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Measuring the Compactness of
Political Districting Plans

Roland G. Fryer, Jr. Harvard University

Richard Holden University of New South Wales

Abstract

We develop a measure of compactness based on the distance between voters
within the same district relative to the minimum distance achievable, which we
coin the relative proximity index. Any compactness measure that satisfies three
desirable properties (anonymity of voters, efficient clustering, and invariance
to scale, population density, and number of districts) ranks districting plans
identically to our index. We then calculate the relative proximity index for the
106th Congress, which requires us to solve for each state’s maximal compact-
ness—a problem that is nondeterministic polynomial-time hard (NP hard). The
correlations between our index and the commonly used measures of dispersion
and perimeter are �.37 and �.29, respectively. We conclude by estimating seat-
vote curves under maximally compact districts for several large states. The
fraction of additional seats a party obtains when its average vote increases is
significantly greater under maximally compact districting plans relative to the
existing plans.

1. Introduction

The architecture of political boundaries is at the heart of the political process
in the United States.1 When preferences over political candidates are sufficiently

We are grateful to Alberto Alesina, Roland Benabou, Rosalind Dixon, Edward Glaeser, Emir
Kamenica, Lawrence Katz, Gary King, Glenn Loury, Barry Mazur, Franziska Michor, Peter Michor,
David Mumford, Barry Nalebuff, Ariel Pakes, Andrei Shleifer, Andrew Strominger, Jeremy Stein, and
seminar participants at Brown University (applied math), Harvard University (labor economics), the
National Bureau of Economic Research Summer Institute (law and economics), and the University
of Vienna (math) for helpful discussions and suggestions. Shiyang Cao, Alexander Dubbs, Laura
Kang, Eric Nielsen, and Andrew Thomas provided excellent research assistance. Financial support
was provided by the Alphonse Fletcher Sr. Fellowship. Fryer thanks the Erwin Schrödinger Inter-
national Institute for Mathematical Physics in Vienna for its hospitality.

1 Article 1, section 4, of the U.S. Constitution provides that “[t]he Times, Places and Manner of
holding Elections for Senators and Representatives shall be prescribed in each State by the Legislature
thereof; but the Congress may at any time by Law make or alter such Regulations, except as to the
Places of choosing Senators.”
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heterogeneous, altering the landscape of political districts can have large effects
on the composition of elected officials. Prior to the 2003 Texas redistricting, the
congressional delegation comprised 17 Democrats and 15 Republicans; after the
2004 elections there were 11 Democrats and 21 Republicans.2 Politically and
racially motivated districting plans are believed to be a significant reason for the
lack of adequate racial representation in state and federal legislatures, and there
is a debate as to whether the creation of majority/minority districts to ensure
some level of minority representation has led to fewer minority-friendly policies
(see Shotts [2002] for an excellent overview and critique).

There are several factors that weigh on the constitutionality of districting plans:
(1) equal population (the Supreme Court first established this principle for
congressional districts in Wesberry v. Sanders (376 U.S. 1 [1964]), (2) contiguity
(which is a requirement in 49 state constitutions), and (3) compactness. This
last consideration—distinct from the mathematical notion of a finite subcover
of a topological space—refers to how oddly shaped a political district is. The
Supreme Court has acknowledged the importance of compactness in assessing
districting plans for nearly half a century.3 Yet, despite its importance as a factor
in adjudicating gerrymandering claims, the court has made it clear that no
manageable standards have emerged (see the judgment of Justice Antonin Scalia
in Vieth v. Jubelirer, 541 U.S. 267 [2004]). There is no consensus on how to
adequately measure compactness.4

In this paper, we propose a simple index of compactness based on the average
physical distance between voters and show that this index has a number of
attractive features. The index is the ratio of distance between voters in the same
political district under a given plan and the minimal such distance achievable
by any possible districting plan. The greater this ratio, which we call the relative

2 In the United States, political boundaries are typically redrawn every 10 years, after the decennial
census. The 2003 middecade redistricting in Texas is a notable exception. The Supreme Court recently
held that this was not unconstitutional in League of United Latin American Citizens v. Perry, 548 U.S.
399 (2006).

3 The apportionment acts of 1842, 1901, and 1911 contained a compactness requirement. In Davis
v. Bandemer (476 U.S. 173 [1986]), Justices Lewis Powell and John Paul Stephens pointed to com-
pactness as a major determinant of partisan gerrymandering, and Justices Byron White, William
Brennan, Harold Blackmun, and Thurgood Marshall cited it as a useful criterion. Nineteen state
constitutions still contain a compactness requirement (Barabas and Jerit 2004).

4 An important argument against the use of compactness as a districting principle is that it may
disadvantage certain population subgroups. As Justice Scalia put it in Vieth v. Jubelirer (541 U.S.
267, 290), “Consider, for example, a legislature that draws district lines with no objectives in mind
except compactness and respect for the lines of political subdivisions. Under that system, political
groups that tend to cluster (as is the case with Democratic voters in cities) would be systematically
affected by what might be called a natural packing effect. See Bandemer, 478 U.S. 159 (O’Connor,
J., concurring in judgment).” First, the courts use compactness as one of several criteria. Second, it
is an open question whether more compact districting plans have a positive or negative effect on
racial or political representation.
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proximity index (RPI), the less compact a district.5 The index satisfies three
desirable properties: (1) voters are treated equally (anonymity), (2) increasing
the distances between voters within a political district leads to a larger value of
the index (clustering), and (3) the index is invariant to the scale, population
density, and number of districts in a state (independence). In Appendix A, we
show that any compactness index that satisfies these properties ranks districting
plans identically to the relative proximity index.

The RPI has several advantages over existing measures of compactness. First,
it is the only compactness index that permits meaningful comparisons across
states. Second, the index does not assume (implicitly or otherwise) that voters
are uniformly distributed across political districts. Many previously proposed
measures adopt a geometric approach (using the perimeter length of political
districts, for example) and fail to consider the distribution of voters within a
state. Third, our measure is constructed at the state level. Some measures apply
to political districts.6 Yet the districting problem is fundamentally about parti-
tioning; the shape of one element of the partition affects the shapes of the other
elements. Analyzing individual pieces of a larger partition in isolation can be
misleading. Fourth, although our index is simple, it is based on desirable prop-
erties that compactness measures should satisfy. Existing measures have been
proposed in a relatively ad hoc fashion. At a minimum, our approach is a more
principled way of narrowing the field of competing measures.

We apply the index to the districting plans of the 106th Congress using tract-
level data from the U.S. census. In doing so, we are required to calculate each
state’s maximal compactness. This number is the denominator of our index. But
calculating this number by brute force, enumerating the set of all feasible par-
titions and maximizing compactness over this set, is impossible.7 Existing al-
gorithms to solve similar problems in computer science and computational bi-
ology work only for small samples (≈ 100) or do not require that partitions have
the same size. We develop an algorithm for approximating this partitioning
problem that is suitable for very large samples and guarantees nearly equal
populations in each partition. The algorithm is based on power diagrams—a
generalization of classic Voronoi diagrams—which have been used extensively
in algebraic and tropical geometry (Passare and Rullgard 2004; Richter-Gebert,

5 For the empirical analysis and characterization of the optimally compact districting plan we use
Euclidean distance. But since many of our results are proven in an arbitrary metric space, one can
extend much of the analysis here by using driving distance or what many legal scholars refer to as
“communities of interest.”

6 See Young (1988), however, and Section 2.2.
7 A back-of-the-envelope calculation reveals that, for California alone, the cardinality of this set

is larger than the number of atoms in the observable universe.
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Sturmfels, and Theobald 2003), condensed matter physics, and toric geometry
and string theory (Diaconescu, Florea, and Grassi 2002).8

The empirical results we obtain on the compactness of districting plans are
interesting and in some cases quite surprising. The five states with the most
compact districting plans are Idaho, Nebraska, Arkansas, Mississippi, and Min-
nesota. The five least compact states are Tennessee, Texas, New York, Massa-
chusetts, and New Jersey. The districting plan that solves the minimum-
partitioning problem is more than 40 percent more compact than the typical
districting plan. States that are more compact tend to be states with a larger
share of minorities and a larger difference between the percentages who vote
Republican and Democrat. The latter is intuitive: states with more to gain from
altering the design of political districts tend to do it more. Whether or not a
state is forced to submit its districting plans to the Department of Justice (under
section 5 of the Voting Rights Act) is also highly correlated with compactness.
With only 43 observations, these estimates are not statistically significant. The
rank correlations between the RPI and the most popular indexes of compactness,
dispersion, and perimeter are �.37 and �.29, respectively.

We conclude our analysis by estimating a counterfactual of the 2000 con-
gressional elections in California, New York, Pennsylvania, and Texas using op-
timally compact districts derived from our algorithm. To better understand the
impact that a strict policy of maximal compactness might have on those elected,
we estimate a seat-vote curve for the actual and hypothetical districting plans
of each state. Seat-vote curves are a common tool that political scientists use to
analyze the partisan consequences of districting plans. These curves are char-
acterized by two things: bias and responsiveness. Bias reports, when the vote is
split, twice the difference between the seat share the Democrats get and 50
percent. Responsiveness is the fraction of seats the Democrats get if the average
vote goes up 1 percent. Responsiveness can be interpreted as a measure of the
nature of democracy in the state. For instance, if Responsiveness is 1, then
representation is proportional to the share of the vote. If it is greater than 1, it
is majoritarian, and if it were to be infinity, then it would be winner take all.

The results of this exercise are quite illuminating. California, New York, Penn-
sylvania, and Texas all have substantially more responsive seat-vote curves under
our new partition, but Bias is unchanged. These results show that maximally
compact districts would have a statistically significant effect on voting outcomes,
making election outcomes more responsive to actual votes.

The structure of the paper is as follows. Section 2 provides a brief legal history
of compactness and an overview of existing measures. Section 3 presents the

8 Power diagrams are a powerful tool to partition Euclidean space into cells by minimizing the
distance between points in a cell and the centroid of that cell. We prove that maximally compact
districts are power diagrams and that the line separating two adjacent districts is perpendicular to
the line connecting their centroids, and all such lines separating three adjacent districts meet at a
single point. It follows that the resulting districts are convex polygons.
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relative proximity index and provides a brief discussion of its properties. Section
4 implements the index using data from the 106th Congress. Section 5 provides
a counterfactual estimate of the congressional elections in four large states using
the partitions derived from our index. Section 6 concludes with a discussion of
potential extensions and generalizations of our approach. There are five appen-
dixes. Appendix A contains an axiomatic derivation of the RPI, showing that
any index that satisfies our three axioms will rank districting plans identically
to the RPI. Appendix B provides further technical details, including a formal
description of the algorithm used to compute maximally compact districts and
proofs of all technical results. Appendix C provides a guide to programs to
calculate the RPI, Appendix D contains figures comparing actual district maps
and those obtained from our algorithm, and Appendix E contains figures com-
paring seat-vote curves.

