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Abstract

At an exogenous deadline, Receiver takes an action, the payoff from which de-

pends on Sender’s type. Sender privately observes when a bombshell arrives. Upon

arrival, she chooses when to drop it, which starts a public flow of information about

her type. Dropping the bombshell earlier exposes it to greater scrutiny, but signals

credibility. In all equilibria, Sender delays dropping the bombshell, and completely

withholds it with positive probability. Our model provides an explanation for an

“October Surprise” effect and generates further predictions about dynamics of infor-

mation disclosure. We find empirical support for these predictions in the data on US

presidential scandals.
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1 Introduction

On January 4, 2012 an explosion killed a man in an apartment in the Ukrainian port city
of Odessa. Police arrested another occupant. One month later, on February 4, a second
man was arrested in connection with the explosion. On February 27—six days before the
March 4 Russian presidential election—Russian state controlled television station Chan-
nel One broke the story that the two detainees had been part of a plot to assassinate Rus-
sian Prime Minister, and presidential candidate, Vladimir Putin. “Channel One said it
received information about the assassination attempt 10 days [earlier] but did not explain
why it did not release the news sooner.”1

Political commentators around the world questioned the timing of the disclosure and
cast doubt on the allegations themselves. For instance, Dmitri Oreshkin said on Ekho
Moskvy Radio: “The timely disclosure of this conspiracy against this leader is a serious
addition to the electoral rating of the potential president,”2 and Danila Lindele wrote on
Twitter: “Do I understand correctly that no one believes in the assassination attempt on
Putin?”3

Two points of this anecdote are noteworthy. First, information about the alleged plot
was not released as soon as it was available. Instead, state television dropped the bomb-
shell at a later, strategically-chosen time. Second, voters drew inferences from the timing
of the release.

In this paper we analyze a Sender-Receiver game which connects the timing of infor-
mation release with voters’ beliefs prior to elections. Early release of information is more
credible, in that it signals that Sender has nothing to hide. On the other hand, such early
release exposes the information to scrutiny for a longer period of time—possibly leading
to the information being discovered to be false.

This tradeoff is central to the timing of key events leading up to elections. There is a
long tradition in US presidential campaigns of scandals being released in the lead-up to
the general election, or even important primaries. Gary Hart’s infidelities, Bill Clinton’s
relationship with Gennifer Flowers, Michael Dukakis’s granting of weekend release to
Willie Horton, and the swift-boat campaign against John Kerry are all notable examples.

The release time is particularly important if scandals can be fabricated. For example,
during the 2004 US presidential campaign between George W. Bush and John Kerry, a

1The Guardian, February 27 2012: http://www.theguardian.com/world/2012/feb/27/
putin-assassination-plot-denounced, accessed April 4 2016.

2New York Times, February 27 2012: http://www.nytimes.com/2012/02/28/world/europe/
plot-to-kill-vladimir-putin-uncovered.html?r=0, accessed April 4 2016.

3The Guardian, op cit.
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controversy about Bush’s military service was exploding. On September 8, 2004—less
than two months before election day—CBS’s 60 Minutes II aired a story supported by
four documents concerning Bush’s service in the Air National Guard in 1972-3. The docu-
ments purported to support the allegations that Bush disobeyed orders in failing to report
for duty, and that undue influence was exercised on his superior officers.4 In the follow-
ing weeks questions were raised about the authenticity of the documents. On September
20, CBS News reported that their source had lied.

This begs the following question: why did the source not release the documents shortly
before election day, when it would be unlikely that they would be discovered to be fab-
ricated in time? Such a late announcement might well have been deemed an “October
surprise”5 and voters would have entertained serious doubts about the authenticity of
the documents. Indeed, in the recent Hollywood dramatization of the events, Truth, Josh
Howard (60 Minutes II executive producer) comments “if we go with this [story] we gotta
go early. We can’t ‘October surprise’ him.”

The same tradeoff between credibility and scrutiny drives the timing of announce-
ments about candidacy, running mates, cabinet members and details of policy platforms.
An early announcement exposes the background of the candidate or her team to more
scrutiny, but boosts credibility. Beyond announcements, the tradeoff can also determine
the timing of policy implementation. For instance, an incumbent may implement poli-
cies that are popular in the short run, but pose long-term risks, shortly before a reelection
bid. It seems to us that this might provide a rational-agent explanation for the so-called
“political business cycle.”6

In all these situations, (i) biased Sender has information which matters to Receiver; (ii)
Receiver must make a choice at a given date; and (iii) Sender privately knows the earliest
date at which she can release information to Receiver, but she can choose to release it
later. In this paper we introduce and analyze a formal model of precisely these types of
dynamic information release problems.

We analyze the credibility-scrutiny tradeoff in a model with three key features: (i)
Sender privately knows her binary type, good or bad, and wants Receiver to take a higher
action; (ii) at an exogenous deadline, Receiver chooses his action, which increases in his
belief that Sender is good; (iii) Sender privately observes whether and when an opportu-

4USA Today published the four documents, along with another two, the day following the broadcast.
5The Oxford US English Dictionary: “October Surprise: Any political event orchestrated (or ap-

parently orchestrated) in the month before an election, in the hopes of affecting the outcome” http:
//www.oxforddictionaries.com/definition/english/october-surprise

6See Nordhaus (1975) for an early contribution, and Alesina (1987) for the first formal analysis of the
phenomenon.
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nity to start a public flow of information about her type arrives and chooses when to seize
this opportunity.7 We call this opportunity an arm and say that Sender chooses when to
pull the arm.

In Section 3, we characterize the set of perfect Bayesian equilibria. In all equilibria,
bad Sender delays pulling the arm relative to good Sender, despite the fact that pulling
the arm has a positive instantaneous effect on Receiver’s belief. An immediate implication
is that, pulling the arm earlier is more credible in that it induces higher Receiver’s belief.
Moreover, bad Sender chooses not to pull the arm with strictly positive probability.

We prove that there exists an essentially unique divine equilibrium (Cho and Kreps,
1987).8 In this equilibrium good Sender immediately pulls the arm when it arrives and
bad Sender is indifferent between pulling the arm at any time and not pulling it at all.
Uniqueness allows us to analyze comparative statics in a tractable way in a special case
of our model where the arm arrives according to a Poisson process and pulling the arm
starts an “exponential learning process” in the sense of Keller et al. (2005).

We do this in Section 5 and show that the comparative static properties of this equi-
librium are very intuitive. Welfare increases with the speed of the learning process and
the arrival rate of the arm. A higher probability of good Sender decreases the proba-
bility that bad Sender pulls the arm, as Receiver is less likely to believe that Sender is
bad, and hence withholding information is less damning. However, this strategic effect
does not completely offset the direct effect of the increased probability of good Sender on
Receiver’s posterior belief, even if no arm is pulled.

We then apply this Poisson model to the strategic release of political scandals in US
presidential campaigns. Here, Receiver is the median voter and Sender is a news orga-
nization wishing to reduce the incumbent’s chances of reelection. At a random time, the
news organization may receive some documents implicating the incumbent in a scandal
(this corresponds to the arrival of the arm). The news organization has private informa-
tion about the documents’ authenticity and can choose when and whether to run the story
(pull the arm). After the story is made public, it becomes the subject of further scrutiny.
Therefore, the median voter gradually learns about the authenticity of the documents. If,
at the time of the election, the median voter believes the documents to be authentic, the
incumbent’s chances of reelection are grim.

We show that fabricated scandals are only released sufficiently close to the election.

7In Section 4, we generalize the model in several directions allowing for more general utility functions,
for Sender to be imperfectly informed, for Sender’s type to affect when the arm arrives, and for the deadline
at which Receiver takes an action to be stochastic.

8The equilibrium is essentially unique in the sense that the probability with which each type of Sender
pulls the arm at any time t is uniquely determined.
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Also, a higher prior belief that the incumbent is good increases the probability of a scandal
being released, provided that the incumbent has a high approval rating. An intuition for
this is that the opposition media outlet optimally resorts to fabricated scandals when the
incumbent is so popular that only a scandal could undermine her successful reelection.
We also show that fewer scandals are released when voters apply more scrutiny to them
and when other events make air time scarce. These results are consistent with a number
of empirical regularities in US presidential elections.

Perhaps more importantly, we make predictions about the time pattern of campaign
events. We show that for a broad range of parameters the probability of release of scandals
(authentic or fabricated) is U-shaped, with scandals concentrated towards the beginning
and the end of an electoral campaign. We confirm this prediction using data on the release
of US presidential scandals and show that presidents are more likely to be alleged to
be involved in a scandal at the beginning of their term and just before they are up for
reelection. To the best of our knowledge, this is the first empirical evidence about the
strategic timing of political scandals relative to the date of elections and a first direct
evidence of an “October Surprise” effect.9 Furthermore, the probability that a released
scandal is fabricated increases with the release time. Therefore, the immediate impact
on Receiver’s belief is generally single-peaked. Consistent with this result, we show that
the immediate impact of scandals on the President’s approval rate is smaller for scandals
released at the beginning of his term and just before he is up for reelection. Nonetheless,
the probability that a fabricated scandal is released is single peaked over time, as is the
probability that a scandal is revealed to be fabricated. Interestingly, the peak need not
be toward the end of the campaign, contrary to what the “October Surprise”-logic would
suggest.

1.1 Related Literature

Grossman and Hart (1980), Grossman (1981), and Milgrom (1981) pioneered the study of
verifiable information disclosure and established the unraveling result: if Sender’s prefer-
ences are common knowledge and monotonic in Receiver’s action (for all types of Sender)
then Receiver learns Sender’s type in any sequential equilibrium. Dye (1985) first pointed
out that the unraveling result fails if Receiver is uncertain about Sender’s information en-
dowment.10 When Sender does not disclose information, Receiver is unsure as to why, and
thus cannot conclude that the non-disclosure was strategic, and hence does not “assume

9See Nyhan (2015) for a recent review.
10See also Shin (1994), Jung and Kwon (1988), and Dziuda (2011). The unraveling result migh also fail if

disclosure is costly (Jovanovic, 1982) or information acquisition is costly (Shavell, 1994).
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the worst” about Sender’s type.
Acharya, DeMarzo and Kremer (2011) and Guttman, Kremer and Skrzypacz (2013) ex-

plore the strategic timing of information disclosure in a dynamic version of Dye (1985).11

Acharya et al. (2011) focus on the interaction between the timing of disclosure of private
information relative to the arrival of external news, and clustering of the timing of an-
nouncements across firms. Guttman et al. (2013) analyze a setting with two periods and
two signals and show that, in equilibrium, both what is disclosed and when it is disclosed
matters. Strikingly, the authors show that later disclosures are received more positively.

All these models are unsuited to study either the credibility or the scrutiny sides of our
tradeoff, because information in these models is verified instantly and with certainty once
disclosed. In our motivating examples, information is not immediately verifiable: when
Sender releases the information, Receiver only knows that “time will tell” whether the
information released is reliable. To capture this notion of partial verifiability, we model
information as being verified stochastically over time in the sense that releasing informa-
tion starts a learning process for Receiver akin to processes in Bolton and Harris (1999),
Keller, Rady and Cripps (2005), and Brocas and Carrillo (2007). In contrast to these pa-
pers, in our model Sender is privately informed and she chooses when to start rather than
stop the process.12

Our application to US presidential scandals also contributes to the literature on the
effect of biased media on voters’ behavior (e.g., Duggan and Martinelli, 2011; Gentzkow
and Shapiro, 2006).13 DellaVigna and Kaplan (2007) provide evidence that biased media
have a significant effect on the vote share in US presidential elections. We focus on when
a biased source chooses to release information and show that voters respond differently
to information released at different times in the electoral campaign.

