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Abstract

We consider an SIR model where the probability of infections between infected
and susceptible individuals are viewed as Poisson trials. The probabilities of infection
between pairwise susceptible-infected matches are thus order statistics. This implies
that the reproduction rate is a random variable. We derive the first two moments of
the distribution of Rt conditional on the information available at time t−1 for Poisson
trials drawn from an arbitrary parent distribution with finite mean. We show that the
variance of Rt is increasing in the proportion of susceptible individuals in the popula-
tion, and that ex ante identical populations can exhibit large differences in the path of
the virus. This has a number of implications for policy during pandemics. We provide
a rationale for why shelter-in-place orders may be a better containment measure than
mandating the use of masks because of their impact on the variance of the reproduc-
tion rate.

1 Introduction

The COVID-19 pandemic has shown that the effective reproduction rate of the virus Rt

is a crucial determinant not only if public health, but also of public policy. Social distanc-
ing, shelter-in-place and other containment measures aim to stop the spread of the virus,
essentially by attempting to push Rt below 1.

It has been clear to epidemiologists, public health officials, and economists that with
Rt > 1 the virus spreads exponentially—overwhelming health systems and leading to
substantial loss of life.
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Despite the critical importance of the reproduction rate it is treated in epidemiological
models as a parameter, rather than as a random variable. Yet the primitives of so-called
SIR models are, from a behavioral perspective, the proportion of the population that is
infected and susceptible, the rate at which those sub-populations interact, and the proba-
bility that a given interaction leads an infected individual to infect a susceptible individ-
ual.

Those primitives determine the reproduction rate, yet Rt is typically modeled as an ex-
ogenous variable. The point-of-view we take in this paper is to derive Rt from primitives
and explicitly model the stochastic nature of those primitives. This leads one to the seem-
ingly obvious conclusion that Rt is a random variable—and as such it has an associated
probability distribution. An immediate consequence of this is that the rate of suscepti-
bility, infection, and recovery in a population are also random variables with their own
probability distributions.

The first main result we derive is that the variance of Rt at any point in time, condi-
tional on the information available that time, is increasing in the proportion of the popu-
lation that is susceptible at that time. This implies that early on in an epidemic–when the
susceptible proportion of the population is low–the variance of infection rates is the high-
est. This, in turn, implies that two ex ante identical jurisdictions could have very different
infection rates simply due to chance, and this can create persistent difference in the path
of the virus in those jurisdictions.

An optimal policy for controlling Rt must account for the complete distribution of Rt

and the amount of mass of its probability distribution that lies on the part of the support
above Rt = 1. All else equal the amount of mass in this “danger zone” is larger when
the proportion of the population that is susceptible is larger—i.e. at the onset of the virus.
This implies that the optimal containment policy is stricter earlier in the evolution of the
virus.

The remainder of the paper proceeds as follows. In section 2 we outline the statement
of the problem. Section 3 characterizes the first two moments of the distribution of Rt.
Section 4 derives a number of implications for decision-makers and concludes. Proofs of
results not contained in the text are relegated to an appendix.
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2 The Model

2.1 Statement of the Problem

There are N agents that are infinitely lived. Time is discrete and indexed by t = 0, 1, 2, ....
At each time t an agent is in one of three states: susceptible, infected, or recovered. There are
St susceptible agents in the population, there are It infected agents, and the number of
recovered individuals is Rt = N − St − It, where St, It, Rt ∈ N.

Following the standard convention, we shall refer to It as the prevalence of the disease
at time t.

At time t each agent is pairwise random matched with φ = φ(N) other agents inde-
pendently with equal probability among agents irrespective of health status, where φ(N)

captures the intensity of social interactions in the population. We assume that φ : N → N
is an integer valued function satisfying 0 ≤ φ(N) ≤ N for all N ∈ N. This allows us to
consider both the simple case where φ(N) = d ∈ N for all N , and more complex cases
where for example φ(N) = ⌊log(N)⌋ (here, ⌊·⌋ denotes the floor function, though we rou-
tinely omit floor and ceiling signs for readability). For notational convenience later on
we also define here m = φ/N to be the proportion of the population that an individual
matches up with in a given time period.

An interaction structure in the population can be formed by considering the random
regular graph formed by the well known configuration model [6, 49] with N individuals or
vertices and degree sequence (d1, . . . dN) = (φ, . . . ,φ), conditioning on getting a simple
graph. In the limit of a large population size, and for small φ(N), matches formed by the
configuration model are approximately independent (this technique is used in [18] for
example). Some notes on the reproductive rate with the independence condition removed
are provided in the appendix.