2. Background and Previous Literature

2.1. A Brief Legal History of Compactness

Compactness has played a fundamental role in the jurisprudence of gerry-
mandering, both racial and political. Since Gomillion v. Lightfoot (364 U.S. 339
[1960]), where the court struck down Alabama’s plan to redraw the boundaries
of the city of Tuskegee, the court has recognized compactness as a relevant factor
in considering racial gerrymandering claims. In Gomillion the court referred to
the proposed district as “an uncouth 28-sided figure” (364 U.S. 340). Although
Gomillion is considered by many to be a jurisprudential high-water mark, the
role of compactness in considering racial gerrymandering claims has been af-
firmed in other decisions.9 As Justice Sandra Day O’Connor put it, “We believe
that reapportionment is one area in which appearances do matter” (Shaw v.
Reno, 509 U.S. 603, 647 [1993]).

Compactness has also played an important role in partisan gerrymandering
claims. It has been recognized by the court as a traditional districting principle.
In Davis v. Bandemer, Justices Powell and Stevens described compactness as a
major criterion (478 U.S. 173), and Justices Byron White, Brennan, Blackmun,
and Marshall described it as an important criterion (106 S. Ct. 2797, 2815). In
Vieth, the plurality acknowledged compactness as a traditional districting prin-
ciple. Justice Anthony Kennedy, in his concurring opinion, stated that com-
pactness is an important principle in assessing partisan gerrymandering claims:
“We have explained that ‘traditional districting principles,’ which include ‘com-
pactness, contiguity, and respect for political subdivisions,’ are ‘important not
because they are constitutionally required . . . but because they are objective

9 In Shaw v. Reno (509 U.S. 630 [1993]), the court upheld a challenge to North Carolina’s redis-
tricting plan on the basis that the ill compactness of the districts was indicative of racial gerryman-
dering. See also Thornburg v. Gingles (478 U.S. 30 [1986]) or Growe v. Emison (278 U.S. 109 [1993]).
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factors that may serve to defeat a claim that a district has been gerrymandered
on racial lines.’ . . . In my view, the same standards should apply to claims of
political gerrymandering, for the essence of a gerrymander is the same regardless
of whether the group is identified as political or racial” (541 U.S. 127, 335).
Despite different views about what a judicially manageable standard is or might
be, the court has been unanimous that it must include some notion of
compactness.

2.2. Existing Measures of Compactness

There is a large literature in political science on the measurement of com-
pactness. Niemi et al. (1990) provide a comprehensive account of the various
measures that have been proposed (see also Young 1988).10 Niemi et al. (1990)
classify existing measures into four categories: (1) dispersion measures, (2) pe-
rimeter measures, (3) population measures, and (4) other miscellaneous mea-
sures.11 The important takeaway is that all of these measures either fail to account
for the population distribution or are not invariant to geographical size. As such,
meaningful comparisons across states or time cannot be made.

One class of dispersion measures are based on length versus width of a rect-
angle that circumscribes the district (Harris 1964; Eig and Setizinger 1981; Young
1988). A second uses circumscribing figures other than rectangles and considers
the area of these figures.12 At least two moment-of-inertia measures have been
suggested. Schwartzberg (1966) and Kaiser (1966) consider the variance of the
distances from each point in the district to the district’s areal center. Boyce and
Clark (1964) consider the mean distance from the areal center to a point on the
perimeter reached by equally spaced radial lines.

A second set of measures are those based on perimeters. The sum of perimeter
lengths was suggested by Adams (1977), Eig and Setizinger (1981), and Wells
(1982), but this measure is potentially intractable for reasons highlighted in the
classic work of Mandelbrot (1967) on the length of the coastline of Great Britain.
In fact, a measure based on fractal dimensions was proposed by Knight (2004).
Various authors have proposed measures that compare the perimeter to the area
of the district. Cox (1927) considers the ratio of the district area to that of a
circle with the same perimeter.13

There are three population-based measures. Hofeller and Grofman (1990)
propose two: the ratio of the district population to the convex hull of the district
and the ratio of the district population to the smallest circumscribing circle.

10 Some of these measures were originally proposed for purposes other than those involving leg-
islative districts but were later applied by other authors to that issue. We cite the original authors.

11 We draw heavily on their summary and classification.
12 Reock (1961) proposes a circle, Geisler (1985) a hexagon, Horton (1932) and Gibbs (1961) a

circle with diameter equal to the district’s longest axis, and still others use the smallest convex figure
(see Young 1988).

13 For variants of Cox (1927), see Attneave and Arnoult (1956), Horton (1932), Schwartzberg
(1966), or Pounds (1972).
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Weaver and Hess (1963) suggest the population moment of inertia, normalized
to lie in the unit interval.

Niemi et al.’s (1990) final miscellaneous category includes three measures: the
absolute deviation of district area from average area in the state (Theobald 1970),
a measure based on the number of reflexive and nonreflexive interior angles
(Taylor 1973), and the sum of all pairwise distances between the centers of
subunits of the district, weighted by subunit population (Papayanopolous 1973).
Finally, Mehrotra, Johnson, and Nemhauser (1998) use a branch-and-price al-
gorithm to compute a districting plan for South Carolina. Their objective func-
tion is how far people are from a graph-theoretic measure of the center of the
district.

3. The Relative Proximity Index

3.1. Basic Building Blocks

Let denote a collection of states with typical element A finite setS S � S.
whose elements we call individuals or voters, is a metric space with associatedS,

distance function which measures the distance between any two elementsd ≥ 0,ij

Let denote a finite partition of into elementsS Si, j � S. V p {v , . . . , v } SS 1 n

, which we shall refer to as voting districts, or districts. We will routinelyv � Vi S

refer to the partition as a districting plan for state and allow to representV S nS

a generic integer. We restrict voting districts to be equal in size, up to integer
rounding.14, 15 Let denote the set of all partitions of that satisfy this restriction.V SS

We say that a districting plan is feasible if and only ifV V � V .S S S

Definition 1. A compactness index for a state is a map c:S V . � .S �

3.2. The Relative Proximity Index

The RPI is the ratio of two components. The numerator sums the pairwise
squared distance between voters within each district in a state, as given by the
actual districting plan in the state. The denominator is that same sum but for
the districting plan that minimizes the sum.

Consider voter in element and definei v � VS

2( )p V p (d ) . (1)���S ij
v�V i�v j�v

14 This was first held as a requirement by the Court in Baker v. Carr (369 U.S. 186 [1962]) and
is becoming a very strict constraint. For instance, a 2002 Pennsylvania redistricting plan was struck
down because one district had 19 more people (not even voters) than another. The 2004 Texas
redistricting had each district with the same number of people up to integer rounding. Yet the
population may grow at drastically different rates across political districts between redistrictings. For
instance, in the 2000 census, a typical state had a 23 percent difference in the populations of its
smallest and largest districts.

15 In symbols, for all whereS SFv F � {�FSF / FV F�, �FSF / FV F�} v � V , �x� p inf {n � �Fx ≤ n}i S S i S

and .�x� p sup {n � �Fn ≤ x}
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Similarly, let The RPI, for a partition of stateV * p arg min {p (V )} . S,S V �V SS S

is given byV ,S

p(V )SRPI p .
p(V *)S

The RPI is well defined if which holds so long as all voters are notp(V *) ( 0,S

located at the same point.
In the nondegenerate case, the RPI ranges from 1 to infinity; higher numbers

indicate less compactness. The index has an intuitive interpretation: a value of
3 implies that the current districting plan is roughly three times less compact
than a state’s maximal compactness.

3.3. A Constructive Example

Consider the state depicted in Figure 1. The nodes represent voters. There are
two voting districts separated by the bold dashed line. Voters are spread evenly
across the state; each adjacent voter is 1 kilometer apart. Voter 1 is 1 kilometer
away from voters 2 and 4, kilometers away from voter 5, kilometers away� �2 5
from voter 6, and so on.

There are two steps involved in calculating the RPI. First, we calculate the
numerator. For voter 1 the sum of squared distances is 5, since she is 1 kilometer
away from voter 2 and 2 kilometers away from voter 3—and they are the only
other voters in her district. For voter 2 the total is , and for voter 32 21 � 1 p 2
it is . Voters 4, 5, and 6 are symmetric to voters 1, 2, and 3, re-2 21 � 2 p 5
spectively. Thus, the numerator of our index is .2(5 � 2 � 5) p 24

The second step in calculating the RPI is to account for state-specific topo-
graphy. This will represent the denominator of our index. There are nine other
feasible partitions in addition to .16 We perform the same{{1, 2, 3} , {4, 5, 6}}
calculation as above for each of those partitions and then take the minimum of
these 10 values. The minimizing partition is , although{{1, 4, 5} , {2, 3, 6}}

achieves the same value. That value turns out to be{{1, 2, 4} , {3, 5, 6}}
The index is thus2 2 2 22 (1 � 2 � 1 � 2 � 1 � 1 ) p 16. 24/16 p 3/2.

The example provides a snapshot of the RPI and previews some of its prop-
erties. For instance, because the index is calculated relative to a state-specific
baseline, neither the size of states nor their population density can solely alter
the index. If we increased the distance between any two nodes in Figure 1 to 2
kilometers, the index would not change. Similarly, if we imputed 10 more in-
dividuals to each node—thinking of them in terms of neighborhoods rather than
households—the index would be unaltered.

16 They are {{1, 2, 4}, {3, 5, 6}}, {{1, 2, 5}, {3, 4, 6}}, {{1, 2, 6}, {3, 4, 5}}, {{1, 3, 4}, {2, 5, 6}},
{{1, 3, 5}, {2, 4, 6}}, {{1, 3, 6}, {2, 4, 5}}, {{1, 4, 5}, {2, 3, 6}}, {{1, 4, 6}, {2, 3, 5}}, and {{1, 5, 6},
{2, 3, 4}}.
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Figure 1. A simple example

3.4. Three Desirable Properties

Any desirable index of compactness should satisfy three properties. (Formal
mathematical statements of these properties are provided in Appendix A.)