11Shin (2003, 2006) also study dynamic verifiable information disclosure, but Sender there does not
strategically time disclosure. A series of recent papers consider dynamic information disclosure with
different focuses to us, including: Che and Hörner (2015); Ely, Frankel and Kamenica (2015); Ely (2015);
Grenadier, Malenko and Malenko (2015); Halac, Kartik and Liu (2015); Horner and Skrzypacz (forthcom-
ing).

12In our model Sender can influence only the starting time of the experimentation process, but not the
design of the process itself. Instead, in the “Bayesian Persuasion” literature (e.g., Rayo and Segal, 2010;
Kamenica and Gentzkow, 2011) Sender fully controls the design of the experimentation process.

13See also Prat and Stromberg (2013) for a review of this literature in the broader context of the relation-
ship between media and politics.
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2 The Model

We begin with a benchmark model in which (i) Sender’s payoff is equal to Receiver’s
belief about Sender’s type, (ii) Sender is perfectly informed, (iii) Sender’s type does not
affect when the arm arrives, (iv) the deadline at which Receiver takes an action is deter-
ministic. Section 4 relaxes each of these assumptions and shows that our main results
continue to hold.

2.1 Benchmark Model

There are two players: Sender (she) and Receiver (he). Sender privately knows her binary
type θ: good (θ = G) or bad (θ = B). Let π ∈ (0, 1) be the common prior belief that Sender
is good.

Time is discrete and indexed by t ∈ {1, 2, . . . , T + 1}. At a deadline t = T, Receiver
must take an action a ∈ R. Time T + 1 combines all future dates after the deadline.

Sender privately observes when an arm arrives. The arm arrives to Sender at a random
time according to distribution F whose support is {1, 2, . . . , T + 1}.

If the arm has arrived, Sender can pull it immediately or at any time after its arrival
(including after the deadline). Because Sender moves only after the arrival of the arm,
it is immaterial for the analysis whether Sender learns her type when the game starts or
when the arm arrives.

Pulling the arm starts a learning process for Receiver. Specifically, let τ be the pulling
time. If the arm is pulled before the deadline (τ ≤ T), Receiver observes realizations of a
finite-valued stochastic process

L = {Lθ (t; τ) , τ ≤ t ≤ T} .

The process L can be viewed as a sequence of signals, one per each time from τ to T with
the precision of the signal at time t possibly depending on τ, t, and all previous signals.
Notice that if the arm is pulled at τ = T, Receiver observes the realization Lθ (T, T) before
taking his action.

It is more convenient to work directly with the distribution of beliefs induced by the
process L rather than with the process itself. Let m denote Receiver’s interim belief that
Sender is good upon observing that she pulls the arm at time τ and before observing
any realizations of L. Likewise, let s denote Receiver’s posterior belief that Sender is good
after observing all realizations of the process from τ to T. Given τ and m, the process L
generates a distribution H (. | τ, m) over Receiver’s posterior beliefs s; given τ, m, and θ,
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the process L generates a distribution Hθ (. | τ, m) over s. Notice that if the arm is pulled
after the deadline (τ = T + 1), then the distributions Hθ (. | τ, m) and H (. | τ, m) assign
probability one to s = m.

Assumption 1 says that (i) pulling the arm later reveals strictly less information about
Sender’s type in Blackwell (1953)’s sense and (ii) it is impossible to fully learn Sender’s
type.

Assumption 1. (i) For all τ, τ′ ∈ {1, 2, . . . , T + 1} such that τ < τ′, H (. | τ, π) is a strict
mean-preserving spread of H (. | τ′, π). (ii) The support of H (. | 1, π) is a subset of (0, 1).

For example, consider a set of (imperfectly informative) signals S with some joint
distribution and suppose that pulling the arm at τ reveals to Receiver a set of signals
Sτ ⊂ S . Assumption 1 holds whenever Sτ is a proper subset of Sτ′ for all τ′ < τ.

Sender’s and Receiver’s payoffs, v (a, θ) and u (a, θ), depend on a and θ. We are inter-
ested in situations where each type of Sender wishes Receiver to believe that she is good.
Formally, for all values of Receiver’s posterior belief s ∈ [0, 1], Receiver’s best response
function

a∗ (s) ≡ arg max
a
{su (a, G) + (1− s) u (a, B)}

is well defined and Sender’s payoff is equal to s in that v∗θ (s) ≡ v (a∗ (s) , θ) = s for
θ ∈ {G, B}.

We characterize the set of perfect Bayesian equilibria, henceforth equilibria. Let µ (τ)

be Receiver’s equilibrium interim belief that Sender is good given that Sender pulls the
arm at time τ ∈ {1, 2, . . . , T + 1}. Also, let Pθ denote an equilibrium distribution of
pulling time τ given Sender’s type θ (with the convention that Pθ (0) = 0).

2.2 Discussion

We now pause to interpret key ingredients of our model using our main application—
the timing of US presidential scandals in the lead-up to elections. Receiver is the median
voter and Sender is a news organization wishing to reduce the incumbent’s chances of
reelection. At a random time, the news organization may receive some documents impli-
cating the incumbent in a scandal (this corresponds to the arrival of the arm). The news
organization has private information about the documents’s authenticity and can choose
when and whether to run the story (pull the arm). After the story is made public, it be-
comes the subject of further scrutiny. Therefore, the median voter gradually learns about
the authenticity of the documents. If, at the time of the election, the median voter believes
the documents to be authentic, the incumbent’s chances of reelection are grim.
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In this application, Receiver’s action is binary. To reconcile this with our continuous-
action model, suppose that Sender is uncertain about the ideological position r of the
median voter, which is uniformly distributed on the unit interval. If the incumbent is not
reelected, the median voter’s payoff is normalized to 0. If the incumbent is reelected, the
median voter with position r gets payoff r− 1 if the documents are authentic and payoff r
otherwise. Sender gets payoff 0 if the incumbent is reelected and 1 otherwise. Therefore,
Sender’s expected payoff as a function of posterior belief s is given by

v∗G (s) = v∗B (s) = Pr (r ≤ s) = s.

3 Equilibrium

We begin our analysis by deriving statistical properties of the model that rely only on Re-
ceiver being Bayesian. These properties link the pulling time and Receiver’s interim belief
to the distribution of Receiver’s posterior belief. First, from (good and bad) Sender’s per-
spective, keeping the pulling time constant, a higher interim belief results in a higher
expected posterior belief. Furthermore, pulling the arm earlier reveals more information
about Sender’s type. Therefore, from bad (good) Sender’s perspective, pulling the arm
earlier decreases (increases) the expected posterior belief that Sender is good. In short,
Lemma 1 says that credibility is beneficial for both types of Sender, whereas scrutiny is
detrimental for bad Sender but beneficial for good Sender.

Lemma 1 (Statistical Properties). Let E [s | τ, m, θ] be the expectation of Receiver’s posterior
belief s conditional on the pulling time τ, Receiver’s interim belief m, and Sender’s type θ. For all
τ, τ′ ∈ {1, . . . , T + 1} such that τ < τ′, and all m, m′ ∈ (0, 1] such that m < m′,

1. E [s | τ, m′, θ] > E [s | τ, m, θ] for θ ∈ {G, B};

2. E [s | τ′, m, B] > E [s | τ, m, B];

3. E [s | τ, m, G] > E [s | τ′, m, G].

Proof. In Appendix A.

We now show that in any equilibrium, (i) good Sender strictly prefers to pull the arm
whenever bad Sender weakly prefers to do so, and therefore (ii) if the arm has arrived,
good Sender pulls it with certainty whenever bad Sender pulls it with positive probability.
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Lemma 2 (Good Sender’s Behavior). In any equilibrium:

1. For all τ, τ′ ∈ {1, . . . , T + 1} such that τ < τ′ and neither µ (τ) = µ (τ′) = 0 nor
µ (τ) = µ (τ′) = 1, if bad Sender weakly prefers to pull the arm at τ than at τ′, then
µ (τ) > µ (τ′) and good Sender strictly prefers to pull the arm at τ than at τ′;

2. For all τ ∈ {1, . . . , T} in the support of PB, we have PG (τ) = F (τ).

Proof. In Appendix B.

The proof relies on the three statistical properties from Lemma 1. The key to Lemma 2
is that if bad Sender weakly prefers to pull the arm at some time τ than at τ′ > τ, then
Receiver’s interim belief µ (τ) must be greater than µ(τ′). Intuitively, bad Sender is will-
ing to endure more scrutiny only if pulling the arm earlier boosts her credibility. Since
µ (τ) > µ (τ′), good Sender strictly prefers to pull the arm at the earlier time τ, as she
benefits from both scrutiny and credibility. Notice that this argument does not imply that
good Sender always pulls the arm as soon as it arrives. For example, for any t ≤ T, there
always exists an equilibrium in which good Sender never pulls the arm before or at t (i.e.,
PG (t) = 0) but always pulls it after t (i.e., PG (τ) = F (τ) for all τ > t).

Next, we show that bad Sender pulls the arm with positive probability whenever
good Sender does, but bad Sender pulls the arm later than good Sender in the first-order
stochastic dominance sense. Moreover, bad sender pulls the arm strictly later unless no
type pulls the arm. An immediate implication is that bad Sender always withholds the
arm with positive probability.

Lemma 3 (Bad Sender’s Behavior). In any equilibrium, PG and PB have the same supports
and, for all τ ∈ {1, . . . , T} with PG (τ) > 0, we have PB (τ) < PG (τ). Therefore, in any
equilibrium, PB (T) < F (T).

Proof. In Appendix B.

Intuitively, if there were a time τ ∈ {1, . . . , T} at which only good Sender pulled the
arm with positive probability, then, upon observing that the arm was pulled at τ, Receiver
would conclude that Sender was good. But then, to achieve this perfect credibility, bad
Sender would want to mimic good Sender and therefore strictly prefer to pull the arm
at τ, contradicting that only good Sender pulled the arm at τ. Nevertheless, bad Sender
always delays relative to good Sender. Indeed, if bad and good Sender were to pull the
arm at the same time, then Sender’s credibility would not depend on the pulling time.
But with constant credibility, bad Sender would never pull the arm to avoid scrutiny.
Therefore, good Sender must necessarily pull the arm earlier than bad Sender. Notice
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that Lemma 3 does not imply that good Sender pulls the arm at a faster rate for all times.
Indeed, there exist equilibria with PG (t)− PG (t− 1) < PB (t)− PB (t− 1) for some t ≤ T.

We now show that, at any time when good Sender pulls the arm, bad Sender is in-
different between pulling and not pulling the arm. That is, in equilibrium, pulling the
arm earlier boosts Sender’s credibility as much as to exactly offset the expected cost of
longer scrutiny for bad Sender. Thus, Receiver’s interim beliefs are pinned down by bad
Sender’s indifference condition (1) and the aggregation condition (2). The aggregation
condition requires that the likelihood ratios of bad and good Sender’s arms pulled at
various times must average out to the prior likelihood ratio of bad and good Sender.