If an infected agent j is matched with a susceptible agent k then with probability pj the
susceptible agent becomes infected. We assume that pj is drawn from a distribution D on
support [0, 1] with finite mean µ, and that the draw for each infected-susceptible match is
stochastically independent.

Recovered agents are assumed to be immune to infection and are not contagious, and
infected agents spontaneously recover with probability γ ≥ 0.

2.2 Discussion

This paper contributes to the literature on heterogeneity (or ’heterogeneous infection
rates’ if you prefer) in epidemic models, much in the spirit of the now classic [21]. In
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the existing literature, studies have focused on heterogeneity at the group level [28, 9,
3, 13, 8, 44, 43] (subdividing a heterogeneous population into homogeneous groups) as
well as individual level [27, 41, 32, 22], whilst other authors have taken the approach of
incorporating exogenous shocks into their models. Such shock are usually modeled by
introducing discontinuities into the deterministic SIR (as well as SEIR, SIS, and SI) sys-
tems of differential equations via stochastic jumps or ’noise’ [45, 47, 52, 53, 34]. Several
studies built on variants of the SIR model have been applied directly to analysing the
Covid-19 epidemic [51, 43, 39, 16], with some recent models taking into account the eco-
nomic costs of various policy interventions (e.g. [1, 5, 11, 16, 12]). A significant amount
of work has been done to describe the behavior of epidemics on networks with heteroge-
neous individuals [33, 29, 4, 30, 19, 46, 50, 40, 7, 15, 17], often making use of results from
bond percolation or applying mean field approximations (e.g. see [35]).

Models which account for individual heterogeneity have become especially important
in light of the accumulating theoretical [28, 26, 24, 32, 7] and empirical [10, 48, 14, 20, 4, 31]
evidence that heterogeneity in a population strongly influences (and in particular, lowers)
the probability of epidemic invasion.

Most of the models in the literature–with the exception of a few [8, 40, 22, 7] involve
continuous time. In the way of discrete SIR models some work has been done (see [2] for
example), though the disease-spreading mechanism that we employ has, as far as we are
aware, not been considered in the epidemiological literature. Moreover, whilst many pa-
pers calculate the basic reproductive number R0 under their models, this parameter –and
consequently, the effective reproductive number Rt –often fail to accurately capture the
threshold properties of epidemics, and can vary dramatically according to the method by
which they are calculated [8, 23, 37]. For example, the observations of of super-spreading
events (SSE’s) which is well documented for the SARS outbreak of 2003 [38, 25, 42, 27]
represent tail end draws from the (random) reproductive rate. Our main innovation is
the explicit focus on the reproductive rate as a random variable, and our novel modeling
approach of infected-susceptible matches as non-identical Bernoulli “trials”–or Poisson
trials [36]. The paper perhaps closest to ours is [27].

Before we proceed with the analysis we pause briefly to remark that our main result
about the variance of the reproduction rate at a particular point in time is stated as being
conditional on the information available to an observer at that time. There are two reasons
for this. The first is conceptual. Any policy maker should care about the variance at a
given time accounting for the information that she has. Calculating the unconditional
variance is to discard useful information. The second reason we focus on the conditional
variance is practical. One can analytically derive the unconditional variance, but it has

4

a somewhat unwieldy recursive structure. In any case, we view it as being of limited
interest for policy makers concerned with the evolution of a virus.

3 Analysis

3.1 The Distribution of the Reproduction Rate

We seek to characterize the distribution of the reproduction rate of the virus at time t,
which we denote Rt.

Notice that a given infected agent has φ pairwise random matches in the population
and that infections can only occur when they are matched with a susceptible agent (which
have proportion St/N in the population). Assuming there is independence between
matches (more on this assumption later), the expected number of susceptible matches
of a given infected individual is therefore φSt/N . Recalling that we defined m = φ/N we
can write this as mSt

Denote the probability that given such a match infection occurs as pj . We define Rt as
the random variable counting the number of people that are infected by a given infected
person at time t. That is, we have

Rt =
mSt!

j=1

Ij, (1)

where Ij is an indicator variable taking the value 1 if match j leads to an infection and
0 otherwise. That is, we define Ij by the conditional distribution

P(Ij = x | pj = p) = xp+ (1− x)(1− p).