Anonymity. The index does not depend on the identity of any given voter.
Invariance. The index does not depend on a state’s population density,

physical size, or number of districts.
Clustering. If two states with the same number of voters, the same number

of voting districts, and the same value for the minimum-partitioning problem
have different total intradistrict distances, then the state with the larger value is
less compact.

It is straightfoward to see from the above example that the RPI satisfies these
properties. All voters are weighted equally, so anonymity is satisfied. The de-
nominator of the RPI scales the index so that invariance is satisfied. Finally,
clustering is satisfied because the numerator sums pairwise squared distances.
In fact, we can say something much stronger:

Theorem 1. Any compactness index that satisfies anonymity, invariance, and
efficient clustering ranks districting plans identically to the RPI.

Proof. See Appendix A.

The result is proved by noting that by transforming a given state (expanding
the set of individuals and number of districts, for example) it can be compared
to another state. Anonymity and independence ensure that this can be done in
a way that does not alter the compactness index, and clustering then allows a
comparison of two districting plans based on their total intracluster pairwise
distances.
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4. Implementing the Relative Proximity Index

In this section, we apply the RPI to the districting plans of the 106th Congress.
The challenge with calculating our index is computing the denominator, which
requires finding a districting plan that minimizes the distance between voters.
This is a complex combinatorial problem for which existing algorithms are
inadequate. We solve this problem by showing that optimal districting plans are
akin to so-called power diagrams17 and then modifying an algorithm presented
in Aurenhammer, Hoffmann, and Aronov (1998) to create a power diagram.
The key ingredient in the algorithm is the centroid, or geometric center, of
existing districts,18 a point that is provided in census data from the GeoLytics
database. We apply our algorithm to the data from the 2000 census and calculate
both the optimal districting plan following that census and the relative proximity
index for the actual districting plans employed to elect the 106th Congress.

4.1. The Minimum-Partitioning Problem

Calculating the denominator of the relative proximity index is a complicated
combinatorial problem. When partitioning voters into districts, the numbern d
of feasible partitions is So, for Californiad�1{(n � 1) !/[(n/d � 1) ! (n � n/d) !]} .
alone, using data at the tract level, and The cardinality ofn p 6,800 d p 53.
the set of feasible partitions is . Technically speaking, the problem59,35178.4 # 10
is nondeterministic polynomial-time hard (NP hard).

Similar problems arise in fields such as applied mathematics (computer vision),
computer science and operations research (the k-way equipartition problem),
and computational biology (gene clustering). The celebrated Mumford-Shah
functional is a candidate functional designed to segment images (Mumford and
Shah 1989). The structure of the functional contains two penalty functions: one
to ensure that the continuous approximation is close to the discrete problem
and another to penalize perimeter length. While the Mumford-Shah functional
is a powerful tool for myriad problems, it cannot guarantee even nearly equal
population size across districts.

If our objective function were simply distance, rather than distance squared,
the problem would be precisely the k-way equipartition problem, which has
received considerable attention in computer science and is related to a literature
in computational biology employing minimum-spanning trees to partition sim-

17 Power diagrams are a generalization of Voronoi diagrams due to Aurenhammer (1987). Voronoi
diagrams are convex polygons with the important feature that each contains a so-called generator
point such that that all other points within the polygon are closer to that generator point than to
generator points of adjacent polygons.

18 More precisely, a centroid is the intersection of all straight lines that divide the district into two
parts of equal moment about the line.
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ilar genes into clusters.19 Good algorithms for the k-way equipartition problem
when sample sizes are small can be found in Ji and Mitchell (2005) and(≈ 100)
Mitchell (2003). This restriction makes these algorithms impractical for our
purposes.

Below, we develop an algorithm to approximate the minimum-partitioning
problem for large samples, based on power diagrams (a concept we make precise
below), that guarantees nearly equal populations in each partition and runs in

time, where n ′ is the number of voters and n is the number of′O [n log (n )]
districts in a state.

4.2. Optimally Compact Districting Plans and Power Diagrams

In this section, we show that optimally compact districting plans are power
diagrams, a generalization of Voronoi diagrams, which were introduced into
computational geometry by Aurenhammer (1987). Consider a set of generator
points in a finite dimensional Euclidean space. The power of am , . . . , m1 n

point (voter) with respect to a generator point which is some arbitraryx � S m ,i
point, is given by the function where is the2pow (x, m ) p kx � m k � l , k7kl i i i

Euclidean norm.20 The total number of voters assigned to generator point ismi

called its capacity, denoted A power diagram is an assignment of voters toK .mi

generator points such that point is assigned to generator point if and onlyx mi

if for all Roughly speaking, voters are placedpow (x, m ) ! pow (x, m ) j ( i.l i l j

in the district whose centroid they are closest to. Let the points assigned to
generator point be denoted which is referred to as a cell. Note that nom D ,i i

two ’s can intersect, and furthermore, every is in some and henceD x � S D ,i i

is a partition of . Note also that the dividing line between cells{D , . . . , D } S1 n

and in a power diagram satisfies 2 2D D kx � m k � kx � m k p l � l .i j i j i j

Definition 2. An optimally compact districting plan for state is a feasibleS
districting plan, with an associated total distance such that2V , � � (d )S ijv�V i,j�vS

there does not exist another feasible districting plan, , with an associated total′VS

distance such that .2 2 2
′ ′� � (d ) � � (d ) ! � � (d )ij ij ijv�V i,j�v v�V i,j�v v�V i,j�vS S S

We can now state our second key result:

Theorem 2. Optimally compact districting plans are power diagrams.

Proof. See Appendix B.

This theorem follows from three lemmas that partially characterize an optimal

19 Without the constraint that each district must have an equal number of voters, the problem is
the min-sum k-clustering problem, which was shown by Sahni and Gonzales (1976) to be nonde-
terministic polynomial-time (NP) complete. An approximation for it in a general metric space that
runs in time has been found by Bartal, Charikar, and Raz (2001). It is also closely related toO(1/e)n
the classic graph-partitioning problem, which is also known to be NP hard.

20 When for all , then the power diagram is a Voronoi diagram. Power diagrams are thusl p l ii

a generalization of Voronoi diagrams.
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districting plan and establish that these characteristics imply a power diagram.
The first lemma shows that our objective function is equivalent to a variant of
the k-means objective function. This is important because it allows us to focus
attention on district centroids.

The second lemma shows that any pair of districts are separated by a line
perpendicular to a line connecting their centroids. This separating line is the
locus of points at which the powers of the two centroids are equal. It represents
all points at which one is indifferent between placing voters in one district or
the other. Finally, we establish that all such lines separating any three adjacent
districts meet at a single point; they are concurrent.

To see that these properties imply a power diagram, recall that a power diagram
is a set of lines dividing a Euclidean space into a finite number of cells. The line
separating two adjacent cells is such that the power of the points along this locus
is equal to their respective centroids. And the power of a point is measured as
a function of the difference between a point and the centroid of its district,
which we have already established is equivalent to our objective function. It is
important to note that if the line separating two adjacent districts were not
perpendicular to the line connecting their centroids, then one could not be
indifferent between points being in one district or the other everywhere along
the line. This holds for all such pairs of districts, which implies concurrent lines.
Taken together, these imply that optimally compact districtings are power dia-
grams.21 Notice that, since all subsets of a convex set formed by drawing straight
lines are convex, it follows that the resulting districts must be convex polygons.

Theorem 2 provides an important insight for building an algorithm, allowing
us to use all we know about a partial characterization of optimally compact
districts. There are three important caveats. First, we have not yet proven that
there is a unique power diagram for every set of starting values. Second, we are
able to map optimal districting plans into power diagrams only when distance
is quadratic, because this guarantees that optimal districting involves straight
lines. Mathematically, this is an obvious limitation. Practically, however, it boils
down to assuming that courts punish outliers in a district more. Given this
assumption, we are hard pressed to find a principled reason for courts to prefer
higher order exponents. Third, power diagrams do not guarantee a global op-
timum to the minimum-partitioning problem because their structure depends
on exogenously given starting values.

Figure 2A depicts the optimally compact districting plan for a hypothetical
state. There are nine voters, arranged so that the state is a lattice. The stars

21 Aurenhammer, Hoffmann, and Aronov (1998) prove a closely related theorem, taking squared
distance from the centroid as the objective function. Their proof proceeds by showing that if an
algorithm can be designed to find a power diagram, then it is an optimal partition. By contrast, we
provide a constructive proof based on the perpendicular- and concurrent-line lemmas. We could,
of course, state our lemma on the equivalence of the objective functions and then appeal to their
result, but our current proof provides more information about optimal districtings.
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Figure 2. Good and bad generator points

represent the centroids of the resulting districts. Note that the line separating
districts 1 and 2 is perpendicular to a line connecting their centroids (the same
is true for districts 1 and 3 and for 2 and 3). This is an illustration of the
perpendicular-line lemma alluded to above. The concurrent-line lemma is also
illustrated by the intersection of the lines separating districts 1, 2, and 3 at a
single point. The partition depicted is indeed the globally optimal partition.
Once one knows that, the centroids of the districts are easy to compute.

In our problem, however, we do not know the optimal districts in advance,
and so we must choose generator points that will not in general be the centroids
of the optimal districting plan. An important part of the approximation problem
is selecting and improving upon the generator points. To illustrate this point,
consider Figure 2B, which chooses alternative generator points than those used
to partition in Figure 2A. The generator point used for district 1 differs from
that used in Figure 2A, resulting in four voters being placed in district 1 and
only two in district 2, thereby violating the equal-size constraint.

4.3. An Algorithm Based on Power Diagrams

The algorithm we propose is a modification of the second algorithm presented
in Aurenhammer, Hoffmann, and Aronov (1998). Since we know by theorem
2 that local optima of the RPI are power diagrams, we search within the set of
power diagrams for one that is a feasible districting. However, as power diagrams
are generated around sites, which we call , it is necessary to updatez , . . . , z1 n

the locations of the sites as well as the design of the districts.
We provide a complete formal treatment in Appendix B and here give a

heuristic description of the algorithm. The algorithm takes the centroids of
existing districts as starting generator points and computes a power diagram.
Power diagrams do not require partitions (cells) to be even roughly equal, so,
after constructing the diagram, the algorithm adjusts the district boundaries until
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the number of voters within each district is equal up to integer rounding. We
then recalculate the centroids of the new districts and check to see if any pair
of individuals can switch districts and reduce the objective function (total squared
distances). Our modification of Aurenhammer, Hoffmann, and Aronov’s algo-
rithm continues to check until there are no more pairs that can be switched and
reduce the objective function by a predetermined value. The algorithm then
repeats itself—recalculating centroids, drawing power diagrams, adjusting
boundaries, and so on—until it reaches a value within preset bounds for a stop-
ping rule.

