
𝜇2 + 𝜙∗

)

max
{�nR}

∑
nR

C
(
�n + �∗

)
.
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Note, at this point, that the medians 
{
�2,… ,�N

}
 are chosen optimally. Therefore, 

we can implicitly differentiate this expression to obtain the impact of �∗ on �1 , since 
all deviations within the medians 

{
�2,… ,�N

}
 have a second order impact on the 

value function, by the Envelope Theorem. From the Ns = 2 case we know that the 
ratio c(�1+�

∗)
c(�n+�

∗)
 is falling with �∗, and therefore we know that the LHS of equation (4) 

is also decreasing in �∗ . Therefore, we know that 𝜕𝜇
∗
1

𝜕𝜙∗
< 0. A parallel argument 

establishes that 𝜕𝜇
∗
N

𝜕𝜙∗
> 0. The argument for states controlled by party D follows 

exactly the same logic. 	�  ◻

Proof of Example 1  We can rewrite the expected number of seats won by party R as

and the expected value function for party R as

This equation shows that �R is a sufficient statistic for the impact of party R districts 
on the aggregate outcome. Therefore each party does best simply to maximize the 
average of the median voters in the districts in their control. There is no strategic 
interaction at all between the parties in this special case. As a result, the share of dis-
tricts � under the control of party R can have no impact on the optimal gerrymander. 	
� ◻

Proof of Proposition 5  Karlin (1968, p.30) shows that the convolution h = f ⋅ g is PFn 
if f and g are PFn. By a theorem of Schoenberg (1947, (1951), PF2 of a density is 
equivalent to log-concavity. The assumption of uniformity of y means that we are 
left with the term ∫ W �(x)c

(
�i + �∗(x)

)
dx, which is PF2 since W �(x) is PF2 and c 

is log-concave. Since W �(x) is PF2 it is integrable and hence continuous. Now the 
proof of Proposition 4 applies. 	�  ◻

Example 2  Suppose that the objective function takes on the form of the double-dis-
continuity function

(4)
c
�
�1 + �∗

�
∑

n≠1 c
�
�n + �∗

� =
Δ�−1

Δ�1

.

X(�) =k ∫ (� − �)dM(�)

=k
(
��R + (1 − �)�D + �

)
.

EW = ∫ W
(
k
(
��R + (1 − �)�D + �

))
dY(�).
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Let Ns = 2 , and �∗ be distributed uniformly for simplicity. Suppose that c is log-
concave. By Proposition 3, we know that the ratio

must be monotonic in � for the comparative static to hold. By log-concavity, we 
know that the ratio c(�1+�

∗(x))
c(�2+�

∗(x))
 is increasing in � for all x. But it will not generally be 

the case that the combined ratio in expression (5) is increasing. For instance, sup-
pose that the following values hold for 𝜆H > 𝜆L.

c

(
�1+�

∗
(

1

3

))

c

(
�2+�

∗

(
1

3

))
c

(
�1+�

∗
(

2

3

))

c

(
�2+�

∗

(
2

3

))
DDR

�
H

8

2

100

100

108

102
≈ 1

�
L

3

1

1

2

4

3
> 1.

Intuitively, it is important to note that the double-discontinuity objective func-
tion is an extreme example of a function that is not PF2, since it is the limit of an 
extremely bimodal function. When “convoluted” with W ′, c loses its log-concavity, 
and so a fall in �∗ is no longer enough to guarantee an increase in the value of the 
higher median.
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