Recalling that the mean of pj is finite and denoted by µ, we may calculate the expectation
of the indicator variable Ij by the law of iterated expectations as

E(Ij) = E
"
E(Ij | pj)

#
= E

"
P(Ij = 1 | pj)

#
= E(pj) = µ. (2)

We also ignore potential integer problems in the upper limit of the summation in the
definition of Rt, one could avoid this by explicitly taking ⌊mSt⌋ as the upper limit.

Defining Rt in this way gives us something analogous to a discrete-time SIR model
which we will discuss how to specify shortly. By way of reference, we describe the classic
discrete-time SIR model here. Let ∆St+1 = St+1−St and define ∆It+1 and ∆Rt+1 similarly.
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The classic discrete-time SIR model can be described as

∆St+1 = −βItSt (3)

∆It+1 = βItSt − γIt (4)

∆Rt+1 = Itγ, (5)

where β is the average rate of infection. Our model is substantially more complex than
this since we account for the distribution of Rt and not just the point estimate β. As such,
our rates of susceptibility, infection, and recover will also be random variables determined
by some initial state vector (S0, I0, R0).

Let Rpop
t denote the population-level reproductive rate, that is, a random variable

whose distribution is equal to the number of new infections in the population from time
t to time t + 1. We saw that in the calculation of Rt, the expected number of susceptible
matches of a given infected individual is mSt. Since there are It infected individuals in the
population at time t, and each infected-susceptible match is assumed to be independent,
we have

Rpop
t =

ItmSt!

j=1

Ij. (6)

Taking φ(N) = φ ∈ N is sufficient for the independence properties we require, henceforth
we assume φ ∈ N is a constant. As a result, our SIR equations become

∆St+1 = −
mItSt!

j=1

Ij. (7)

∆It+1 =
mItSt!

j=1

Ij − γIt (8)

∆Rt+1 = γIt. (9)

We suppress the dependence of the indicator variables on the time period t for notational
convenience, in reality each new time period yields a new set of indicator variables Ij
which are independent of those in any other time period. Notice by Wald’s identity we
have

E (Rpop
t ) = E

$
mItSt!

j=1

Ij

%
= E(mStIt)E(Ij) = mµE(StIt),
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and hence

E(∆St+1) = −mµE(StIt).

E(∆It+1) = mµE(StIt) + γE(It)

E(∆Rt+1) = γE(It).

That is, our model coincides with the standard model in expectation, with average infec-
tion rate β = mµ.

Consider a policy maker who, at time t, knows the current state θt−1 = {St−1, It−1} of
susceptibility and infection in the population at all time periods before t. They will use
this information to inform their policy. The key parameters of interest therefore are the
mean and variance of Rt, conditioned on knowing the history θt−1. That is, we want to
find expressions for E(Rt | θt−1) and Var(Rt | θt−1).

We begin by calculating E(Rt | θt−1). By noting that St is independent of the infection
event captured by Ij for all t, j ∈ N, we can calculate the conditional expectation of Rt by
Wald’s identity and (2) as

E(Rt | θt−1) = E(mSt | θt−1)E(Ij | θt−1)

= mE(St | θt−1)E(Ij)

= mµE(St | θt−1). (10)

Therefore, the mean of Rt depends crucially on the mean of St, the number of susceptible
individuals in the population at time t. We now derive the mean and variance of St

conditional on knowing the history of susceptibility and infection. This will allow us to
derive the conditional mean and variance of Rt. We work towards the theorem below in
what follows.

Theorem 1 For all t ∈ N

1.
E(Rt | θt−1) = mµSt−1 +m2µ2It−1St−1.

2.
Var(Rt | θt−1) = mµ(1− µ)St−1 +m2µ2(1− µ)(1 +mµ)It−1St−1.

We use the next result several times in the proofs that follow, so we state it here as a
lemma.
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Lemma 1 For all t ∈ N, we have

E(∆St | θt−1) = −mµIt−1St−1.

Proof. The result can be obtained by a single application of Wald’s identity. We thus have

E(∆St | θt−1) = E

$
−

mIt−1St−1!

j=1

Ij
&& θt−1

%

= −E(mIt−1St−1 | θt−1)E(Ij | θt−1)

= −mµIt−1St−1,

as desired.

We now prove Part 1. of Theorem 1.