4.4. The Compactness of Political Districting Plans of the 106th Congress

The ideal data to estimate the relative proximity index would contain the
geographical coordinates of every household in the United States, its political
district, some measure of distance between any two households within a state,
and a precise definition of communities of interest. This information is not
available.

In lieu of this, we use tract-level data from the 2000 U.S. census from the
GeoLytics database, which contain the latitude and longitude of the geographic
centroid of each tract, the political district each centroid is in, and its total
population.22 Census tracts are small, relatively permanent statistical subdivisions
of a county. The spatial size of census tracts varies widely depending on the
density of settlement, but they do not cross county boundaries. Census tracts
usually have between 2,500 and 8,000 persons and, when first delineated, are
designed to be homogeneous with respect to population characteristics, economic
status, and living conditions. Our main interest in using this level of aggregation
(relative to blocks or block groups) is that census tracts are more likely to contain
some notion of communities of interest.

An important consideration in the application of the RPI is how to handle
tracts of different densities. The equal-representation constraint—districting
plans must have the same number of individuals in each district up to integer
rounding—is predicated on individuals, not tracts. Our algorithm, described
below, addresses this issue by allowing one to divide tracts into arbitrarily small
units. There is an important trade-off between computational burden and the
variance in population across districts; the burden will lessen with technological
progress. For ease of implementation, we have chosen not to split any tracts. As
a robustness check, we split tracts of small states into four smaller parts and
assigned them to the same longitude and altered their latitude by .001 degrees.
In all cases, accuracy (and computing time) were substantially increased with
little effect on the RPI.

To calculate the RPI for each state, we begin with the numerator of the index,

22 For roughly 5,000 census tracts, information on congressional district was not provided. In these
cases, we mapped the coordinates of the centroid of the tract and manually keypunched the con-
gressional district to which it belonged.



Political Districting Plans 507

where and are population centroids of tracts and are voting2� � (d ) , i j vijv�V i,j�v

districts. We weight the total distances by the population density of each tract.
An identical calculation is performed for the denominator, but is constructedV
by our power diagram algorithm.

The empirical results we obtain on the compactness of districting plans are
displayed in Table 1. The maximum deviations from equal partitions in the
actual data and those resulting from our algorithm are an indication of the
degree to which the equal-size constraint holds. The bootstrapping technique
that we used for the mean RPI is described below. It is important to realize that
for every state, the elements of our partitions are more balanced than what
appears in the actual districting plans. Further, the largest deviation from equal
partitions in the actual data (Florida, .46) is substantially larger than our largest
deviation (California, .22).

Table 1 illustrates that the five states with the most compact districting plans
are Idaho, Washington, Arkansas, Mississippi, and New Hampshire. The five
most compact states are Idaho, Nebraska, Arkansas, Mississippi, and Minnesota.
The five least compact states are Tennessee, Texas, New York, Massachusetts, and
New Jersey. The districting plan that solves the minimum-partitioning problem
is more than 40 percent more compact than the typical districting plan. The
rank correlations between the RPI and the most popular indexes of compactness,
dispersion and perimeter, are �.37 and �.29, respectively.

Axiom 3 (invariance to scale, population density, and number of districts; see
Appendix A) ensures that the RPI can be compared across states, but it does
not guarantee that the distribution of RPI values across states is the same. It is
entirely plausible that it is easier (a lower percentile of the distribution of RPI
values from feasible partitions) to obtain a given value of RPI for Texas than,
say, Florida. Thus, gleaning an understanding of how sensitive RPI values are
for a given state is difficult.

To try to address this issue, we calculated 200 RPI values for each state by
randomly generating starting values for the algorithm. Table 1 reports the means
and associated standard deviations from this process and in what percentile in
the distribution our original RPI value lies, if the distribution of RPI values is
assumed to be normal. In all but one case, our original estimates are higher than
the mean of the simulated distribution, and in most cases, under the normality
assumption, we are at the far extreme of the right tail of the distribution. There
are four notable exceptions: Oklahoma, Oregon, Rhode Island, and Wisconsin.
In these states, our estimate of the RPI is at the median or below in the simulated
distribution. This is likely due to the fact that the current partitions of these
states generate starting values that are highly nonoptimal. To obtain maximal
compactness in these states, a significant restructuring is likely needed.

To understand what state demographic characteristics are correlated with com-
pactness, we estimate a state-level ordinary least squares regression where the
dependent variable is the RPI and the independent variables are the percentages



Table 1

The Relative Proximity Index, 2000

Max Deviation

State RPI Actual Algorithm Mean RPI SD RPI Percentile

Alabama 1.21 .27 .05 .99 .03 1.00
Arizona 1.34 .20 .15 1.27 .04 .97
Arkansas 1.08 .14 .05 .78 .01 1.00
California 1.49 .17 .04 .96 .03 1.00
Colorado 1.59 .15 .05 1.28 .02 1.00
Connecticut 1.36 .02 .01 1.09 .35 .78
Florida 1.39 .46 .07 .83 .08 1.00
Georgia 1.24 .14 .09 .90 .01 1.00
Hawaii 1.59 .09 .04 1.48 .02 1.00
Idaho .97 .10 .02 .80 .02 1.00
Illinois 1.43 .29 .11 .98 .07 1.00
Indiana 1.49 .20 .06 1.05 .02 1.00
Iowa 1.38 .06 .05 1.29 .01 1.00
Kansas 1.11 .08 .05 .95 .01 1.00
Kentucky 1.51 .14 .05 1.22 .01 1.00
Louisiana 1.15 .13 .05 .79 .43 .80
Maine 1.39 .04 .03 1.15 .01 1.00
Maryland 1.52 .22 .04 1.25 .02 1.00
Massachusetts 1.87 .10 .05 1.54 .01 1.00
Michigan 1.24 .13 .04 .99 .02 1.00
Minnesota 1.05 .16 .05 .90 .02 1.00
Mississippi 1.02 .18 .05 .87 .01 1.00
Missouri 1.38 .23 .05 1.01 .16 .99
Nebraska 1.01 .05 .04 .89 .23 .70
Nevada 1.38 .08 .05 1.19 .01 1.00
New Hampshire 1.10 .01 .00 1.09 .00 .95
New Jersey 2.27 .21 .05 1.69 .02 1.00
New Mexico 1.23 .06 .04 1.14 .01 1.00
New York 1.83 .21 .10 1.45 .45 .80
North Carolina 1.33 .28 .04 1.15 .09 .97
Ohio 1.62 .13 .05 1.42 .01 1.00
Oklahoma 1.24 .09 .05 1.42 .36 .31
Oregon 1.26 .09 .04 1.21 .28 .56
Pennsylvania 1.81 .25 .22 1.27 .05 1.00
Rhode Island 1.18 .03 .02 1.18 .01 .55
South Carolina 1.22 .21 .04 1.27 .02 .00
Tennessee 2.91 .25 .04 2.59 .04 1.00
Texas 1.90 .30 .22 1.24 .07 1.00
Utah 1.46 .06 .04 1.40 .01 1.00
Virginia 1.38 .22 .07 1.14 .04 1.00
Washington 1.17 .15 .06 .77 .03 1.00
West Virginia 1.68 .06 .05 1.61 .01 1.00
Wisconsin 1.40 .11 .08 1.22 .58 .62

Note. Relative proximity index (RPI) values are calculated using tract-level data from the 2000 census.
Max Deviation is calculated as 1 minus the total population of the largest congressional district divided by
the total population of the smallest congressional district. Mean RPI is calculated as the mean of 200
repetitions of the RPI, each having different starting values.
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of the populations that are black, Asian, or Hispanic; population density; dif-
ference in presidential vote shares between Democrats and Republicans; and
whether the state is required to submit its districting plans to the Department
of Justice under the preclearance provision of section 5 of the Voting Rights Act
(not shown in tabular form).23 States that are more compact tend to be states
with a larger share of blacks and a larger difference between the percentages
who vote Republican and Democrat. The latter is intuitive: states with more to
gain from altering the design of political districts tend to do it more. Whether
or not a state is forced to submit its districting plans is also highly correlated
with compactness. Consistent with axiom 2 (efficient clustering; see Appendix
A), the RPI is uncorrelated with population density. It is important to note that
none of these partial correlations are statistically significant because of small
samples.

Beyond the technical considerations, perhaps the best evidence in favor of
our approach can be illustrated visually. The figures in Appendix D present side-
by-side comparisons of congressional district maps for actual districting plans
and those obtained from our algorithm.24 Figures D1 and D2 illustrate this
comparison for the least and most compact states, Tennessee and Idaho, re-
spectively. The districts in Tennessee, under the current plan, resemble the
salamander-shaped districts drawn by Eldridge Gerry that gave rise to the name
“gerrymandering.” Under the algorithm, however, Tennessee is transformed into
a neat set of convex polygons. Idaho is at the other extreme. Because the state
need only be cut into two equal parts, the existing cut and our preferred cut
are very similar. Further, our partition provides a more equal distribution of
voters across the districts, which explains why the calculated RPI is slightly less
than 1.

These figures illustrate three key points. First, the geometric properties dis-
cussed above (the perpendicular- and concurrent-line lemmas and the convexity
of political districts) are immediately apparent. Second, those states that rank
relatively high (low) in terms of the RPI appear to quite different (similar) to
the partition resulting from our algorithm. Third, Figures D3 and D6 (Hawaii
and Nevada) suggest that communities of interest are an important consideration.
In the actual plans, Honolulu and Las Vegas are their own districts, while the
rest of the state is contained in another. The issues faced by residents of the
outer islands might well be more similar to each other than they are to those
of residents in Honolulu. This serves to highlight why compactness is only one
factor that weighs on the redistricting question. The RPI in its current imple-
mentation ignores this consideration. An RPI with a more general notion of

23 The states that are subject to the preclearance provision are Alabama, Alaska, Arizona, Georgia,
Louisiana, Mississippi, South Carolina, Texas, and Virginia.