Lemma 4 (Receiver’s Beliefs). In any equilibrium, for τ in the support of PG, µ (τ) ∈ (0, 1) is
uniquely determined by the system of equations:

ˆ
v∗B (s) dHB (s|τ, µ (τ)) = v∗B (µ (T + 1)) , (1)

∑
τ∈supp(PG)

1− µ (τ)

µ (τ)
(PG (τ)− PG (τ − 1)) =

1− π

π
. (2)

Proof. In Appendix B.

We now characterize the set of equilibria. Part 1 of Proposition 1 states that in all
equilibria, at any time when good Sender pulls the arm, she pulls it with probability 1
and bad Sender pulls it with strictly positive probability. The probability with which bad
Sender pulls the arm at any time is determined by the condition that the induced interim
beliefs keep bad Sender exactly indifferent between pulling the arm then and not pulling
it at all. Part 2 of Proposition 1 characterizes the set of divine equilibria of Banks and Sobel
(1987) and Cho and Kreps (1987).14 In such equilibria, good Sender pulls the arm as soon
as it arrives.

Proposition 1 (Equilibrium).

1. A pair (PG, PB) constitutes an equilibrium if and only if PG and PB have the same supports,
and for all τ in the support of PG, PG (τ) = F (τ) and

PB (τ) =
π

1− π ∑
t∈supp(PG) s.t. t≤τ

1− µ (t)
µ (t)

(PG (t)− PG (t− 1)) , (3)

14Divinity is a standard refinement used by the signalling literature. It requires Receiver to attribute a
deviation to those types of Sender who would choose it for the widest range of Receiver’s interim beliefs.
In our setting, the set of divine equilibria coincides with the set of monotone equilibria in which Receiver’s
interim belief about Sender is non-increasing in the pulling time. Specifically, divinity rules out all equilibria
in which both types of Sender do not pull the arm at some times, because Receiver’s out-of-equilibrium
beliefs for those times are sufficiently unfavorable.
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where µ (τ) is uniquely determined by (1) and (2).

2. There exists a divine equilibrium. In any such equilibrium, PG (τ) = F (τ) for all τ ∈
{1, . . . , T}.

Proof. In Appendix B.

Although there exist a plethora of divine equilibria, in all such equilibria Receiver’s
beliefs and each type of Sender’s pulling probabilities are uniquely determined by (1), (2),
PG (τ) = F (τ), and

PB (τ) =
π

1− π ∑
t≤τ

1− µ (t)
µ (t)

(F (t)− F (t− 1)) (4)

for all τ ∈ {1, . . . , T + 1}. In this sense, there exists an essentially unique divine equilib-
rium.

In the divine equilibrium, Receiver’s interim beliefs µ (τ) decrease over time and the
likelihood ratio of an arm being pulled by bad and good Sender increases over time.

Corollary 1 (Equilibrium Dynamics). In the divine equilibrium, for all τ, τ′ ∈ {1, . . . , T + 1}
such that τ < τ′, we have µ (τ) > µ (τ′) and

PB (τ)− PB (τ − 1)
PG (τ)− PG (τ − 1)

<
PB (τ

′)− PB (τ
′ − 1)

PG (τ′)− PG (τ′ − 1)
.

Proof. By Lemma 4 and part 2 of Proposition 1, bad Sender is indifferent between pulling
the arm at any time before the deadline and not pulling the arm at all. Then, by Lemma 2,
µ (τ) > µ (τ′). Finally, using PG (τ) = F (τ) and (4), we have

1− µ (τ)

µ (τ)
=

1− π

π

PB (τ)− PB (τ − 1)
PG (τ)− PG (τ − 1)

.

Pulling the arm boosts credibility in the sense that Receiver’s belief at time τ about
Sender’s type is higher if Sender pulls the arm than if she does not.

Corollary 2 (Belief Dynamics). Let µ̃ (τ) denote Receiver’s interim belief that Sender is good
given that she has not pulled the arm before or at τ. In the divine equilibrium, for all τ, τ′ ∈
{1, . . . , T} such that τ < τ′, we have µ (τ + 1) > µ̃ (τ) > µ̃ (τ′).
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Proof. Using (4), we have that for all τ < T

1− µ̃ (τ)

µ̃ (τ)
=

1− π

π

1− PB (τ)

1− PG (τ)

=
∑T+1

t=τ+1
1−µ(t)

µ(t) (F (t)− F (t− 1))

1− F (τ)
(5)

= EF

[
1− µ (t)

µ (t)
| t ≥ τ + 1

]
.

By Corollary 1, µ (t) decreases with time, which implies that µ̃ (t) decreases with time
and µ (τ + 1) > µ̃ (τ).

To understand how primitives of the model affect players’ welfare and behavior, in
Section 5 we specialize to a Poisson model. In the Poisson model, however, Assumption 1,
part (ii), that it is impossible to fully learn Sender’s type, fails. Nevertheless, a version of
Proposition 1 continues to hold without this assumption. Specifically, there exists t̄ ∈
{1, . . . , T + 1} such that Proposition 1 holds for all τ ≥ t̄, whereas µ (τ) = 1 and PB (τ) =

0 for all τ < t̄.

4 Discussion of Model Assumptions

Before turning to the Poisson model, we discuss how our results change (or do not change)
if we relax several of the assumptions made in our benchmark model. We discuss each
assumption in a separate subsection. The reader may skip this section without any loss
of understanding of subsequent sections.

4.1 Nonlinear Sender’s payoff

Our key assumption, which we maintain in this discussion, is that the payoff of both types
of Sender is strictly increasing in Receiver’s posterior belief, so that both types of Sender
want to look good. In the benchmark model, we also assume that Sender’s payoff is linear
in Receiver’s posterior belief: v∗G (s) = v∗B (s) = s for all s. In this case, were Sender to
be uninformed, she would be exactly indifferent as to when to pull the arm. Thus, our
results are driven entirely by the presence of Sender’s private information. But in many
applications, v∗G (s) and v∗B (s) may be different and nonlinear in s, because Sender is not
risk-neutral with respect to Receiver’s action or because Receiver’s optimal action is not
linear in his posterior belief.
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When Sender’s payoff is nonlinear in s, then an uninformed Sender would prefer to
pull the arm earlier (later) to increase (decrease) the spread in posterior beliefs s if her
payoff is convex (concave) in s. This effect confounds our credibility-scrutiny tradeoff,
but some of our analysis extends to this case. In particular, the proof of Proposition 1
(in Appendix B) explcitly allows for good Sender’s payoff to be weakly convex and bad
Sender’s payoff to be weakly concave. In this case, the credibility-scrutiny tradeoff is
reinforced and Proposition 1 continues to hold verbatim.

To understand how the shape of the payoff functions v∗G (s) and v∗B (s) affects our
analysis, we extend the statistical properties of Lemma 1, which describe the evolution
of Receiver’s posterior belief from an informed Sender perspective. First and not surpris-
ingly, a more favorable interim belief results in more favorable posteriors for all types of
Sender and for all realizations of the process. So credibility is beneficial for both types of
Sender, regardless of the shape of their payoff functions.

From an uninformed Sender perspective, Receiver’s beliefs follow a martingale pro-
cess (see e.g., Ely et al. (2015)); so pulling the arm earlier results in more spread out pos-
teriors (provided that the interim belief does not depend on the pulling time). We show
that from an informed Sender perspective, Receiver’s beliefs follow a supermartingale
process for bad Sender and a submartingale process for good Sender. Therefore, from
bad (good) Sender’s perspective, pulling the arm earlier results in more spread out and
less (more) favorable posteriors (again provided that the interim belief does not depend
on the pulling time). So scrutiny is detrimental for bad Sender if her payoff is not too
convex but beneficial for good Sender if her payoff is not too concave. Therefore, for a
given process satisfying Assumption 1, Proposition 1 continues to hold if good Sender is
not too risk-averse and bad Sender is not too risk-loving.15

Lemma 1′ formalizes the discussed statistical properties, using common (first-order
and second-order) stochastic orders and a less common stochastic order, which we call
second-convex-order. Formally, distribution H2 second-convex-order stochastically dom-
inates distribution H1 if there exists a distribution H such that H2 first-order stochastically
dominates H and H is a mean-preserving spread of H1.

Lemma 1′ (Generalized Statistical Properties). For all τ, τ′ ∈ {1, . . . , T + 1} such that
τ < τ′, and all m, m′ ∈ (0, 1] such that m < m′,

1. Hθ (. | τ, m′) strictly first-order stochastically dominates Hθ (. | τ, m) for θ ∈ {G, B};

2. HB (. | τ′, m) strictly second-order stochastically dominates HB (. | τ, m);

15For the Poisson model of Section 5, Proposition 1 continues to hold for any risk attitude of good Sender
and only relies on bad Sender being not too risk-loving.
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3. HG (. | τ, m) strictly second-convex-order stochastically dominates HG (. | τ′, m).

Proof. In Appendix A.

Much less can be said in general if the payoff functions v∗G (s) and v∗B (s) have an
arbitrary shape. For example, if v∗G (s) is sufficiently concave, then good Sender can prefer
to delay pulling the arm to reduce the spread in posterior beliefs. Likewise, if v∗B (s) is
sufficiently convex, then bad Sender can prefer to pull the arm sooner than good Sender
to increase the spread in posterior beliefs. These effects work against our credibility-
scrutiny tradeoff and Proposition 1 no longer holds.16

4.2 Imperfectly Informed Sender

In many applications, Sender does not know with certainty whether pulling the arm
would start a good or bad learning process for Receiver. For example, when Sarah Palin
was revealed as McCain’s surprise choice for running mate in 2008, McCain’s campaign
had only cursory knowledge of Ms Palin’s character and qualifications.

We generalize our model to allow for Sender to only observe a signal σ ∈ {σB, σG}
about an underlying binary state θ, with Pr (θ = G | σG) > π > Pr (θ = G | σB). The
statistical properties of Lemma 1 still hold.

Lemma 1′′ (Generalized Statistical Properties). Let E [s | τ, m, σ] be the expectation of Re-
ceiver’s posterior belief s conditional on the pulling time τ, Receiver’s interim belief m, and
Sender’s signal σ. For all τ, τ′ ∈ {1, . . . , T + 1} such that τ < τ′, and all m, m′ ∈ (0, 1]
such that m < m′,

1. E [s | τ, m′, σ] > E [s | τ, m, σ];

2. E [s | τ′, m, σB] > E [s | τ, m, σB];

3. E [s | τ, m, σG] > E [s | τ′, m, σG].

Proof. In Appendix A.

These statistical results ensure that credibility is always beneficial for Sender, whereas
scrutiny is detrimental for Sender with signal σB but beneficial for Sender with signal σB.
Therefore, all our results carry over.

Moreover, we can extend our analysis to allow for signal σ to be continuously dis-
tributed on the interval [σ, σ̄), with normalization σ = Pr (θ = G | σ). In particular, in

16For the special case in which v∗G (s) = v∗B (s) = v∗ (s) for all s, where v∗ (s) is a strictly increasing
function, we expect our main insight to hold: bad Sender delays pulling the arm relative to good Sender.
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this case, there exists a partition equilibrium with σ̄ = σ0 > σ1 > · · · > σT+1 = σ such
that Sender σ ∈ [σt, σt−1) pulls the arm as soon as it arrives unless it arrives before time
t ∈ {1, . . . , T + 1} (and pulls the arm at time t if it arrives before t).