Proof of Part 1. We can compute E(St | θt−1) directly by noting that St = St−1+∆St. This
gives us that

E(St | θt−1) = E (St−1 +∆St | θt−1)

= St−1 + E (∆St | θt−1) .

Now applying Lemma 1, we have

E(St | θt−1) = St−1 −mµIt−1St−1. (11)

Applying (10) yields the desired result.

We will need to establish a few more lemmas in order to prove Part 2. of Theorem 1.
We being by proving an equation for the conditional variance of Rt in terms of the condi-
tional expectation and variance of St.

Lemma 2 For all t ∈ N, we have

Var(Rt | θt−1) = mµ(1− µ)E(St | θt−1) +m2µ2 Var(St | θt−1). (12)
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Proof. First, we have

R2
t =

$
mSt!

j=1

Ij

%$
mSt!

l=1

Il

%

=
!

j=l

IjIl +
!

j ∕=l

IjIl.

=
!

j=l

Ij +
!

j ∕=l

IjIl.

There are (mSt)
2 terms in the expansion of R2

t . Exactly mSt of these fall under the sum
where j = l, and the remaining (mSt)

2 − mSt of them fall under the sum where j ∕= l.
Hence by Wald’s identity and (2), we have

E
"
R2

t | θt−1

#
= E

$
!

j=l

Ij | θt−1

%
+ E

$
!

j ∕=l

IjIl | θt−1

%

= E(mSt | θt−1)E(Ij | θt−1) + E
"
(mSt)

2 −mSt | θt−1

#
E(IjIl | θt−1)

= µE(mSt | θt−1) + µ2E
"
(mSt)

2 −mSt | θt−1

#

= mµ(1− µ)E(St | θt−1) +m2µ2E(S2
t | θt−1). (13)

Where we have used independence of indicator variables on the second sum. Hence
utilizing (10) and (13), the variance of Rt is given by

Var(Rt | θt−1) = E(R2
t | θt−1)− (E(Rt | θt−1))

2

= mµ(1− µ)E(St | θt−1) +m2µ2E(S2
t | θt−1)− (mµE (St | θt−1))

2

= mµ(1− µ)E(St | θt−1) +m2µ2 Var(St | θt−1),

as required.

We require one more lemma before we complete the proof of Theorem 1.

Lemma 3 For all t ∈ N we have

E
"
(∆St)

2 | θt−1

#
= mµ(1− µ)It−1St−1 + (mµIt−1St−1)

2.
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Proof. The proof is similar to the proof of Lemma 2. We first note that
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2 terms in the expansion of (∆St)

2. Exactly mIt−1St−1 of these fall
under the sum where j = l, and the remaining (mIt−1St−1)

2−mIt−1St−1 of them fall under
the sum where j ∕= l. Hence by (2), we have

E
"
(∆Sk)

2 | θt−1

#
= E

$
!

j=l

Ij | θt−1

%
+ E

$
!

j ∕=l

IjIl | θt−1

%
.

= µE(mIt−1St−1 | θt−1) + µ2E
"
(mIt−1St−1)

2 −mIt−1St−1 | θt−1

#

= mµ(1− µ)It−1St−1 + (mµIt−1St−1)
2, (14)

as required.

We now prove Part 2. of Theorem 1.

Proof of Part 2. We want to find a closed-form expression for Var(Rt | θt−1). We will
require (11) which we proved in Part 1. of Theorem 1. We recall this equation here as

E (St | θt−1) = St−1 −mµIt−1St−1.

Hence by Lemma 2 it only remains to calculate E (S2
t | θt−1). Noting that

S2
t = (St−1 +∆St)

2 = S2
t−1 + 2St−1∆St + (∆St)

2

we can use Lemma 1 and Lemma 3 to compute

E(S2
t | θt−1) = S2

t−1 + 2St−1E(∆St | θt−1) + E
"
(∆St)

2 | θt−1

#

= S2
t−1 + 2St−1 (−mµIt−1St−1) +

"
mµ(1− µ)It−1St−1 + (mµIt−1St−1)

2
#

= mµ(1− µ)It−1St−1 + S2
t−1 − 2mµIt−1S

2
t−1 + (mµIt−1St−1)

2. (15)

10

Further, we have by (11) that
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= S2
t−1 − 2mµIt−1S

2
t−1 + (mµIt−1St−1)
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Now using (15) and (16) we can calculate

Var(St | θt−1) = E(S2
t | θt−1)− (E(St | θt−1))