24 For a complete set of maps, see Roland Fryer, Papers (http://www.economics.harvard.edu/faculty/
fryer/papers_fryer).

http://www.economics.harvard.edu/faculty/fryer/papers_fryer.html
http://www.economics.harvard.edu/faculty/fryer/papers_fryer.html


510 The Journal of LAW& ECONOMICS

distance or carefully selected starting values for the power diagram can address
this issue.

4.5. How Good an Approximation?

One wonders how good an approximation our algorithm provides to an exact
solution to the minimum-partitioning problem. We have two ways to address
this question. The first is to note that the compter science literature on power
diagrams and algorithms based on them (see, for example, Aurenhammer, Hoff-
mann, and Aronov 1998) shows that thse algorithms typically perform very well
(to within a few percentage points of the actual optimum). This can be shown
by taking hypothetical data sets to which the exact solution can be found (because
they are sufficiently small) and then comparing the performance of the algorithm.
Yet it is not clear how performance on these algorithms scales.

One might also wonder whether the use of tract-level data (rather than finer
grained block-level data) leads to markedly less precision. To address this, we
ran several smaller states at the block level. The average RPI calculated at the
block level is slightly higher than in the tract-level analysis reported in Table 1.
For instance, Nebraska has an RPI of 1.01 in the tract-level data and 1.33 using
blocks. The key issue with block-level analysis is our inability to calculate RPI
for medium or large states. On computers with eight high-speed processors and
16 gigabytes of RAM (such as the one we used in our analysis), we estimate
that large states such as Texas and California would take several years each to
finish.25

5. Election Counterfactuals

Thus far, we have derived an index of compactness, shown how one imple-
ments the index, and provided some basic facts about the most and least compact
districting plans and what correlates with these plans. We conclude our analysis
with some suggestive evidence on the impact of maximally compact districting
plans on election outcomes in four large states.

In winner-take-all election contests, such as elections for representatives to
the U.S. Congress and for electoral votes for the U.S. presidency, the winner is
determined by which candidate receives the plurality of the votes. In most of
these cases, only the top two parties need to be considered, which yields an easy
condition for an election win in a district.

Assuming that there are districts, labeled let denoten i � [1, . . . , n], fi

the proportion of the two-party vote received by the candidate from the first

25 Currently, large clusters or supercomputers can run at above 1.5 petaflops (a petaflop is 1510
floating point operations per second), and the IBM Sequoia project is projected to run at 20 petaflops
by 2011. That is roughly the power of 2,000,000 laptops, or around 11,000 times faster than the
machine on which we conducted our analysis. Thus, analysis of our index at the block level will be
feasible soon.
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party (in examples to follow, the Democratic Party). The candidate’s victory can
then be expressed as where denotes how many seats are1s p w �(f 1 ), wi i i i2

determined by the vote: one for single-member districts or three or more for
the electoral college, for example. Two important summary statistics are the
average district vote, and the seat share, .

n n n
F p (1/n) � f , S p � s / � wi i iip1 ip1 ip1

Many other statistics can be generated using the vote and seat outcomes
directly, but we are particularly interested in partisan bias and responsiveness.
Namely, estimates the deviation from the median shareBias p 2E(SFF p .5) � 1
of seats if each side receives an identical average district vote, and Responsiveness

estimates how a small shift in the average district vote would trans-p (dS/dF)FF
late into a shift in the share of seats. This estimate is taken at either the observed
average district vote or the median vote. Bias measures the degree to which an
evenly divided state would elect an uneven slate of representatives, and Re-
sponsiveness is the fraction of seats the Democrats get if the average vote goes
up 1 percent.

5.1. Data and Statistical Framework

Our empirical strategy has four steps. First, we estimate a cross-sectional
regression of Democratic vote shares on controls such as past election results
and incumbency using the 2000 congressional districting plan. The regression
is at the voter tabulation district (VTD) level, a subdivision of congressional
districts. Second, using the optimally compact congressional districting plans we
devised in Section 4, we reassign voter districts to new congressional districts.
Not only will this change how voter district results are aggregated to the con-
gressional district level, it will also change some of the controls for each voter
district. Third, we use the coefficient estimates and the estimate of residual
variance from the voter district regression to simulate outcomes under both the
actual districting plan and the optimally compact districting plan. Finally, we
aggregate VTD-level results up to the congressional districts in each simulation
and compare the distribution of simulations across the two districting plans.

We use VTD-level election return data from U.S. elections for the 105th and
106th Congresses for four large states: California, New York, Pennsylvania, and
Texas. These states were chosen because of their large numbers of congressional
districts (roughly 30 or greater) and the availability of vote shares by VTD. There
are approximately 300 VTDs in a typical congressional district, although there
is substantial variation. In our data, for instance, California has 7,000 VTDs for
50 districts, Texas has 8,000 for 30, Pennsylvania has 9,000 for 20, and New York
contains 13,000 for 30.

The intuition behind our approach is straightforward. Consider Figure D7,
which depicts the existing districting plan of New York and the plan derived
from our algorithm. To fix ideas, concentrate on the western portions of the
state. There are roughly 433 VTDs in each congressional district in New York.
Suppose an election takes place. Currently, a congressional representative is cho-
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sen by aggregating the votes from the VTDs within each district. In Figure D7,
this amounts to adding votes from roughly 433 voting centers in districts 27–
31. Now suppose we want to estimate how the choice of representatives would
change if the districting plan were drawn to maximize compactness. To do this,
we simply take note of which VTDs are in the new partitions and aggregate
within each new district. In short, we disaggregate down to the VTD level, take
note of the new districting lines, and then aggregate up taking these boundaries
into account. As before, the winner of the new districts (in Figure D7 this now
amounts to districts 4, 6, 8, and 17) is determined by aggregating the votes from
VTDs.

There are a few complications. First, we need to assign candidates to the new
districts in a reasonable manner. Second, we need to take into account the results
of previous elections and whether the candidate is an incumbent—both of these
factors weigh heavily on the prediction of future elections. Third, we need to
think about how to get standard errors on our estimates.

To formalize the intuition above, we employ techniques from elementary
Bayesian statistics developed in Gelman and King (1994). We provide a terse
synopsis of their approach below. The crux of the Gelman-King method is a
linear model with two distinct error components of the form

f p Xb � g � � . (2)i i i

The vector consists of an intercept term, results from the previous election,X
and an incumbent dummy.

To derive precise predictions in this framework, more structure has to be
placed on the error terms. Let represent the systematic error com-2g ∼ N(0, j )i g

ponent, an expression of the unobserved variables that applied before the election
campaign began and would be identical if the election were to be run again.
This might include the result in the previous election, the race of the candidates,
or a relevant change in election law. The unpredictability of the behavior of
voters is also a source of systematic error.

The second source of error is a random component that can be explained by
random events during the election, such as the weather on election day or the
reaction of the public to an unintentional gaffe. Let .2� ∼ N(0, j )i �

There are two key assumptions in the Gelman-King method. First, errors are
expressed in terms of two parameters: , the sum of the individual variances2j

and , and , the proportion of the total variance attributed to the systematic2 2j j lg �

component; . Second, the counterfactual assumes that the re-2 2 2l p j /(j � j )g g �

grouping of voters into new districts will not have a systematic effect on voting
behavior.

5.1.1. Estimating and 2l j

In practice, a districting map is constant over a series of elections. Thus, l

and are found by taking the mean of individual estimators from each year.2j
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In each year, is the variance of the random error term in equation (2), and2j

, the fraction of the error attributed to systematic error, is estimated by includingl

the results of the previous election as an explanatory variable in the current one.
By calculating this for each election that did not follow a redistricting (that is,
in which the electoral map is identical to that of the previous election) and
taking the mean, we have an estimator for .26l

5.1.2. Generating Hypothetical Future Elections

To predict the properties of a subsequent election using the same districting
plan, a series of hypothetical elections are simulated using the estimates for b

and . A new set of explanatory variables is used to demonstrate the conditions2j X
at the election. Since no information can be derived about the nature of the
systematic error component beforehand, one error term is used, ,q p g � �
with variance . Thus, a single hypothetical election is then generated by drawing2j

from

f p X b � d � q, (3)hyp hyp hyp

where is the posterior distribution, with mean and (with a′ ′�1ˆb b p (X X) Xf

normality assumption) variance . The term is used to produce′2 �1S p j (X X) db

hypothetical elections whose average district vote is desired to be different from
the original. Integrating out the conditional parameters and , one obtainsb g

the marginal distribution:

′2 2ˆf Ff ∼ N[lv � (X � lX)b � d, (X � lX)S (X � lX) ]j I.hyp hyp hyp b hyp

To evaluate the election system, let ; to evaluate under counterfactualX p Xhyp

conditions, set to the desired explanatory variables.Xhyp

5.1.3. Comparing Districting Plans

With the above statistical model in hand, we can predict elections under
different partitions of a state into voting districts. The procedure is as follows.
First, we estimate the model in equation (2). Second, having generated a new
map through our algorithm, we determine the values for the explanatory variables
for each district (for example, incumbency), either by aggregating and averaging
the previous values in each precinct or by making sensible predictions for their
value. In terms of vote shares, we simply aggregate the VTDs in the new par-
titions. For incumbency, we assign each incumbent to the latitude and longitude
of the centroid of his or her district. Under the new districting plan, if there is
one such incumbent per district, he or she becomes the incumbent used in the
model. In the rare cases where there is more than one incumbent assigned to a
district under a new districting plan, we break the tie by choosing the incumbent

26 Ideally, one would have historical votes for many years to tease out the systematic error com-
ponent. We have only 2 years of such data.
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closest to the resulting centroid and moving the other incumbent to another
district to keep the numbers constant. Finally, with our new map we simulate
the model 1,000 times; deriving the relevant parameters is straightforward.

5.2. Analyzing Seat-Vote Curves

Using the methodology described above, the figures in Appendix E provide
seat-vote curves for California, New York, Pennsylvania, and Texas under each
state’s actual districting plan and the plan that maximizes its compactness. The
vertical axes depict the proportion of seats won by Democrats. The horizontal
axes depict the share of votes that the Democrats earned in the election. Each
figure reports two interesting quantities: Vote is the average district vote the
Democrats received in the election, and Seats is the fraction of seats the Dem-
ocrats received in the election (not the hypothetical seat share). The dark lines
represent our estimate of the seat-vote curve, and the two lines parallel to them
are 95 percent confidence intervals. One can see that there is a marked difference
between the seat-vote curves estimated from the actual data and those estimated
from the partition developed by our algorithm in California and New York. The
slope of the curve is significantly steeper in both states. The slopes in Texas and
Pennsylvania are also slightly steeper, but the difference is much less dramatic.