4.3 Type-Dependent Arrival of the Arm

In many applications, it is more reasonable to assume that the distribution of the arrival of
the arm differs for good and bad Sender. This is the case if, for example, Sender is a newly
elected politician who, during her campaign, has promised to enact a specific policy. This
policy can be of high or low quality, but voters begin to receive information about the
quality after the policy is enacted. Both good and bad Sender know their type from the
outset. Good Sender is the only player who can enact a high-quality policy, but must wait
for the bureaucracy to develop detailed implementation plans before enactment can take
place. In this case it may be reasonable to think that good Sender has to wait for the arm
to arrive, but bad Sender has the arm from the outset and can delay enactment. Similarly,
some scandals may be easy to fabricate at the outset, whereas genuine scandals need time
to be discovered.

We generalize the model to allow for different distributions of the arrival of the arm
for good and bad Sender. In particular, the arm arrives at a random time according to
distributions FG = F for good Sender and FB for bad Sender.

The proof of Proposition 1 (in Appendix B) explicitly allows for the arm to arrive
(weakly) earlier to bad Sender than to good Sender in the first-order stochastic dominance
sense: FB (t) ≥ FG (t) for all t. This assumption is trivially satisfied if bad Sender has the
arm from the outset. More generally, Proposition 1 continues to hold verbatim as long as
FB (t) ≥ PB (t) for all t, where PB (t) is given by (3). If the arm were to arrive to bad Sender
sufficiently slower than to good Sender, such that FB (t) < PB (t) for some t, then the full
characterization of the set of equilibria is a straightforward but tedious generalization of
Proposition 1. In all equilibria, bad Sender would still pull the arm later than good Sender
in the first-order stochastic dominance sense, but for some τ such that FB (τ) < FG (τ) she
would do so for a mechanical (rather than strategic) reason. If the arm has arrived, then
she would strictly prefer to pull it. But the cumulative probability that bad Sender pulls
the arm at or before τ is then given by FB (τ) < PG (τ) = FG (τ).17

17Notice that the indifference condition (1) would no longer hold at such τ.
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4.4 Stochastic Deadline

In the benchmark model, we assume that the deadline T is fixed and common knowledge.
In some applications, the deadline T may be stochastic. In particular, suppose that T
is a random variable distributed on {T, T + 1, . . . , T̄} where time runs from 1 to T̄ + 1.
Now the process L has T as a random variable rather than a constant. For this process,
we can define the ex-ante distribution H of posteriors at T, where H depends only on
pulling time τ and interim belief m. Notice that Assumption 1 still holds for this ex-
ante distribution of posteriors for any τ, τ′ ∈ {1, . . . , T̄ + 1}. Therefore, from the ex-ante
perspective, Sender’s problem is identical to the problem with a deterministic deadline
and all results carry over.

5 Poisson Model: Comparative Statics

We now specialize to a Poisson model. Time is continuous t ∈ [0, T].18 The arm arrives
to Sender at Poisson rate α. After receiving the arm, each type of Sender chooses when to
pull it. If the arm is pulled by bad Sender, a breakdown occurs at Poisson rate λ. But if the
arm is pulled by good Sender, a breakdown never occurs. At a deadline t = T, Receiver
takes a binary action a ∈ {0, 1}.

Following our discussion in Section 2.2, each type of Sender gets payoff 1 if a = 1
and 0 otherwise. Receiver privately knows her type r, uniformly distributed on the unit
interval. If Receiver takes action a = 1, he gets payoff 0. If he takes action a = 0, he
gets payoff r − 1 if Sender is good and r otherwise. Therefore, Receiver takes action 1
whenever her posterior belief s is greater than r. It follows that Sender’s expected payoff
is

v∗G (s) = v∗B (s) = Pr (r ≤ s) = s,

and Receiver’s expected payoff u∗ (s) is given by

u∗ (s) =
ˆ 1

s
[s (r− 1) + (1− s) r] dr =

(1− s)2

2
.

We begin by explicitly characterizing the divine equilibrium. By Proposition 1 and
the discussion at the end of Section 3, the divine equilibrium has the following three
properties. First, good Sender pulls the arm as soon as it arrives. Second, bad Sender is

18Technically, we use the results from Section 3 by treating continuous time as an appropriate limit of
discrete time.
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indifferent between pulling the arm at any time t ≥ t̄ ≥ 0 and not pulling it at all. Third,
bad Sender strictly prefers to delay pulling the arm if t < t̄. The threshold t̄ is uniquely
determined by the parameters of the model.

In the Poisson model, equations (1), (2) become

µ (t) e−λ(T−t)

µ (t) + (1− µ (t)) e−λ(T−t)
= µ (T) for t ≥ t̄,

ˆ T

0
α

1− µ (t)
µ (t)

e−αtdt +
1− µ (T)

µ (T)
e−αT =

1− π

π
.

Combining these two equations with the boundary condition µ (t) = 1 for t < t̄ yields
the explicit solution µ (t). This completely characterizes the divine equilibrium.19

Proposition 2. In the divine equilibrium, good Sender pulls the arm as soon as it arrives and
Receiver’s interim belief that Sender is good given pulling time t is:

µ (t) =


µ(T)

1−µ(T)(eλ(T−t)−1)
if t ≥ t̄;

1 otherwise,

where µ (T) is Receiver’s posterior belief if the arm is never pulled and

t̄ =

0 if π < π̄;

T − 1
λ ln 1

µ(T) otherwise,

µ (T) =


[

αeλT+λe−αT

α+λ + 1−π
π

]−1
if π < π̄;[

(α+λ)(1−π)
λπ eαT + 1

]− λ
α+λ otherwise,

π̄ =

[
1 +

λ

α + λ

(
eλT − e−αT

)]−1

.

We define the probability of withholding, denoted by q, as the probability that bad Sender

19In every divine equilibrium, PG (t) = F (t) for all t ∈ [t̄, T] and µ (t) = 1 for all t ∈ [0, t̄]. But for each
distribution P̂ such that P̂ (t) ≤ F (t) for all t ∈ [0, t̄) and P̂ (t) = F (t) for all t ∈ [t̄, T], there exists a divine
equilibrium with PG = P̂. Hereafter, we focus on the divine equilibrium in which PG (t) = F (t) for all
t ∈ [0, T].
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never pulls the arm. By Bayes’ rule we have

µ (T) =
πe−αT

πe−αT + (1− π) q
(6)

which yields

q =
π

1− π

1− µ (T)
µ (T)

e−αT. (7)

Proposition 3 presents comparative statics on equilibrium variables.

Proposition 3. In the divine equilibrium,

1. q and t̄ increase with π and λ but decrease with α;

2. µ (T) increases with π but decreases with λ and α.

Proof. In Appendix C.

Part 1 says that bad Sender pulls the arm later and withholds with a higher probability
if the prior belief about Sender is higher, the arrival rate of the breakdown is higher, and
the arrival rate of the arm is lower. The intuition is as follows. If the prior belief that
Sender is good is high, bad Sender has a lot to lose in case of a breakdown. Similarly, if
the arrival rate of the breakdown is high, pulling the arm is likely to reveal that Sender
is bad. In both cases, bad Sender is then reluctant to pull the arm. In contrast, if the
arrival rate of the arm is high, good Sender is more likely to pull the arm and Receiver
will believe that Sender is bad with high probability if she does not pull the arm. In this
case, bad Sender is more willing to pull the arm.

Part 2 says that Receiver’s posterior belief about Sender if the arm is never pulled is
higher if the prior belief about Sender is higher, the arrival rate of the breakdown is lower,
and the arrival rate of the arm is lower. Equation (6) suggests that there are direct and
strategic effects of the prior belief and the arrival rate of the arm on Receiver’s posterior
belief. Holding the probability of withholding q constant, a higher prior belief and a lower
arrival rate of the arm improve Receiver’s posterior belief about Sender if the arm is never
pulled. But the strategic effect works in the opposite direction, because the probability of
withholding q increases with the prior belief and decreases with the arrival rate of the
arm. Part 2 says that the direct effect always dominates the strategic effect in the Poisson
model. Finally, a higher arrival rate of the breakdown worsens Receiver’s posterior belief
about Sender if the arm is never pulled because it increases the probability of withholding
but does not affect the behavior of good Sender.
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Proposition 4 presents comparative statics on Receiver’s and Sender’s expected pay-
offs.

Proposition 4. In the divine equilibrium,

1. the expected payoff of bad Sender increases with π but decreases with λ and α;

2. the expected payoff of good Sender increases with π, λ, and α;

3. the expected payoff of Receiver decreases with π but increases with λ, and α.

Proof. In Appendix C.

There are both direct and strategic effects of parameters on the equilibrium expected
payoffs. Just as in Proposition 3, it turns out that direct effects dominate. Specifically, a
higher prior probability that Sender is good increases the expected payoff of Sender but
decreases the expected payoff of Receiver; a higher arrival rates of the breakdown and the
arm allow Receiver to learn more about Sender and take a more appropriate action, which
increases the expected payoffs of Receiver and good Sender, but decreases the expected
payoff of bad Sender.

6 The Pattern of Release of Political Scandals

To interpret the comparative statics results, we use our motivating example of the strate-
gic release of scandals before elections. Scandals have marked the tenures of many recent
US presidents and have “forced out (or seriously threatened) [. . . ] three of the last eight”
(Nyhan, 2015). Yet, to the best of our knowledge, no obvious time pattern of release rel-
ative to the date of elections has been uncovered for either presidential or congressmen’s
scandals (Nyhan, 2015; Peters and Welch, 1980; Welch and Hibbing, 1997).

In this section we use our model to derive clear predictions about the pattern of release
of political scandals. Using Nyhan’s (2015) dataset, we show how our model can help to
understand why previous empirical studies have not found convincing evidence of an
October surprise effect: a concentration of scandals towards the end of a term and just
before an election.

6.1 Occurrence of Scandals

A first group of comparative statics concerns the cumulative probability of scandals re-
leased before the election. Proposition 3 says that the probability PB (T) = 1− q that bad
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Sender pulls the arm before the deadline decreases with the prior π. Thus our model
predicts that when voters hold a higher opinion of the president (low π) then the media
outlet is more likely to release a fabricated scandal. Notice that this does not imply that
the total probability that a scandal is released is higher when voters’ prior belief is lower.
In fact, the total probability of release of a scandal is given by

R ≡ π
(

1− e−αT
)

︸ ︷︷ ︸
PG(T)

+ (1− π) (1− q)︸ ︷︷ ︸
PB(T)

= 1− πe−αT

µ (T)
.

As PB (T) = 1 − q decreases with π, we have two contrasting effects. On one hand,
holding the probability of withholding q constant, a marginal increase in π increases the
total probability of release R by PG (T)− PB (T), which is positive by Lemma 3. This is a
direct effect: if voters hold a high opinion of the incumbent (low π), then there are simply
fewer authentic scandals. On the other hand, conditional on a fabricated scandal, the
probability of release (1− q) decreases with π. This is a strategic effect: if voters hold a
higher opinion of the incumbent, the opposition media has greater incentives to release
fabricated scandals.