2

=
"
mµ(1− µ)It−1St−1 + S2

t−1 − 2mµIt−1S
2
t−1 + (mµIt−1St−1)

2
#

−
"
S2
t−1 − 2mµIt−1S

2
t−1 + (mµIt−1St−1)

2#

= mµ(1− µ)It−1St−1. (17)

Finally, combining (17) and (11) together with Lemma 2, we have

Var(Rt | θt−1) = mµ(1− µ)E(St | θt−1) +m2µ2 Var(St | θt−1)

= mµ(1− µ) (St−1 −mµIt−1St−1) +m2µ2 (mµ(1− µ)It−1St−1)

= mµ(1− µ)St−1 −m2µ2(1− µ)(1−mµ)It−1St−1,

completing the proof.

The first consequence of Theorem 1 is the following important Corollary.

Corollary 1 For sufficiently large N , the variance of Rt given θt−1 is increasing in St−1.

In particular the proof of Corollary 1 which we present below shows that the condi-
tional variance of Rt is increasing in St−1 when t is small, since at the beginning of the SIR
process, infection rates are low and susceptibility is high. This implies that if variance is
a concern to policy makers, then containment policies should be stricter earlier on in the
spread of the virus.

Proof. Note firstly that an immediate decrease in St−1 translates into a commensurate
increase in It−1, that is, an individual who is no longer susceptible must have gotten
infected. As such, it makes sense to think about an increase in St−1 as resulting from a
commensurate decrease in It−1. One can think of this as having an additional susceptible
individual at time t− 2 who did not get infected by any of the It−2 infected individuals at
that time period.

Now, suppose that we fix St−1 ∈ N and It−1 ∈ N with St−1 + It−1 ≤ N . Consider
what happens when the number of susceptible individuals at time t − 1 increases by 1.
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Formally, let S ′
t−1 = St−1 + 1 and let I ′t−1 = It−1 − 1, now consider what happens when

St−1 → S ′
t−1 and It−1 → I ′t−1. Letting θ′t−1 = {S ′

t−1, I
′
t−1}, we have

Var(Rt | θ′t−1) = mµ(1− µ)S ′
t−1 −m2µ2(1− µ)(1−mµ)I ′t−1S

′
t−1

= mµ(1− µ) (St−1 + 1)−m2µ2(1− µ)(1−mµ) (It−1 − 1) (St−1 + 1)

= Var(Rt | θt−1) +mµ(1− µ)−m2µ2(1− µ)(1−mµ) (It−1 − St−1 − 1) .

(18)

Now (18) tells us that Var(Rt | θt−1) is increasing in St−1 if and only if

mµ(1− µ)−m2µ2(1− µ)(1−mµ) (It−1 − St−1 − 1) > 0. (19)

Supposing m ∕= 0 such that meetings occur, and that µ ∕= 0, 1 such that the Poisson trials
are not degenerate, (19) holds if and only if

1−mµ(1−mµ)(It−1 − St−1 − 1) > 0. (20)

If It−1 = St−1 + 1 then this equation holds trivially. Else writing m = φ
N

and multiplying
throughout by N we can write this as

N > φµ

'
1− φµ

N

(
(It−1 − St−1 − 1). (21)

Noting that the right hand side of (21) is O(φ(N)) this inequality will hold for N suffi-
ciently large whenever φ(N) = o(N) (and in fact we have assumed that φ(N) is a con-
stant), completing the proof.

We also present a second corollary regarding the asymptotic conditional variance of
Rt.

Corollary 2 As N → ∞, we have Var(Rt | θt−1) → mµ(1− µ)St−1 −m2µ2(1− µ)It−1St−1.

Proof. The proof follows immediately from noting that

1−mµ = 1− φµ

N

which converges to 1 as N → ∞.
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3.2 Poisson trials and Superspreaders

The Poisson trials framework we have used allows us to observe that as the population
size N grows, the realized distribution of infection probabilities converges to the parent
distribution.

Theorem 2 Let X1, . . . , XN be random variables drawn from an absolutely continuous distribu-
tion F , and let ξk = inf{x : F (x) ≥ k} denote the k-th quantile of F , for 0 < k < 1. Similarly, let
ξ̂Nk = inf{x : FN(x) ≥ k} denote the k-th quantile of the sample distribution X1, . . . , XN , where
FN(x) =

1
N

)N
i=1 I(Xi ≤ x), and I(A) is an indicator variable for the event A. Then

P(|ξ̂Nk − ξk| > ε) ≤ 2 exp(−2Nδ2ε ),

where δε = min{F (ξk + ε)− k, k − F (ξk − ε)}. That is, ξ̂Nk
P−→ ξk exponentially fast.