To get a better sense of the magnitudes involved, Table 2 presents our estimates
of Bias and Responsiveness for the actual partition of our four states and those
gleaned from the algorithm. We also report the t-statistic on the difference
between them. Under maximally compact districting, measures of Bias are slightly
smaller in all states except Pennsylvania, although none of the differences are
statistically significant. In terms of responsiveness, however, there are large and
statistically significant differences between the existing partitions and those that
are maximally compact. New York, in particular, has a fivefold increase, from
.482 to 2.51. In other words, under the current partition, a 1 percent increase
in vote share for Democrats results in a .482 percent increase in seats. When
districting is maximally compact, however, a 1 percent increase in vote share
results in a 2.51 percent increase in seats. The next largest change is in Cali-
fornia—increasing from 1.086 to 1.731. Pennsylvania and Texas show smaller
increases, which are statistically significant at the 10 percent level.

6. Concluding Remarks

There will be continued debate about the design of districting plans. We have
developed a simple but principled measure of compactness. Our measure can
be used to compare districting plans across states and time, a feature not found
in existing measures, and our algorithm provides a way of approximating the
most compact plan. Further, the impact that a maximally compact districting
plan can have on the responsive of votes is encouraging. These are first steps
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Table 2

Partisan Bias and Responsiveness: Actual versus Maximally Compact Districtings

Bias Responsiveness

State Actual Algorithm t-Statistic Actual Algorithm t-Statistic

California .028 .007 .469 1.086 1.731 �4.327*
(.010) (.045) (.069) (.132)

New York .103 .018 1.051 .482 2.51 �6.540*
(.014) (.080) (.036) (.308)

Pennsylvania �.0027 .031 �.363 1.138 1.562 �1.800�

(.021) (.076) (.128) (.198)
Texas .062 .039 .334 .8872 1.305 �1.717�

(.024) (.064) (.103) (.221)

Note. Estimates are based on voter tabulation district–level election return data for the 105th and 106th
Congresses.

� Statistically significant at the 10% level.
* Statistically significant at the 5% level.

toward a more scientific understanding of districting plans and their effects.
Extensions and generalizations abound.

Perhaps the most obvious extension is to consider higher dimensional spaces,
generalized distance functions, and communities of interest. Aurenhammer and
Klein (2000) provide a comprehensive survey of Voronoi diagrams and how to
incorporate generalized notions of distance, including -norms, convex and airliftp
distances, and nonplanar spaces. These extensions are not only mathematically
interesting and elegant: they have real-world content. Consider the following
thought experiment. Suppose there is a city on a hill.27 On the west side is a
mild, long incline toward the rest of the city, which is in a plane. On the east
side is a steep cliff, either impassable or with just a narrow, winding road that
very few people use. While the next residential center to the east is much closer
to the hilltop on a horizontal plane, it is much farther in terms of all sorts of
distances that we think might matter: transportation time, intensity of social
interactions, sets of shared local public goods and common interests, and so
forth. Thus, for all practical purposes, one probably wants to include the hilltop
in a western district rather than an eastern one. More general notions of distance
can handle this. A similar situation arises when there is a natural boundary (for
example, a river or highway) that effectively segregates or reduces communication
between two population centers that are geographically very close. Conversely,
there could be something (such as a tunnel or subway) that makes two non-
connected regions effectively close to each other, or there may be other notions
of communities and shared interest that lend themselves to a natural clustering.
It is imperative to note that the derivation of our index assumed only a general
metric space—many of these ideas fit squarely within our framework. The em-
pirical application of the index, however, required us to only consider Euclidean

27 We are grateful to Roland Benabou for this illustrative example.
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distances. The challenge ahead is to incorporate more general notions of distance
into an empirically tractable algorithm.

Appendix A

An Axiomatic Derivation of the Relative Proximity Index

A1. Three Properties

We now describe three properties that any compactness index should satisfy
and formally discuss each in turn.

A1.1. Axiom 1: Anonymity

Axiom 1, an anonymity condition in the same spirit as that typically used in
social choice theory (Arrow 1970), requires that all individuals be treated equally.
That is, any compactness index should not depend on the particular identities
(race, political affiliation, wealth, and so forth) of voters. Consider a state withS
associated partition and compactness index For any bijection h:V c(V, S).

and compactness indexS r S c (V, S), c (V, S) p c(V, S).h h

A1.2. Axiom 2: Clustering

Compactness is fundamentally a mathematical partitioning problem—decid-
ing who to group with whom in a political district. Clustering is the quintessential
objective (Bartal, Charikar, and Raz 2001 ).28 Our second axiom requires that if
two states with the same number of voters and voting districts and the same
value for the minimum-partitioning problem have different weighted intradistrict
distances, then the state with the larger value is less compact.

Let for and letd ng p � a (d ) k p {1, . . . , n} g (g , . . . , g ) :� rk ij ij 1 ni,j�v

be a monotonic, increasing function. Consider two states, and , and� S S1 2

partitions and , respectively, such that and have the same number of′V V S S1 2

voters and the same number of districts, and

( ) ( )min g g , . . . , g p min g g , . . . , g .S 1 n S 1 n1 2
V�n V�nS S1 2

Then
′( ) ( ) ( ) ( )g g , . . . , g 1 g g , . . . , g ⇒ c V, S 1 c V , S .S 1 n S 1 n 1 21 2

A1.3. Axiom 3: Independence

Our final axiom requires that any measure of the compactness of a state be
insensitive to its physical size, population density, and number of districts. This
is vital for making cross-state comparisons of districting plans. Before stating
the property formally, we need some further notation. We say that a state isŜ

28 Other common objectives are distance from the geographic centroid of each partition or distance
from a representative (typically the center of a cluster and not necessarily the center of the partition).
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an replica of if and only if , such thatˆn S Gi � S aj , . . . , j � S d p 0, Gi1 n ij

and It is also useful to have a shorthand for the realized valued p 0, Gi, k.j ji k

of the minimum-partitioning problem. Consider two partitions of state andS, V
, with and elements, respectively. Let and be the respective′′ ′ min minr rV r r V VS S

minimizing partitions.
Consider with cardinality and , respectively.ˆ ˆS, S � S FSF FSF
Scale. If for all then for allˆ ˆd p ld i, j � S, S c(V, S) p c(V, S) V.ij ij

Density. If and is a replica of , then forˆ ˆ ˆFSF p l FSF S l S c(V, S) p c(V, S)
all V.

Number of Districts.
2 2′

r r( ) ( )� � � d v� � � dij ijv�V i�v j�v v�V i�v j�vS S ′( ) ( )If p ⇒ c V, S p vc V , S .′min minr rV VS S

Density independence means that if we replicate a state by multiplying the
number of people in each household by the index of compactness is unaltered.l,
For instance, when comparing two voting districts (Cambridge, Mass., and New
York City, for example) that differ in their population density, the index provides
the same cardinal measure of compactness.

Scale independence provides a similar virtue, permitting comparisons across
states that differ in the distances between individuals (Massachusetts and Texas,
say), allowing one to increase the distances between all individuals in a state by
a constant with no resulting change in the index. Independence with respect to
the number of districts is also vital in making cross-state comparisons.

A2. Uniqueness Result

Let denote the ordered set generated by the relative proximityO p (� , �)c �

index and let denote the ordered set over elements generated byc, O V � Vĉ S S

any other compactness index. We say that two indexes, and are ordinallyˆc c,
isomorphic if We are now equipped to state our main result. The proofO p O .ˆc c

of this follows.

Theorem 1.
1) The relative proximity index satisfies anonymity, clustering, and independence.

2) Suppose that and that is symmetric for all ; then any com-d p 2 g (7) iSi

pactness index that satisfies anonymity, clustering, and independence is ordinally
isomorphic to the relative proximity index.

A2.1. Proof of Theorem 1.1

That the RPI satisfies the three axioms follows from five simple lemmas that
we now state and prove.

Lemma 1. The relative proximity index satisfies anonymity.

Proof. Consider a partition of state and an associated compactness indexV S
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Now consider a bijection h: The term is2c (V, S) . S r S. � � � (d )ijv�V i�v j�vS

unchanged since is a bijection, and hence there are the same number of pointsh
in each element of , and they are at the same points. For identical reasons theV
denominator of the RPI does not change, and hence for anyc (V, S) p c (V, S)h

bijection h.

Lemma 2. The relative proximity index satisfies clustering.

Proof. Let there be two partitions, and , such that1 2
′V VS S

2 2( ) ( )d 1 d . (A1)��� ���ij ij
1 2′v�V i�v j�v v�V i�v j�vS S

Clustering requires that

1 2c(V , S) 1 c(V , S).S S

Suppose, by way of contradiction, that expression (A1) holds, and

c(V , S) ! c(V , S). (A2)1 2

That is,

2 2
1 2( ) ( )� � � d � � � dij ijv�V i�v j�v v�V i�v j�vS S

! . (A3)
2 2( ) ( )min � � � d min � � � dij ijv�V i�v j�v v�V i�v j�v

V�n V�nS S

The denominators are identical, and hence the supposition requires that

2 2( ) ( )d ! d , (A4)��� ���ij ij
1 2′v�V i�v j�v v�V i�v j�vS S

a contradiction. Q.E.D.

Lemma 3. The relative proximity index satisfies density independence.

Proof. Consider and , with and , respectively, and with a replicaˆ ˆ ˆS S FSF FSF S l

of We need to show that for all ThatˆS. RPI(V, S) p RPI(V, ) V � V , V � V .ˆS S S

is,

2 2( ) ( )� � � d � � � dij ijˆv�V i�v j�v v�V i�v j�vS S

p
2 2( ) ( )min � � � d min � � � dij ijv�V i�v j�v v�V i�v j�v

ˆV�n V�nS S

for all By the definition of a replica, the right-hand side ofV � V , V � V . lˆS S

the above equation is simply

2( )l� � � dijv�V i�v j�vS

,
2( )l min � � � dijv�V i�v j�v

V�nS

which is clearly equal to the left-hand side for any partition. Q.E.D.