Part 1 of Proposition 5 says that the strategic effect dominates the direct effect when π

is sufficiently low.

Proposition 5. In the divine equilibrium, the total probability that Sender pulls the arm

1. is quasiconvex in π: decreases with π if

π <
αeαT

αeαT + λ (eαT − 1)
∈ (0, 1)

and increases with π otherwise;

2. decreases with λ;

3. increases with α.

Proof. In Appendix C.

Nyhan (2015) and Sowers and Nelson (2015) study what factors determine the like-
lihood of US presidential scandals. Sowers and Nelson (2015) finds that more scandals
involving the incumbent president are released when economic indicators and approval
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rates suggest that voters approve of the president. From the perspective of the opposition
media, this means that the prior belief π is low. Thus, this empirical observation is con-
sistent with our finding in Part 1 of Prediction 1 that the strategic effect can dominate the
direct effect.

Nyhan (2015) finds that more scandals involving the incumbent president are released
when opposition voters are more hostile to the president. The author conjectures that
when opposition voters are more hostile to the president, then they are “supportive of
scandal allegations against the president and less sensitive to the evidentiary basis for
these claims” (p. 6). This mechanism is therefore consistent with Part 2 of Proposition 5.

Nyhan (2015) also finds that more scandals involving the incumbent president are re-
leased when the news agenda is less congested. When the news agenda is congested,
the opposition media has less time to devote to investigate the incumbent and air scan-
dals, thus reducing the arrival rate of scandals. This empirical observation is therefore
consistent with Part 3 of Proposition 5.

6.2 Timing of Scandals

Our model also provides dynamic predictions about when scandals are released.

Proposition 6. In the divine equilibrium, the probability density that Sender pulls the arm at
time t

1. decreases with t from 0 to t̄ and is quasiconcave in t on the interval [t̄, T]: increases with t if

t ≤ T − 1
λ

ln
(

α

α + λ

1 + µ (T)
µ (T)

)
and decreases with t otherwise;

2. is quasiconvex in t whenever
α

α + λ

1 + µ (T)
µ (T)

≤ 1.

Proof. In the divine equilibrium, the probability density that Sender pulls the arm at time
t is given by

p (t) = πpG (t) + (1− π) pB (t)

=

παe−αt if t < t̄

παe−αt + παe−αt 1−µ(T)eλ(T−t)

µ(T) if t ≥ t̄
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where pG (t) and pB (t) are the densities for good and bad Sender, respectively. Obviously,
if t < t̄, then p (t) is decreasing in t. For t ≥ t̄, differentiating with respect to t we have

dp (t)
dt

= παe−αt
[
(α + λ) eλ(T−t) − α

1 + µ (T)
µ (T)

]
which is positive whenever

t ≤ T − 1
λ

ln
(

α

α + λ

1 + µ (T)
µ (T)

)
.

We can therefore conclude that p (t) is quasiconcave on the interval [t̄, T].

As mentioned above, previous empirical studies of US presidential scandals did not
find convincing evidence of an October surprise effect. Part (ii) of Proposition 6 says
that, for a wide range of parameters, the probability density of scandals is U-shaped:
scandals should be more frequent at the beginning of a presidential term and just before
the president is up for reelection (see Figure 1a).

We can test this prediction using Nyhan’s (2015) data. The data-set contains a weekly
binary variable indicating whether a new scandal involving the current US president was
first mentioned in the Washington Post during that week, for the period 1977-2008. Al-
though scandals might have first appeared on other outlets, we agree with the author
that the Washington Post is likely to have mentioned such scandals immediately there-
after. Therefore we use this variable as a proxy for the date of release of all presidential
scandals. As our model concerns scandals involving the incumbent in view of his pos-
sible reelection, we focus on all the presidential elections in which the incumbent was
a candidate. Therefore we consider only the first term of each president from 1977 to
2008.20 We consider the first week of January of the year following an election as the de
facto inauguration date.21 In all cases, the election was held on the 201st week after this
date. We therefore construct the variable weeks to election as the difference between 201
and the number of weeks served by the president, with 0 being the week of the election.

Figure 1b depicts the distribution of the first mention of a presidential scandal in the
Washington Post as a function of weeks to election. The quadratic fit reveals that scan-
dals are more concentrated towards the beginning of the term and when the election is

20This corresponds to the first terms of five presidents: Jimmy Carter (1976-1980), Ronald Reagan (1980-
1984), George H. W. Bush (1988-1992), Bill Clinton (1992-1996), and George W. Bush (2000-2004). Each
president run for reelection and three (Reagan, Clinton, and Bush) served two full terms.

21Nyhan (2015) does not provide data on scandals involving the president-elect between Election Day
and the first week of January of the following year, but it contains data on scandals involving the president-
elect between the first week of January and the date of his inauguration: there are no such scandals.
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Figure 1: Pulling density and US presidential scandals

(a) Sender’s (dashed), good (dotted) and
bad (solid) Sender’s pulling density; α =
1.5, λ = 6, π = .5, T = 1.

(b) US presidential scandals and weeks to election.
Quadratic fit (solid line) and 95% confidence interval
(dashed area).
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approaching. Column 1 of Table 1 shows the results of a linear regression with the inde-
pendent variable being whether a scandal was first mentioned by the Washington Post
on a determined week. Both linear and quadratic terms for the variable weeks to election
are statistically significant. The magnitude of the effects we uncover is large when com-
pared to the average probability of a new scandal appearing in the press in a week: 0.016.
Towards the beginning of a president’s term, any further week reduces the probability of
a scandal onset by around 3.2%. This effect reduces to zero just before the mid-point of
the term.22 Thereafter, the probability of a new scandal increases and, during the final
election campaign, any new week the probability of a scandal onset increases by around
4.7%.

It is possible that other factors that determine the release of scandals correlate with the
president’s tenure in office. For example, opposition voters might have a worse opinion
of the president when elections get close, because of the effect of the electoral campaign.
Or perhaps major events that congest the news agenda are more likely during the middle
part of the presidential term. We therefore report in Column 2 of Table 1 the result of a
regression including the three other variables that Nyhan (2015) finds to have a strong
effect on scandal release, namely a measure of opposition approval, a measure of stan-
dardized news pressure, and whether the opposition controlled one or both chambers of
Congress. Furthermore, the regression in Column 2 of Table 1 also includes president
fixed effects. Both linear and quadratic terms maintain their statistical significance and

22On week 82; 119 weeks before the election.
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Table 1: Pattern of release of US Predisential scandals

(1) (2)
VARIABLES Scandal onset (×104)

Weeks to election -7.40** -6.97**
(3.34) (2.88)

Weeks to election sq. 0.03** 0.03**
(0.01) (0.01)

Observations 1,005 1,005
R-squared 0.0087 0.0089
Controls No Yes
President fixed effects No Yes
Notes: Robust standard errors in parentheses;
*** p<0.01, ** p<0.05, * p<0.1. Controls include:

divided government, news pressure, lagged
opposition approval.

their magnitude is unchanged.23

6.3 Further Testable Predictions

As breakdowns are observable, it could be also possible to test how the release time of
a scandal affects its likelihood to be discovered to be fabricated before the election. As
fabricated scandals are released later than authentic ones, then there are two contrasting
effects. On one hand, conditional on being fabricated, a scandal released earlier on is
directly more likely to produce a breakdown. On the other hand, fabricated scandals
are strategically more likely to be released later. The following proposition says that the
strategic effect dominates if the scandal is released sufficiently early (see Figure 2a).

Proposition 7. In the divine equilibrium, the probability of a breakdown is quasiconcave: in-
creases with the pulling time t if

t < tb ≡ T − 1
λ

ln
(

1 + µ (T)
2µ (T)

)
< T

and decreases with t otherwise.

23When using data from all elections, even when the incumbent is not running, coefficients have the
same sign but lower statistical significance.
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Figure 2: Further Testable Predictions

(a) Interim beliefs that Sender is bad (solid); con-
ditional (i.e., 1− e−λ(T−t); dashed) and equilibrium
(dotted) probability of a breakdown; α = 1, λ = 2,
π = .5, T = 1.

(b) The effect of scandals on US President’s approval
rate. Presidential scandals (dots), quadratic fit (solid
line), 95% confidence interval (dashed area).
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Proof. In Appendix C.

Notice that if the interval before the deadline T is sufficiently short or the arrival rate
of the arm α is sufficiently small, then tb is negative and hence the probability of the
breakdown monotonically decreases with the pulling time of the arm.

Were it possible to identify ex-post whether a released scandal is fabricated or authen-
tic, then one could test whether fabricated scandals are more likely to be released earlier
or later. We can precisely identify the conditions under which fabricated scandals are
more likely to be released later.

Proposition 8. The probability density that bad Sender pulls the arm at time t is quasiconcave:
increases with t if

t < tp ≡ T − 1
λ

ln
(

α

α + λ

1
µ (T)

)
and decreases with t otherwise.

Proof. In Appendix C.

Notice that if the arrival rate of the arm α is sufficiently small, then tp > T and hence
the probability that bad sender pulls the arm monotonically increases with time (see Fig-
ure 1a). When instead α is sufficiently large, then tp < 0 and the probability monotoni-
cally decreases with time.

We can also derive the instantaneous impact on beliefs upon the release of a scandal
at time t ≤ T, µ (t)− µ̃ (t), where µ̃ (t) is Receiver’s belief at t if Sender has not pulled
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the arm yet. Corollary 2 says that the instantaneous impact of the release of a scandal is
strictly positive for any release time t < T. From an empirical perspective, when µ (t)−
µ̃ (t) is larger, then opinion surveys and voting polls should be more responsive to the
release of a scandal. Our model could be used to make predictions about the impact
of scandals released at different times. For example, as the election date approaches,
µ (t) − µ̃ (t) goes to 0, implying that scandals released immediately before an election
should have no impact. In contrast, scandals released before the threshold date t̄ have
greater impact when they are released later. Thus, the instantaneous impact of scandals
can be smaller (i.e., less damaging for the president) towards the beginning and the end
of an electoral campaign. Figure 2b shows the change in approval rate in each month in
which US presidential scandals were first released.24 Scandals released during the middle
part of the President’s term appear to be the most damaging to his reputation.

7 Concluding Remarks

This paper analyzes a model in which the timing of information release is driven by the
tradeoff between credibility and scrutiny. Our model helps to explain the existing evi-
dence on the frequency of US presidential scandals. The analysis also yields novel pre-
dictions about the dynamics of information release. We explore whether these predictions
are consistent with available data on the pattern of US presidential scandals and find sup-
porting evidence.

Our model can also be used to deliver normative implications for the design of a va-
riety of institutions. For example, more than a third of the world’s countries mandate a
blackout period before elections: a ban on political campaigns for one or more days imme-
diately preceding elections.25 We expect Receiver’s optimal blackout period to be zero for
a wide range of parameter values.

We envision that the credibility-scrutiny tradeoff may be important in other economic
applications beyond electoral campaigns. For example, managers can give the board of
directors more or less time to examine draft proposals before a board meeting. We hope
our model will serve as a useful framework for studying these applications in the future.