Proof. This is a well known fact but we provide a proof of one of the bounds for com-
pleteness. Let ε > 0, and note that

P(|ξ̂Nk − ξk| > ε) = P(ξ̂Nk > ξk + ε) + P(ξ̂Nk < ξk + ε).

By definition of the sample quantile ξ̂Nk, we have

P(ξ̂Nk > ξk + ε) = P(k > FN(ξp + ε))

= P

$
Nk >

N!

i=1

I(Xi ≤ ξk + ε)

%

= P

$
N!

i=1

I(Xi > ξk + ε) > N(1− k)

%
.

Now let Yi = I(Xi > ξk + ε). Then

E(Yi) = P(Xi > ξp + ε) = 1− F (ξp + ε).

Hence

P

$
N!

i=1

I(Xi > ξk + ε) > N(1− k)

%
= P

$
N!

i=1

Yi −N(1− F (ξk + ε)) > N(F (ξp + ε)− k)

%

= P

$
N!

i=1

Yi −
N!

i=1

E(Yi) > Nδ1

%
,
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where δ1 = F (ξk + ε)− k. Hence by Hoeffding’s inequality, we have

P(ξ̂Nk > ξk + ε) = P

$
N!

i=1

Yi −
N!

i=1

E(Yi) > Nδ1

%
≤ exp(−2Nδ21).

A similar method shows that

P(ξ̂Nk < ξk + ε) ≤ exp(−2Nδ21),

and putting the two together yields the desired result.

Suppose for a moment that infection probabilities are individual-specific rather than
match-specific. That is, each infected individual has the same probability of infecting any
susceptible individual that they meet. Corollary 1 implies that, if we denote a person
who has a very high probability of infecting other as being a superspreader, then however
one defines that in terms of the threshold probability of infecting a susceptible person,
the chance of a superspreader being present in a population grows exponentially in the
size of the population. More generally when probabilities are match-specific as we have
assumed, if we denote an event which causes a large number of new cases as being a
superspreading event, then the probability of a superspreading event is increasing expo-
nentially fast in the population size.

4 Implications and Conclusion

4.1 Path Dependence

An immediate implication that flows from our model is the possibility of path dependence,
where two ex ante identical populations have persistent differences in observed infection
rates over time. To see this, note the the infection rate evolves as follows.

Lemma 4 For all t ∈ N, we have

It = I0(1− γ)t −
t!

k=1

(1− γ)t−k∆Sk.

Proof. The proof is by induction. For t = 0, the result holds trivially. Now suppose the
equation holds for some t ≥ 0, and consider the t+1-th case. We have from Equations (7)
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and (8) that

It+1 = It +
mItSt!

j=1

Ij − γIt

= (1− γ)It +
mItSt!

j=1

Ij

= (1− γ)It −∆St+1.

Now applying the induction hypothesis yields

It+1 = (1− γ)

$
I0(1− γ)t −

t!

k=1

(1− γ)t−k∆Sk

%
−∆St+1

= I0(1− γ)t+1 −
t!

k=1

(1− γ)t+1−k∆Sk −∆St+1

= I0(1− γ)t+1 −
t+1!

k=1

(1− γ)t+1−k∆Sk.

Hence the lemma is true for t+ 1 and is therefore true for all t ∈ N by induction.
We can see from Lemma 4 that the realized number of infections (the number of “suc-

cessful” Poisson trials) at t = 1 has a persistent effect on the infection rate for all t > 1.
That is, a bad round of early draws has persistent effect on the path of infection. Indeed,
∆St depends crucially on ∆Sk for every k < t, and so by Lemma 4 It depends crucially
on Ik for k < t. This implies that a bad early realisation of trials from ∆s1 increases the
number of infected people in the population, making transmission more likely since the
probability of an infected-susceptible match in the population increases.

If the population is large enough, then the law of large numbers implies that the pro-
portion of successful draws from the Poisson trials will converge to the mean of the tri-
als. In particular, the number of new infected individuals in a given time period will be
roughly equal to the mean, which we gave in Lemma 1 as mµIt−1St−1.