Lemma 4. The relative proximity index satisfies scale independence.
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Proof. Scale independence requires that for two states, and , withˆS S
for all Then for allˆ ˆd p ld j, k � S, S. c(V, S) p c(V, S) V � V , V � V .ˆjk jk S S

That is,

2 2( ) ( )� � � d � � � dij ijˆv�V i�v j�v v�V i�v j�vS S

p
2 2( ) ( )min � � � d min � � � dij ijv�V i�v j�v v�V i�v j�v

V�n V�nS S

for all Scale independence means that the right-hand side ofV � V , V � V .ˆS S

the above equation is simply

22 2( ) ( )� � � ld l � � � dij ijv�V i�v j�v v�V i�v j�vS S

p ,
22 2( ) ( )min � � � ld l min � � � dij ijv�V i�v j�v v�V i�v j�v

V�n V�nS S

which is clearly equal to the left-hand side for any partition.

Lemma 5. The relative proximity index satisfies number-of-districts inde-
pendence.

Proof. The proof follows immediately from the definition of independence
with respect to number of districts. Q.E.D.

We can now prove theorem 1.2. It is proved by transforming a given state so
that it can be compared to another state. Anonymity and independence ensure
that this can be done in a way that does not alter the compactness index, and
clustering then allows a comparison of two districting plans to be made based
on their total intracluster pairwise distances.

A2.2. Proof of Theorem 1.2

From theorem 1.1 we have ˆ ˆRPI (V, S ) 1 RPI (V, S ) ⇒ c (V, S ) 1 c (V, S )m n m n

for any Suppose that theorem 1.2 is not true. This implies thatm, n.

ˆ ˆ( ) ( )( ) ( )c V, S 1 c V, S and RPI V, S ! RPI V, S (A5)m n m n

or

ˆ ˆ( ) ( )( ) ( )c V, S ! c V, S and RPI V, S 1 RPI V, Sm n m n

for some m, n.
If , then the argument is straightforward. Begin with the first pair ofS p Sm n

inequalities. Note that equality implies that for all and that symmetrym p m i, jij

of combined with equality implies that is additively separable in its arguments.g g
Then by equality and clustering we have

2 2 ˆ( )( )(d ) 1 (d ) ⇒ c V, S 1 c V, S ,� �� � ��ij ij m n
ˆv�V i�v j�v i�v j�vv�VS Sm n

since andˆRPI (V, S ) ! RPI (V, S )m n
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2 2S p S ⇒ min (d ) p min (d ) ,� �� � ��m n ij ij
ˆv�V i�v j�v i�v j�vV�n V�n v�VSS S Smm n n

we have

2 2(d ) ! (d ) .� �� � ��ij ij
ˆv�V i�v j�v i�v j�vv�VS Sm n

By clustering this implies that , a contradiction. Identicalˆc (V, S ) ! c (V, S )m n

reasoning rules out the case in which

ˆ ˆ( ) ( )( ) ( )c V, S ! c V, S and RPI V, S 1 RPI V, S .m n m n

Now consider the case in which and suppose that containsS ( S , S gm n m m

districts and contains districts. Consider the following transformation ofS gn n

state First, make a replica of and a replica of so that the numbern. l S m Sn m

of voters is the same as in the transformed state Note that andS . c (V, S )m m

are unchanged because of independence. In a slight abuse of notationRPI (V, S )m

we will continue to use and in reference to the -replicated state. Second,V S mm

expand or contract the state in the sense that the distance between any two
points—say, —in state is in state . Note that any partition of state′d S ad Sij n ij n

is a well-defined partition of state as it contains the same voters, scaled by′n Sn

Choose such thata. a

2F Fn min � � � (d )g ˆmV�n ijv�V i�v j�vSS nna p ,
2F Fm m min � � � (d )V�n ijv�V i�v j�vS Sm m

where and are the numbers of voters in states and , respectively,FnF FmF S Sn m

and the superscript denotes a partition into elements. Note thatg gm m

2 2min (d ) p min (d ) . (A6)� �� � ��ij ij
gmv�V i�v j�v v�V i�v j�v′V�n V�nS SS m n′m Sn

Third, select a feasible partition of with elements, and denote this par′S gn m

tition . Suppose that′V̂

2 2(d ) p v (d )� �� � ��ij ij
′ˆ ˆi�v j�v i�v j�v′v�V v�VS Sn n

and that

( ) ( )min f d p b min f d .� �� � ��ij ij
g gˆ ˆm ni�v j�v i�v j�vV�n V�nv�V v�VS SS Sn nn n

Hence,

2 2
′ ( ) ( )� � � d � � � dˆ ˆij ij′v�V i�v j�v v�V i�v j�vS v Sn n

p .
2 2b( ) ( )min � � � d min � � � dˆ ˆij ijv�V i�v j�v v�V i�v j�vS Sn ng gm nV�n V�nS Sn n

By independence,
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v′ˆ ˆ( ) ( )′c V , S p c V, Sn n
b

and

v′ˆ ˆ( ) ( )′RPI V , S p RPI V, S .n n
b

From expression (A5),

b b′ ′ˆ ˆ( ) ( )′ ′( ) ( )c V, S 1 c V , S and RPI V, S ! RPI V , S . (A7)m n m n
v v

But since and have the same number of voters, the same number of′S Sm n

districts, and equation (A6) holds, it follows that expression (A7) implies that
violates clustering.c
Identical reasoning rules out the case in which

ˆ ˆ( ) ( )( ) ( )c V, S ! c V, S and RPI V, S 1 RPI V, S ,m n m n

and hence the proof is complete. Q.E.D.

Appendix B

Proofs and Description of the Algorithm

B1. Proof of Theorem 2

Let districts of state be denoted . A districting plan is feasibleS D , . . . , D1 d

if for all . The set of feasible districtings is . Let theFDF p n i � {1, . . . , d} Vi

centroid of district be , so . Define the functions1D m m p � (x)i i i x�Dn i

d

2w(D ) p x � m , W(D , . . . , D ) p w(D ).� �k ki i 1 d i
x�D ip1i

We say that districting is optimally compact if it minimizes W(D , . . . , D )1 d

over all . For , let2(D , . . . , D ) � V z , . . . , z � �1 d 1 d

d

2w (D ) p x � z , W (D ) p w (D ).� �k kz i i z , . . . , z i z ii 1 d i
x�D ip1i

A power diagram with sites is a partition of into districts2z , . . . , z �1 d

such that for fixed constants ,D , . . . , D l , . . . , l � �1 d 1 d

2 2D p q � � : i p arg min q � z � l .[ ]k ki j j{ }
j

It is clear that a power diagram is described by its edges and that if is on thex
same side as of any complete set of linear separators between and otherD Di i

districts, then , and otherwise not. The edges of are described by thex � D Di i
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set of such that , or2 2 2 2q � � kq � z k � l p kq � z k � l kq � z k � kq �i i i j i

.2z k p l � li i j

Lemma 6. The function is proportional to the RPI forW(D , . . . , D )1 d

, so minimizing one is equivalent to minimizing the other.(D , . . . , D ) � V1 d

Specifically,

d d

2 2x � y p 2n x � m .�� � ��k k k ki
ip1 x�D y�D ip1 x�Di i i

Proof.

d d

2 2 2x � y p x � y � 2x # y��� ���k k k k k k( )
ip1 x�D y�D ip1 x�D y�Di i i i

d

2 2p n x � 2nm # x � y�� ( � )k k k ki
ip1 x�D y�Di i

d

2 2p n x � 2nm # x � n y� � �k k k k( )i[ ]
ip1 x�D y�Di i

d

2p 2n x � 2nm # x� � k k( )i[ ]
ip1 x�Di

d

2p 2n x � m # x� � k k( )i[ ]
ip1 x�Di

d

2 2p 2n x � n m� � k k k k( ) i[ ]
ip1 x�Di

d

2 2p 2n x � 2m # x � m� � k k k k( )i i[ ]{ }
ip1 x�Di

d

2p 2n x � m� (� )k ki[ ]
ip1 x�Di

d

2p 2n x � m .�� k ki
ip1 x�Di

Q.E.D.

Lemma 7. For all ,(D , . . . , D ) � V1 d

(m , . . . , m ) p arg min W (D , . . . , D ).1 d z , . . . , z 1 d1 d
(z , . . . , z )1 d

Proof. It suffices to show that substituting for minimizes the expressionm zi i

on the right. Its first-order condition with respect to iszi
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1
GD , 2 (x � z ) p 0 ⇒ z p x p m .� �i i i inx�D x�Di i

Q.E.D.

Lemma 8. In an optimally compact districting, every pair of adjacent districts
is separated by a line perpendicular to a line connecting their centroids.

Proof. Let be optimally compact. Without loss of generality(D , . . . , D )1 d

we can prove the lemma for districts and . By isometry we can assumeD D1 2

that and . Pick andm p (0, 0) m p (y, 0) v p (x , y ) � D v p (x ,1 2 1 1 1 1 2 2

. Let and . By the opti-′ ′y ) � D D p D w {v } � {v } D p D w {v } � {v }2 2 1 1 2 1 2 2 1 2

mality of and the optimality lemma,(D , . . . , D )1 d

′ ′ ′ ′
w(D ) � w(D ) ≤ w(D ) � w(D ) ≤ w (D ) � w (D )1 2 1 2 m 1 m 21 2

2 2⇒ v � m � v � mk k k k1 1 2 2

2 2≤ v � m � v � mk k k k1 2 2 1

⇒ �2v # m � 2v # m1 1 2 2

≤ �2v # m � 2v # m1 2 2 1

⇒ (v � v ) # (m � m ) ≤ 02 1 1 2

⇒ (x � x ) # (�y) � (y � y ) # 0 ≤ 02 1 2 1

⇒ x ≤ x .1 2

Since and are arbitrary, we can pick them such that is the point inv v v D1 2 1 1

with greatest and is the point in with least , which shows that therex v D x1 2 2 2

is a line of the form for separating the two districts. Isometricsx p c c � �

preserve perpendicularity, so applying one moving and away fromm m (0,1 2

and leaves the separator between and perpendicular to the segment0) (y, 0) D D1 2

connecting and . Q.E.D.m m1 2

Lemma 9. Let be optimal. For every three districts, there(D , . . . , D )1 d

exist three concurrent lines, each of which separates two of the three districts,
with one line separating each pair of districts.