24Data from Nyhan (2015). Approval rates are available monthly and we do not observe when the
approval rate surveys were conducted during the month. Therefore, we use the difference in the approval
rate between the month following the scandal and the month preceding it. Alternative measures (current
minus preceding and following minus current) also give a U-shaped relationship but the effects are less
significant.

25The 1992 US Supreme Court sentence Burson v. Freeman, 504 US 191, forbids such practices as violations
of freedom of speech.

26



References

Acharya, Viral V, Peter DeMarzo, and Ilan Kremer, “Endogenous Information Flows
and the Clustering of Announcements,” American Economic Review, 2011, 101 (7), 2955–
79.

Alonso, Ricardo and Odilon Camara, “Bayesian Persuasion with Heterogeneous Priors,”
Journal of Economic Theory, 2016, forthcoming.

Banks, Jeffrey S. and Joel Sobel, “Equilibrium Selection in Signaling Games,” Economet-
rica, 1987, 55 (3), 647–661.

Blackwell, David, “Equivalent Comparisons of Experiments,” Annals of Mathematical
Statistics, 1953, 24 (2), 262–272.

Bolton, Patrick and Christopher Harris, “Strategic Experimentation,” Econometrica, 1999,
67 (2), 349–374.

Brocas, Isabelle and Juan D Carrillo, “Influence through Ignorance,” RAND Journal of
Economics, 2007, 38 (4), 931–947.

Che, Yeon-Koo and Johannes Hörner, “Optimal Design for Social Learning,” Yale Uni-
versity Working Paper, 2015.

Cho, In-Koo and David M Kreps, “Signaling Games and Stable Equilibria,” The Quarterly
Journal of Economics, 1987, 102 (2), 179–221.

DellaVigna, Stefano and Ethan Kaplan, “The Fox News Effect: Media Bias and Voting,”
The Quarterly Journal of Economics, 2007, pp. 1187–1234.

Duggan, John and Cesar Martinelli, “A spatial theory of media slant and voter choice,”
The Review of Economic Studies, 2011, 78 (2), 640–666.

Dye, Ronald A, “Disclosure of Nonproprietary Information,” Journal of Accounting Re-
search, 1985, 23 (1), 123–145.

Dziuda, Wioletta, “Strategic Argumentation,” Journal of Economic Theory, 2011, 146 (4),
1362–1397.

Ely, Jeffrey, Alexander Frankel, and Emir Kamenica, “Suspense and Surprise,” Journal of
Political Economy, 2015, 123 (1), 215–260.

27



Ely, Jeffrey C, “Beeps,” Northwestern University Working Paper, 2015.

Gentzkow, Matthew and Jesse M Shapiro, “Media Bias and Reputation,” Journal of Po-
litical Economy, 2006, 114 (2), 280–316.

Grenadier, Steven R, Andrey Malenko, and Nadya Malenko, “Timing Decisions in Or-
ganizations: Communication and Authority in a Dynamic Environment,” Stanford Uni-
versity Graduate School of Business Research Paper No. 15-1, 2015.

Grossman, Sanford J., “The Informational Role of Warranties and Private Disclosures
about Product Quality,” Journal of Law and Economics, 1981, 24, 461–483.

and Oliver D. Hart, “Takeover Bids, the Free-Rider Problem, and the Theory of the
Corporation,” Bell Journal of Economics, 1980, 11 (1), 42–64.

Guttman, Ilan, Ilan Kremer, and Andrej Skrzypacz, “Not Only What but also When:
A Theory of Dynamic Voluntary Disclosure,” American Economic Review, 2013, 104 (8),
2400–2420.

Halac, Marina, Navin Kartik, and Qingmin Liu, “Contests for Experimentation,”
Columbia University Working Paper, 2015.

Horner, Johannes and Andrzej Skrzypacz, “Selling Information,” Journal of Political Econ-
omy, forthcoming.

Jovanovic, Boyan, “Truthful Disclosure of Information,” Bell Journal of Economics, 1982, 13
(1), 36–44.

Jung, Woon-Oh and Young K Kwon, “Disclosure when the Market is Unsure of Informa-
tion Endowment of Managers,” Journal of Accounting Research, 1988, 26 (1), 146–153.

Kamenica, Emir and Matthew Gentzkow, “Bayesian Persuasion,” American Economic Re-
view, 2011, 101, 2590–2615.

Keller, Godfrey, Sven Rady, and Martin Cripps, “Strategic Experimentation with Expo-
nential Bandits,” Econometrica, 2005, 73 (1), 39–68.

Maskin, Eric S and Jean Tirole, “The Principal-Agent Relationship with an Informed
Principal, II: Common Values,” Econometrica, 1992, 60 (1), 1–42.

Milgrom, Paul R., “Good News and Bad News: Representation Theorems and Applica-
tions,” Bell Journal of Economics, 1981, 12, 350–391.

28



Nyhan, Brendan, “Scandal Potential: How Political Context and News Congestion Affect
the President’s Vulnerability to Media Scandal,” British Journal of Political Science, 2015,
45 (02), 435–466.

Peters, John G and Susan Welch, “The effects of charges of corruption on voting behavior
in congressional elections,” American Political Science Review, 1980, 74 (03), 697–708.

Prat, Andrea and David Stromberg, “The Political Economy of Mass Media,” in “Ad-
vances in Economics and Econometrics: Volume 2, Applied Economics: Tenth World
Congress,” Vol. 50 Cambridge University Press 2013, p. 135.

Rayo, Luis and Ilya Segal, “Optimal Information Disclosure,” Journal of Political Economy,
2010, 118 (5), 949–987.

Shavell, Steven, “Acquisition and Discolsure of Information Prior to Sale,” RAND Journal
of Economics, 1994, 25 (1), 20–36.

Shin, Hyun-Song, “News Management and the Value of Firms,” RAND Journal of Eco-
nomics, 1994, 25 (1), 58–71.

, “Disclosure and Asset Returns,” Econometrica, 2003, 71 (1), 105–133.

, “Disclosure Risk and Price Drift,” Journal of Accounting Research, 2006, 44, 351–379.

Sowers, Thomas E II and James P Nelson, “The Timing of Presidential Scandals: The
Role of Economics, Divided Government and the Media,” Open Journal of Political Sci-
ence, 2015, 6 (01), 83.

Welch, Susan and John R Hibbing, “The effects of charges of corruption on voting behav-
ior in congressional elections, 1982–1990,” The Journal of Politics, 1997, 59 (01), 226–239.

A Statistical Properties

Proof of Lemma 1. Follows from Lemma 1′.

Proof of Lemma 1′. Part 1. By Blackwell (1953), Assumption 1 with τ′ = T + 1 implies
that pulling the arm at τ is the same as releasing a finite-valued informative signal y. By
Bayes’ rule, posterior s is given by:

s =
mq (y | G)

mq (y | G) + (1−m) q (y | B)
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where q (y | θ) is the probability of y given θ. Therefore,

q (y | G)

q (y | B)
=

1−m
m

s
1− s

. (8)

Writing (8) for interim beliefs m and m′, we obtain the following relation for correspond-
ing posterior beliefs s and s′:

1−m′

m′
s′

1− s′
=

1−m
m

s
1− s

which implies that s′ > s for m′ > m; so part 1 follows.
Part 2. By Blackwell (1953), Assumption 1 implies that pulling the arm at τ is the same

as pulling the arm at τ′ and then releasing an additional finite-valued informative signal
y. A signal y is informative if there exists y such that q (y | G) is not equal to q (y | B). Part
2 holds because for any strictly increasing concave v∗, we have

E [v∗ (s) | τ, m, B] = E

[
v∗
(

sq (y | G)

sq (y | G) + (1− s) q (y | B)

)
| τ′, m, B

]
= E

[
E

[
v∗
(

sq (y | G)

sq (y | G) + (1− s) q (y | B)

)
| τ′, s, B

]
| τ′, m, B

]
≤ E

[
v∗
(

E

[
sq (y | G)

sq (y | G) + (1− s) q (y | B)
| τ′, s, B

])
| τ′, m, B

]

< E

v∗

 sE
[

q(y|G)
q(y|B) | τ′, s, B

]
sE
[

q(y|G)
q(y|B) | τ′, s, B

]
+ (1− s)

 | τ′, m, B


= E

v∗

 s ∑ q(y|G)
q(y|B) q (y | B)

s ∑ q(y|G)
q(y|B) q (y | B) + 1− s

 | τ′, m, B


= E

[
v∗ (s) | τ′, m, B

]
,

where the first line holds by Bayes’ rule, the second by the law of iterated expectations,
the third by Jensen’s inequality applied to concave v∗, the fourth by strict monotonicity
of v∗ and Jensen’s inequality applied to strictly concave function f (z) ≡ sz/ (sz + 1− s),
the fifth by definition of expectations, and the last by Kolmogorov’s axioms.

Part 3. Analogously to Part 2, Part 3 holds because for any strictly increasing convex
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v∗, we have

E [v∗ (s) | m, τ, G] = E

[
v∗
(

sq (y | G)

sq (y | G) + (1− s) q (y | B)

)
| τ′, m, G

]
= E

[
E

[
v∗
(

sq (y | G)

sq (y | G) + (1− s) q (y | B)

)
| τ′, s, G

]
| τ′, m, G

]
≥ E

[
v∗
(

E

[
sq (y | G)

sq (y | G) + (1− s) q (y | B)
| τ′, s, G

])
| τ′, m, G

]

> E

v∗

 s

s + (1− s)E
[

q(y|B)
q(y|G)

| τ′, s, G
]
 | τ′, m, G


= E

v∗

 s

s + (1− s)∑ q(y|B)
q(y|G)

q (y | G)

 | τ′, m, G


= E

[
v∗ (s) | m, τ′, G

]
.

Proof of Lemma 1′′. The proof of part 1 is the same as in Lemma 1′. As noted before,
pulling the arm at τ is the same as pulling the arm at τ′ and then releasing an additional
finite-valued informative signal y. Therefore,

E [s | τ, m, σ] = E

[
sq (y | G)

sq (y | G) + (1− s) q (y | B)
| τ′, m, σ

]
= E

[
E

[
sq (y | G)

sq (y | G) + (1− s) q (y | B)
| τ′, s, σ

]
| τ′, m, σ

]

= E

 sσE
[

sq(y|G)
sq(y|G)+(1−s)q(y|B) | τ′, s, G

]
+

+ (1− sσ)E
[

sq(y|G)
sq(y|G)+(1−s)q(y|B) | τ′, s, B

] ∣∣∣∣∣∣ τ′, m, σ


= E

 sσ ∑ sq(y|G)
sq(y|G)+(1−s)q(y|B)q (y | G) +

+ (1− sσ)∑ sq(y|G)
sq(y|G)+(1−s)q(y|B)q (y | B)

∣∣∣∣∣∣ τ′, m, B


= E

s ∑
sσ + (1− sσ)

q(y|B)
q(y|G)

s + (1− s) q(y|B)
q(y|G)

q (y | G) | τ′, m, B


≷ E

[
s | τ′, m, B

]
whenever sσ ≷ s,

where the first line holds by Bayes’ rule, the second by the law of iterated expectations,
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the third by Proposition 1 of Alonso and Camara (2016) with sσ given by

sσ =
s σ

π

s σ
π + (1− s) (1−σ)

(1−π)

,

the fourth by definition of expectations, the fifth by rearrangement, and the last by Jensen’s
inequality applied to function h (z) ≡ (sσ + (1− sσ) z) / (sz + (1− s) z), which is convex
(concave) in z whenever sσ > s (sσ < s). Parts 2 and 3 follow because sσB < s < sσG

whenever Pr (θ = G | σB) < π < Pr (θ = G | σG).

B Benchmark Model

To facilitate our discussion in Section 4, we prove our results under more general assump-
tions than in our benchmark model. First, we assume that v∗G (s) is strictly increasing and
(weakly) convex and v∗B (s) is strictly increasing and (weakly) concave. Second, we as-
sume that the arm arrives at a random time according to distributions FG = F for good
Sender and FB for bad Sender, where FB (t) ≥ FG (t) for all t.

Proof of Lemma 2. Part 1. Suppose, on the contrary, that µ (τ) ≤ µ (τ′). Then

ˆ
v∗B (s) dHB (s|τ, µ (τ)) ≤

ˆ
v∗B (s) dHB

(
s|τ′, µ (τ)

)
≤
ˆ

v∗B (s) dHB
(
s|τ′, µ

(
τ′
))

,

where the first inequality holds by Lemma 1′ part 2 and the second by Lemma 1′ part 1.
Moreover, at least one inequality is strict. Indeed, if µ (τ) ∈ (0, 1), then the first inequality
is strict. If µ (τ) = 0, then µ (τ′) > 0 (because µ (τ) = µ (τ′) = 0 is not allowed); so the
second inequality is strict. Finally, if µ (τ) = 1, then µ (τ) ≤ µ (τ′) cannot hold (because
µ (τ) = µ (τ′) = 1 is not allowed). The displayed inequality implies that bad Sender
strictly prefers to pull the arm at τ′ than at τ. A contradiction.

Good Sender strictly prefers to pull the arm at τ because

ˆ
v∗G (s) dHG (s|τ, µ (τ)) ≥

ˆ
v∗G (s) dHG

(
s|τ′, µ (τ)

)
>

ˆ
v∗G (s) dHG

(
s|τ′, µ

(
τ′
))

,

where the first inequality holds by Lemma 1′ part 3 and the second by µ (τ) > µ (τ′) and
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Lemma 1′ part 1.
Part 2. If τ is in the support of PB, then bad Sender weakly prefers to pull the arm

at τ than at any other τ′ > τ. By Bayes’ rule µ (τ) < 1. Also, µ (τ) cannot be zero,
otherwise bad Sender would strictly prefer to pull the arm at T + 1 since µ (T + 1) > 0
by FG (T) < 1. Therefore, by part 1 of this lemma, good Sender strictly prefers to pull the
arm at τ than at any other τ′ > τ; so PG (τ) = FG (τ).

Proof of Lemma 3. By Lemma 2 part 2, each t′ in the support of PB is also in the support of
PG. We show that each t′ in the support of PG is also in the support of PB by contradiction.
Suppose that there exists t′ in the support of PG but not in the support of PB. Then,
by Bayes’ rule µ (t′) = 1; so bad Sender who receives the arm at t ≤ t′ gets the highest
possible equilibrium payoff v∗B (1). Therefore, there exists a period τ ≥ t′ at which µ (τ) =

1 (recall that the support of H (.|τ, π) does not contain s = 1) and bad Sender pulls the
arm with a positive probability. A contradiction.

Suppose, on the contrary, that there exists τ such that PG (τ) > 0 and PB (τ) ≥ PG (τ).
Because Pθ (τ) = ∑τ

t=1 (Pθ (t)− Pθ (t− 1)), there exists τ′ ≤ τ in the support of PB

such that PB (τ
′) − PB (τ

′ − 1) ≥ PG (τ′) − PG (τ′ − 1). Similarly, because 1− Pθ (τ) =

∑T+1
t=τ+1 (Pθ (t)− Pθ (t− 1)) and 1 − PG (τ) > 0 by PG (T) ≤ FG (T) < 1, there exists

τ′′ > τ in the support of PG such that PG (τ′′)− PG (τ′′ − 1) ≥ PB (τ
′′)− PB (τ

′′ − 1). By
Bayes’ rule,

µ
(
τ′
)

=
π (PG (τ′)− PG (τ′ − 1))

π (PG (τ′)− PG (τ′ − 1)) + (1− π) (PB (τ′)− PB (τ′ − 1))
≤ π

≤ π (PG (τ′′)− PG (τ′′ − 1))
π (PG (τ′′)− PG (τ′′ − 1)) + (1− π) (PB (τ′′)− PB (τ′′ − 1))

= µ
(
τ′′
)

.

Therefore, by Lemma 2, bad Sender strictly prefers to pull the arm at τ′′ than at τ′, which
implies that τ′ cannot be in the support of PB. A contradiction.

Proof of Lemma 4. By Lemma 3, PG and PB have the same supports and therefore µ (τ) ∈
(0, 1). Let the support of PG be {τ1, ..., τn}. Notice that τn = T + 1 because PG (T) ≤
FG (T) < 1. Since τn−1 is in the support of PB and

PB (τn−1) < PG (τn−1) = FG (τn−1) ≤ FB (τn−1) ,

where the first inequality holds by Lemma 3, the equality by Lemma 2 part 2, and the last
inequality by assumption FB (t) ≥ FG (t). Therefore, bad Sender who receives the arm
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at τn−1 must be indifferent between pulling the arm at τn−1 or at τn. Analogously, bad
Sender who receives the arm at τn−k−1 must be indifferent between pulling it at τn−k−1

and at some τ ∈ {τn−k, . . . , τn}. Thus, by mathematical induction on k, bad Sender is
indifferent between all τ in the support of PG, which proves (1).

By Bayes’ rule, for all τ in the support of PG,

1− π

π
(PB (τ)− PB (τ − 1)) =

1− µ (τ)

µ (τ)
(PG (τ)− PG (τ − 1)) . (9)

Summing up over τ yields (2). Finally, suppose, on the contrary, that there exist two
distinct solutions π′ and π′′ to (1) and (2). By Lemma 1′ part 1, (1) uniquely determines
µ (τ) for a given µ (T + 1) and µ (τ) is increasing in µ (T + 1). Thus, for π′ and π′′ to be
distinct, it must be that µ′ (T + 1) 6= µ′′ (T + 1). Without loss, suppose that µ′ (T + 1) <
µ′′ (T + 1), and thus µ′ (τ) < µ′′ (τ) for all τ in the support of PG. But then (2) cannot
hold for both π′ and π′′. A contradiction.

Proof of Proposition 1. Part 1. Using Lemmas 3 and 4 together with (9) proves the only if
part of part 1. Setting µ (τ) = 0 for τ not in the support of PG and using Lemma 2 proves
the if part of part 1.

Part 2. First, we notice that, by part 1 of Proposition 1, there exists an equilibrium with
PG (τ) = FG (τ) for all τ.

Adopting Cho and Kreps (1987)’s definition to our setting (see e.g., Maskin and Tirole,
1992), we say that an equilibrium is divine if µ (τ) = 1 for any τ /∈ supp (PG) at which
condition D1 holds. D1 holds at τ if for all m ∈ [0, 1] that satisfy

ˆ
v∗B (s) dHB (s|τ, p) ≥ max

t∈supp(PG),t>τ

ˆ
v∗B (s) dHB (s|t, µ (t)) (10)

the following inequality holds:

ˆ
v∗G (s) dHG (s|τ, m) > max

t∈supp(PG),t>τ

ˆ
v∗G (s) dHG (s|t, µ (t)) . (11)

Suppose, on the contrary, that there exists a divine equilibrium in which PG (τ) <

FG (τ) for some τ ∈ {1, . . . , T}. By part 1 of Proposition 1, τ /∈ supp (PG). Let t∗ denote t
that maximizes the right hand side of (11). By Lemma 4, µ (t∗) ∈ (0, 1) and t∗ maximizes
the right hand side of (10). Therefore, by Lemma 2 part 1, D1 holds at τ; so µ (τ) = 1. But
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then τ /∈ supp (PG) cannot hold, because

ˆ
v∗G (s) dHG (s|τ, 1) = v∗G (1) > max

t∈supp(PG)

ˆ
v∗G (s) dHG (s|t, µ (t)) .

C Poisson model

Proof of Proposition 3. We first prove part 2 and then part 1.
Part 2.
For π:

dµ (T)
dπ

=


d

dπ

[
αeλT+λe−αT

α+λ + 1−π
π

]−1
if π < π,

d
dπ

[
(α+λ)(1−π)

λπ eαT + 1
]− λ

α+λ otherwise,

=


1

π2

[
αeλT+λe−αT

α+λ + 1−π
π

]−2
if π < π,

eαT

π2

[
(α+λ)(1−π)

λπ eαT + 1
]− α+2λ

α+λ otherwise,

=

{
1

π2 µ (T)2 if π < π,
eαT

π2 µ (T)2+ α
λ otherwise,

}
> 0.

For λ:

dµ (T)
dλ

=


d

dλ

[
αeλT+λe−αT

α+λ + 1−π
π

]−1
if π < π,

d
dλ

[
(α+λ)(1−π)

λπ eαT + 1
]− λ

α+λ otherwise.

First, when π < π̄, dµ(T)
dλ < 0 since e−(α+λ)T > 1− (α + λ) T for all α, λ, T > 0. Second, let

φ (λ) ≡ (α + λ) (1− π)

λπ
eαT > 0.

Then, when π > π̄,
dµ (T)

dλ
=

d
dλ

e−
λ

α+λ ln(1+φ(λ)).

To show dµ(T)
dλ < 0 it is then sufficient to note that

d
dλ

λ

α + λ
ln (1 + φ (λ)) =

1
α + λ

[
ln (1 + φ (λ))

α + λ
− 1

λ

1− π

π

1
1 + φ (λ)

]
> 0
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where the last passage follows from (1 + φ (λ)) ln (1 + φ (λ)) > φ (λ).
For α:
If π < π̄, then

dµ (T)
dα

= − (µ (T))2 χ

(α + λ)2 < 0

χ ≡ λ
{

eλT − [1 + (α + λ) T] e−αT
}
> 0

where the last passage follows from e(α+λ)T > 1 + (α + λ) T for all α, λ, T > 0.
If π ≥ π̄, by log-differentiation,

dµ (T)
dα

= µ (T)
λ

α + λ

[
ln (1 + ξ)

α + λ
−

dξ
dα

1 + ξ

]

ξ ≡ α + λ

λ

1− π

π
eαT.

Thus,
dµ (T)

dα
< 0 ⇐⇒ (1 + ξ) ln (1 + ξ)

ξ
< 1 + T (α + λ) . (12)

For π = π, ξ = e(α+λ)T − 1 > 0; so

dµ (T)
dα

< 0 ⇐⇒ ln (1 + ξ) < ξ,

which is true for all ξ > 0. If π is greater than π, then ξ is smaller than e(α+λ)T − 1 and
the inequality (12) is stronger because the left hand side is increasing in ξ for ξ > 0; so
dµ(T)

dα < 0 for π ≥ π̄.
Part 1.
For π on q:

dq
dπ

=
d

dπ

[
π

1− π

1− µ (T)
µ (T)

e−αT
]

=
e−αT

µ (T) (1− π)
×
[

1− µ (T)
1− π

− π

µ (T)
dµ (T)

dπ

]
,

=
e−αT

µ (T) (1− π)︸ ︷︷ ︸
>0

×


[

1−µ(T)
1−π − µ(T)

π

]
if π < π,[

1−µ(T)
1−π − eαT µ(T)1+ α

λ

π

]
otherwise.