Proof. Without loss of generality, we prove this lemma for the three districts
, , and . By the straight-line lemma, there exist linear separators betweenD D D1 2 3

and , and , and and perpendicular to the lines connecting theirD D D D D D1 2 2 3 3 1

centroids. We can characterize these lines by the equations 2kr � m k � kr �1

, , and2 2 2 2 2m k p m ks � m k � ks � m k p m kt � m k � kt � m k p m2 1,2 2 3 2,3 3 1 3,1

for free variables . If the lines are concurrent, that means that there2r, s, t � �

exists satisfying all three equations. Adding them together gives2q � � m �1,2

. Therefore, if the lines are concurrent, then for all , , and onm � m p 0 r s t2,3 3,1
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the lines,

2 2 2 2r � m � r � m � s � m � s � mk k k k k k k k1 2 2 3

2 2� t � m � t � m p 0.k k k k3 1

Assume there is no choice for , , and such that the lines are concurrent.m m m1,2 2,3 3,1

Then, for all , , and on the three edges,r s t

2 2 2 2r � m � r � m � s � m � s � mk k k k k k k k1 2 2 3

2 2� t � m � t � m ( 0.k k k k3 1

If any one of , , or induces an optimal separator at both the valuesm m m1,2 2,3 3,1

and in , then it must also do so at the value for2n n � ln � (1 � l)n l �1 2 1 2

. So the expression above is either strictly greater or strictly less than zero[0, 1]
for all permissible values of , , and . We assume without loss of generalityr s t
that it is greater. Then there exist , , and such that whenv � D v � D v � D1 1 2 2 3 3

they are substituted for , , and , respectively, the above expression reaches ar s t
positive infimum. The expression cannot be at an infimum unless the extreme
values of , , and are specifically chosen to be in , , and , respectively;r s t D D D1 2 3

otherwise , for example, could be decreased by moving2 2kr � m k � kr � m k1 2

in the direction while still separating and . Therefore,r m � m D D1 2 1 2

2 2 2 2 2v � m � v � m � v � m � v � m � v � mk k k k k k k k k k1 1 1 2 2 2 2 3 3 3

2 2 2 2� v � m 1 0 ⇔ v � m � v � m � v � mk k k k k k k k3 1 1 1 2 2 3 3

2 2 21 v � m � v � m � v � m .k k k k k k1 2 2 3 3 1

Let , , and′ ′ ′D p D w {v } � {v } D p D w {v } � {v } D p D w {v } �1 1 3 1 2 2 1 2 3 3 2

. Then,{v }3

′ ′ ′
w(D ) � w(D ) � w(D ) 1 w (D ) � w (D ) � w (D )1 2 3 m 1 m 2 m 31 2 3

′ ′ ′
1 w(D ) � w(D ) � w(D ).1 2 3

This contradicts the optimality of , and the lemma follows. Q.E.D.D , . . . , D1 d

Proof of Theorem 2. We prove that any optimal districting is a power diagram
with sites equal to their centroids, . For any pair of districtsm , . . . , m D1 d i

and , we can pick such that is a linear sep-2 2D m kq � m k � kq � m k p mj i,j i j i,j

arator between the districts, and if we add a third district , we can similarlyDj

pick and such that the districting lines are concurrent, orm m m � m �j,k k,i i,j j,k

. Note that . We prove that there exist constantsm p 0 m p �mk,i a,b b,a

such that by induction. This is obviously true whenl , . . . , l l � l p m1 d i j i,j

. Assume that it is true for districts . For ,n p 2 D , . . . , D i, j ! k � 11 k
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m p m � m p l � l � mi,k�1 i,j j,k�1 i j j,k�1

⇒ l � m p l � m .i i,k�1 j j,k�1

Thus, is constant over choice of ; call the constant . That makesl � m i li i,k�1 k�1

for any , and the induction is complete. Clearly anym p l � l i x � Di,k�1 i k�1 i

is on the side of a boundary line between and another district, so it followsm Di i

that optimal districtings are power diagrams. Q.E.D.

B2. Algorithm Details

The algorithm we propose is a modification of the second algorithm presented
in Aurenhammer, Hoffmann, and Aronov (1998). Since we know by theorem
2 that local optima of the RPI are power diagrams, we search within the set of
power diagrams for one that is a feasible districting. However, as power diagrams
are generated around sites, which we call , it is necessary to updatez , . . . , z1 n

the locations of the sites as well as the design of the districts.
First we explain the Aurenhammer, Hoffmann, and Aronov (1998) algorithm

for finding a power diagram that minimizes , withW (D , . . . , D )z , . . . , z 1 d1 d

for all . Since a power diagram is defined by its sites and their weights,FDF ≈ n ii

, assuming fixed sites each district is a function ofl , . . . , l D1 d i

, or . We suppress this dependence for sim-l , . . . , l D p D (l , . . . , l )1 d i i 1 d

plicity. Let

d

F Fy(l , . . . , l ) p (n � D ) # l � W (D , . . . , D ).�1 d i i z , . . . , z 1 d1 d
ip1

Aurenhammer, Hoffmann, and Aronov (1998) simplify the problem by con-
tinuing as if each does not change locally with respect to each everywhere,D li i

as this is true almost everywhere (at all but finitely many points). Therefore,
and are locally constant with respect to , soFDF W (D , . . . , D ) li z , . . . , z 1 d i1 d

�y
F Fp n � D .i

�l i

Let . Using some choice of , we can update it by gradientL p (l , . . . , l ) L1 d 0

descent:

L p L � � # ∇y(L ).t�1 t t t

In our implementation we set to be the zero vector. It remains to pick theL 0

step sizes . To do this, one first determines an overestimate of the minimum{� }t t ≥ 0

value of ; call it . This can be done by settingy y y p W (D , . . . , D )z , . . . , z 1 d1 d

for any feasible districting . We use the notation to mean(D , . . . , D ) D (L )1 d i t

one of the districts induced by the power diagram weights contained in the
vector , and letL t
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y � y(L )t
� p .t d 2( )� D LF Fi tip1

This step size is iterated until the minimum is either reached or missed, which
happens when . Then is updated by solving the

d� FD (L )F # FD (L )F 1 0 yi t i t�1ip1

equation

y � y(L ) y � y(L )t t�1

p .d d2 2( ) ( )� D L � D LF F F Fi t i t�1ip1 ip1

The size is chosen accordingly. This algorithm is repeated until the ’s� FDFt�1 i

are within some predetermined error bound around .n
Once optimal districts for sites are chosen, byD , . . . , D z , . . . , z1 d 1 d

lemma 7 (see Appendix Section B1) the function isW (D , . . . , D )z , . . . , z 1 d1 d

improved by moving the ’s to the centroids of the ’s and keeping thez Di i

constant. Yet not all of the ’s are necessarily of size , so theyl , . . . , l D n1 d i

need to be adjusted by the above procedure. This process is repeated until moving
the still leaves the sizes of the ’s within the prescribed errorz , . . . , z D1 d i

bound.
Note that the algorithm described in Aurenhammer, Hoffmann, and Aronov

(1998) tends to fail when one of the districts is randomly set to zero. Our solution
to this issue was to move to a random new location if became zero duringz FDFi i

any point in the process. Random new locations were chosen using a uniform
distribution function ranging from the minimum to the maximum of the lon-
gitude and the latitude of the state in question.

Appendix C

A Guide to Programs

All programs to compute feasible districtings minimizing the RPI are written
for Matlab. There are two main programs, Main.m and Compute_Index.m, and
support programs District.m, getRandGP.m, Psi.m, Weighted_Assign.m,
Weighted_FirstTryAssign.m, and Weighted_PowerDiagram.m. We briefly de-
scribe each of the main programs below.

Main.m and Compute_Index.m are both shell programs that call District.m,
the actual algorithm, and store its output in text files. Typing Compute_Index(File
Name, Iterations) reads demographic data about a state from a text file—say,
“indiana.out”—and creates a new districting Iterations times. The file should
have the latitudes and longitudes of the census tracts of the states in columns
2 and 3, respectively, the federal information processing standards (FIPS) code
of the state repeated in every entry of column 4, the current districts of all census
tracts in column 5, and the populations of all census tracts in column 6.
Compute_Index.m generates two output files. The first, in this case “indiana.out
.output,” contains the latitudes and longitudes of the census tracts in the first
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two columns and their new district numbers in the subsequent columns. Each
column after the second represents a different iteration of the algorithm. The
second output file, in this case “indiana.out.stats,” contains statistics from each
iteration of the algorithm on a different row. The first column has the RPIs, the
second has the accuracy of the districting, and the third has the accuracy of the
current districting. Accuracy is measured as

F FD � ni

max .F Fni� 1, . . . , d{ }

Compute_Index.m has the following hard-coded parameters that are passed
to District.m: outside_tol_ratio, tol_ratio, outside_bail, and bail. The parameters
tol_ratio and bail are the stopping criteria for the subroutine Weighted_Assign.m,
which creates the best districting around randomly initiated sites. If the accuracy
falls below tol_ratio or the number of iterations of the gradient-descent procedure
rises above bail, the algorithm terminates. Likewise, outside_tol_ratio and
outside_bail are the stopping criteria for the larger districting algorithm. If the
accuracy of the districting falls below outside_tol_ratio or the number of times
the sites are moved rises above outside_bail, the algorithm terminates. The set
values for outside_tol_ratio, tol_ratio, outside_bail, and bail are, respectively, .9
times the real accuracy, whichever is the lesser of .9 times the real accuracy or
.05, 35 times the number of districts in the state, and 35 times the number of
districts in the state.

Main(File Name) reads a list of states and iterations for each state to be run
by Compute_Index.m. The file is of the following form:

states bootstraps
alabama 4
arizona 7
arkansas 3
california 1

Names of states and numbers of iterations are separated by tabs. If “arizona” is
written in this file, Compute_Index.m will open a file called “arizona.out.”
Main.m creates an additional file called “index.txt” that lists the FIPS code for
every state next to the best RPI the algorithm has found for it such that the
accuracy for the districting corresponding to that RPI is better than the state’s
current accuracy.

This procedure yields an RPI greater than one and an accuracy better than
the current accuracy nearly all of the time for all states other than Connecticut,
Idaho, Minnesota, and Nebraska, which already are well districted and usually
require quite a few bootstraps to improve on the current districting.
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Appendix D

Congressional District Map Comparisons for the 106th Congress

Figure D1. Tennessee

Figure D2. Idaho
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Figure D3. Hawaii

Figure D4. Illinois
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Figure D5. Massachusetts

Figure D6. Nevada

Figure D7. New York
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Figure D8. Pennsylvania

Figure D9. Texas

Figure D10. Florida



Appendix E

Comparison of Actual and Maximally Compact Seat-Vote Curves

Figure E1. California

Figure E2. New York
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Figure E3. Texas

Figure E4. Pennsylvania
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