If π < π̄, then dq

dπ > 0 if and only if 1−µ(T)
µ(T) > 1−π

π , which is satisfied since in equilibrium
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µ (T) < π.
If π ≥ π̄, then dq

dπ > 0 if and only if

1− µ (T)
µ (T)

>
1− π

π
eαTµ (T)

α
λ , (13)

which can be rewritten as

1− (1 + φ (λ))−
λ

α+λ >
λ

α + λ

φ (λ)

1 + φ (λ)

⇐⇒ 1 + φ (λ)− (1 + φ (λ))
α

α+λ >
λ

α + λ
φ (λ)

⇐⇒ 1 +
α

α + λ
φ (λ) > (1 + φ (λ))

α
α+λ .

To conclude, notice that 1 + xb > (1 + b)x for b > 0 and x ∈ (0, 1).
For π on t̄:
For π < π̄, t̄ = 0, but for π ≥ π̄, t̄ is increasing in π and decreasing in α because µ (T)

is increasing in π and decreasing in α.
For λ on q:

dq
dλ

=
d

dλ

[
π

1− π

1− µ (T)
µ (T)

e−αT
]

= − π

1− π

e−αT

µ (T)2
dµ (T)

dλ
> 0.

For λ on t̄:
For π < π̄, t̄ = 0, but for π ≥ π̄

dt̄
dλ

= − d
dλ

[
1

α + λ
ln
(
(α + λ) (1− π)

λπ
eαT + 1

)]
=

1
α + λ

(
ln (1 + φ (λ))

α + λ
− dφ (λ)

dλ

1
1 + φ (λ)

)
> 0

where the last passage follows from

dφ (λ)

dλ
= − α

λ2
1− π

π
eαT < 0.

For α on q:
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If π < π, then

1− π

π

dq
dα

=
(λ− α (α + λ) T) e(λ−α)T − λ (1 + 2 (α + λ) T) e−2αT

(α + λ)2 −
(

1
π
− 2
)

Te−αT

<
(λ− α (α + λ) T) e(λ−α)T − λ (1 + 2 (α + λ) T) e−2αT

(α + λ)2 −
(

1
π
− 2
)

Te−αT

= − e−2αT

(α + λ)2

(
λ (1 + (α + λ) T) +

(
(α + λ)2 T − λ

)
e(α+λ)T − (α + λ)2 TeαT

)
.

Thus dq/dα < 0, because for all positive α and λ

f (α, λ) = λ (1 + (α + λ)) +
(
(α + λ)2 − λ

)
e(λ+α) − (α + λ)2 eα

=
∞

∑
k=3

[
(α + λ)k

(k− 2)!
− λ

(α + λ)k−1

(k− 1)!
− (α + λ)2 αk−2

(k− 2)!

]
> 0,

where the inequality holds because each term ck in the sum is positive:

ck =
(α + λ)2

(
(α + λ)k−2 − αk−2

)
(k− 2)!

− (α + λ)2 λ (α + λ)k−3

(k− 1)!

=
(α + λ)2 λ

(
∑k−3

n=0 (α + λ)k−3−n αn
)

(k− 2)!
− (α + λ)2 λ (α + λ)k−3

(k− 1)!

>
(α + λ)2 λ (α + λ)k−3

(k− 2)!
− (α + λ)2 λ (α + λ)k−3

(k− 1)!
> 0.

If π ≥ π̄, then without loss of generality we can set T = 1 and get

1− π

π

dq
dα

= e−α

[
1− 1

µ (T)

(
1 +

dµ (T)
dα

µ (T)−1
)]

< 0

⇐⇒ dµ (T)
dα

> µ (T) (µ (T)− 1) .

This inequality is equivalent to:

1 + ξ

ξ

[
ln (1 + ξ) +

(α + λ)2

λ

(
1− (1 + ξ)−

α+λ
λ

)]
− 1− α− λ > 0

The left hand side is increasing in α, treating ξ as a constant. Then the inequality holds
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because it holds for α→ 0 :

1 + ξ

ξ

[
ln (1 + ξ) + λ

(
1− (1 + ξ)−1

)]
− 1− λ > 0

1 + ξ

ξ

[
ln (1 + ξ) + λ

ξ

1 + ξ

]
− 1− λ > 0

1 + ξ

ξ
ln (1 + ξ) > 1.

Proof of Proposition 4. Part 1. Recall that (i) Sender’s payoff equals Receiver’s posterior
belief about Sender at t = T and (ii) in equilibrium, bad Sender (weakly) prefers not to
pull the arm at all than pulling it at any time t ∈ [0, T]. Therefore, bad Sender’s expected
payoff equals Receiver’s belief about Sender at t = T if the arm has not been pulled:

E [vB] = µ (T) . (14)

Part 1 then follows from Proposition 3.
Part 2. By the law of iterated expectations,

E [s] = πE [vG] + (1− π)E [vB] = π

⇒ E [vG] = 1− 1− π

π
µ (T)

where s is Receiver’s posterior belief about Sender at t = T and we use (14) in the last
passage. Thus, good Sender’s expected payoff increases with α and λ by Proposition 3.
Finally, it is easy to see that E [vG] increases in π after sustituting µ (T) in E [vG].

Part 3. We shall show that in the divine equilibrium

E [u] =
(1− π) (1− µ (T))

2
. (15)

Part 3 then follows from Proposition 3.
Since u (s) = (1− s)2 /2 and E [s] = π, it is sufficient to prove that E

[
s2] = πE [vG].

We divide the proof in two cases: π ≤ π̄ and π > π̄. If π ≤ π̄, Receiver’s expected
payoff is given by the sum of four terms: (i) Sender is good and the arm does not arrive;
(ii) Sender is good and the arm arrives; (iii) Sender is bad and she does not pull the arm;
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and (iv) Sender is bad and she pulls the arm. Thus,

E
[
s2
]

= πe−αT (µ (T))2

+π

ˆ T

0

(
eλ(T−t)µ (T)

)2
αe−αtdt

+ (1− π) q (µ (T))2

+ (1− π)

ˆ T

0
e−λ(T−t)

(
eλ(T−t)µ (T)

)2 π

1− π

(
1− µ (t)

µ (t)

)
αe−αtdt.

Solving all integrals and rearranging all common terms we get

E
[
s2
]

= πE [vG] .

If π > π̄, Receiver’s expected payoff is given by the sum of five terms: (i) Sender is good
and the arm does not arrive; (ii) Sender is good and the arm arrives before t̄; (iii) Sender
is good and the arm arrives between t̄ and T; (iv) Sender is bad and she does not pull the
arm; (v) Sender is bad and she pulls the arm. Thus,

E
[
s2
]

= πe−αT (µ (T))2

+π
(

1− e−αt̄
)

+π

ˆ T

t̄

(
eλ(T−t)µ (T)

)2
αe−αtdt +

+ (1− π) q (µ (T))2

+ (1− π)

ˆ T

t̄
e−λ(T−t)

(
eλ(T−t)µ (T)

)2 π

1− π

(
1− µ (t)

µ (t)

)
αe−αtdt.

Solving all integrals and rearranging all common terms we again get

E
[
s2
]

= πE [vG] .

Proof of Proposition 5. Part 1. We differentiate R with respect to π:

dR
dπ

=
d

dπ

(
1− π

µ (T)
e−αT

)
= −e−αT µ (T)− dµ(T)

dπ π

µ (T)2 .
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Therefore R is non-decreasing in π if and only if

dµ (T)
dπ

≥ µ (T)
π

.

We now show that

dµ (T)
dπ

≥ µ (T)
π

⇐⇒ π ≥ αeαT

(α + λ) eαT − 1
.

Differentiating µ (T) with respect to π, we have

dµ (T)
dπ

=


d

dπ

[
αeλT+λe−αT

α+λ + 1−π
π

]−1
if π < π,

d
dπ

[
(α+λ)(1−π)

λπ eαT + 1
]− λ

α+λ otherwise,

=


1

π2

[
αeλT+λe−αT

α+λ + 1−π
π

]−2
if π < π,

eαT

π2

[
(α+λ)(1−π)

λπ eαT + 1
]− α+2λ

α+λ otherwise,

=


µ(T)2

π2 if π < π̄;

eαT µ(T)2+ α
λ

π2 otherwise.

Case 1: π < π̄.
If π < π̄, then dR/dπ < 0 because µ (T) < π and

dµ (T)
dπ

=
µ (T)2

π2 <
µ (T)

π
.

Case 2: π ≥ π̄.
If π ≥ π̄, then dR/dπ < 0 if and only if

dµ (T)
dπ

= eαT µ (T) 2+ α
λ

π2 <
µ (T)

π
eαT.

Substituting µ (T), we get that this inequality is equivalent to

π <
αeαT

αeαT + λ (eαT − 1)
.

It remains to show that
αeαT

αeαT + λ (eαT − 1)
> π̄.

41



Substituting π̄, we get that this inequality is equivalent to

e(α+λ)T − 1
α + λ

>
eαT − 1

α
,

which is satisfied because function (ex − 1) /x is increasing in x.
Part 2. We differentiate R with respect to λ:

dR
dλ

=
d

dλ

[
π
(

1− e−αT
)
+ (1− π) (1− q)

]
= − (1− π)

dq
dλ

< 0

where the last inequality follows from Proposition 3.
Part 3. We differentiate R with respect to α

dR
dλ

=
d

dα

[
π
(

1− e−αT
)
+ (1− π) (1− q)

]
> − (1− π)

dq
dα

> 0,

where the last inequality follows from Proposition 3.

Proof of Proposition 7. The unconditional probability of a breakdown of the arm pulled
at t is given by

Pr (bd | t) ≡
(

1− e−λ(T−t)
)
[1− µ (t)] .

Notice that Pr (bd | t) is continuous in t because µ (t) is continuous in t. Also, Pr (bd | t)
equals 0 for t ≤ t̄, is strictly positive for all t ∈ (t̄, T), and equals 0 for t = T. Substituting
µ (t) and taking the derivative of Pr (bd | t) with respect to t ≥ t̄ we have

d Pr (bd | t)
dt

= −λ
e−λ(T−t) (1 + µ (T))− 2µ (T)[

1− µ (T)
(
1− eλ(T−t)

)]2
which is positive if and only if

T − 1
λ

ln
(

1 + µ (T)
2µ (T)

)
< T.
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Proof of Proposition 8. The probability density that bad Sender pulls the arm at time t is
given by

pB (t) ≡
dPB (t)

dt
=

π

1− π

αe−αt
(

1− µ (T) eλ(T−t)
)

µ (T)

for t > t̄ and rB (t) = 0 for t ≤ t̄. Differentiating with respect to t we get

dpB (t)
dt

=
π

1− π

αe−αt

µ (T)

[
(α + λ) µ (T) eλ(T−t) − α

]
which is positive if and only if

t̄ ≤ t < T − 1
λ

ln
(

α

α + λ

1
µ (T)

)
.
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