If I0 = 1
N

, then standard branching process methods confirm that there are essentially
2 equilibria–either the infection persists forever in the population or it → 0 as N, t → ∞.

4.2 Containment Policy

An overarching message from our analysis is that it is incomplete to focus only on the
mean of the reproduction rate. Because a virus grows exponentially when R > 1 a policy
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maker should consider the mass of the distribution of R above 1. It is this region that we
have referred to as the danger zone, which is depicted in the following figure.

µ 1
Rt

Figure 1: The danger zone.

We end this section with a suggestion for how one might measure the sensitivity the
SIR system to perturbations. Fix the time at t and the let td(φ) > t denote the first time
period at which the expected number of total infections is greater than 2It when the num-
ber of matchings per individual in each time period is φ > 0. That is, td(φ) denotes the
number of time periods it takes for the expected number of total infections to double. We
set td(φ) = ∞ if infections are never expected to double.

We define the stability index of the virus at time t as

St =
1

td(φ+ 1)
− 1

td(φ)
. (22)

The stability index measures how responsive the system is with respect to the number of
matches per time period. It is one way to account for the mass of Rt which lies above 1.

A stability index of 0 indicates that the expected increase in the number of infections
does not change substantially when the φ is increased by 1–in other words, the system is
very stable to small perturbations of the number of matchings per time period. On the
other hand, an index of 1 indicates that by increasing φ by 1, the number of infections is
expected to double in the very next period whereas as φ currently stands, the number of
infections is expected never to double. In other words the system is highly unstable to
small perturbations of the number of matchings per time period.

We compute the stability index numerically when the underlying distribution D for
the Poisson trials is U [0, 1] (so µ = 1

2
). In particular we look at the cases when N = 100, 000,

γ = 0.2, t = 1 and φ = 1, 2, 3. We find

(td(1), td(2), td(3) td(4)) = (∞,∞, 1, 1),
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and hence for φ = 1, St = 0, for φ = 2, St = 1, and for φ = 3, St = 0. The reason the
process takes off only when φ > 2 is because this implies φµ > 1 and so the infection
grows exponentially.

We can also compute the conditional mean and variance (as in Theorem 1) of the repro-
ductive rate numerically. Consider again the case when D = U [0, 1], φ = 2, and γ = 0.2.
We find

E(Rt | θt−1) =
1

N
St−1 +

1

N2
It−1St−1

Var(Rt | θt−1) =
1

4N
St−1 +

N + 1

8N3
It−1St−1,

Taking t = 20 and N = 100000 (for the purpose of this example), we have (St−1, It−1) =

(44860.3, 40686.1), therefore

E(R20 | θ19) = 0.631

Var(R20 | θ19) = 0.135,

Finally, in general, given a critical value c, numerical mean and variance calculations such
as the one above allow us to construct a “confidence interval” for Rt as

CI =
*
E(Rt | θt−1)− c

+
Var(Rt | θt−1),E(Rt | θt−1) + c

+
Var(Rt | θt−1)

,
,

giving us another measure for how much of the mass of Rt lies above 1. Taking c = 1

and using the example above we find CI = [0.264, 0.998] and so in this case the system
appears to be fairly stable.

4.3 Shelter-in-Place Orders versus Masks

Our model also speaks to the differential effectiveness of alternative containment policies.
Given that the variance of the reproductive rate is increasing in St−1, consider a policy
maker who seeks to implement a containment policy early in the spread of the virus. Such
a planner has two lines of attack. The first is to try and lower the number of meetings an
individual has per time period (φ), for example, by a shelter-in-place order. The second is
to try and lower the infectiousness of the virus (µ), perhaps by mandating the widespread
use of masks.
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When t is small, It−1 is approximately 1, and St−1 is approximately N . Hence

(mµ)2It−1St−1 =
φµ

N2
It−1St−1 ≈

φ2µ2

N2
N,

which is close to 0 for large enough N . It follows that early on in the spread of the virus,

E(Rt | θt−1) ≈ mµSt−1 =
φµ

N
St−1,

and
V ar(Rt | θt−1) ≈ mµ(1− µ)St−1 =

φµ

N
(1− µ)St−1.

While lowering φ or µ both result in a lower expected reproductive rate, the effect of such
measures on the variance are less straightforward. The conditional variance of the repro-
ductive rate is increasing in φ and thus a reduction in φ will indeed lower the variance of
Rt.

However, the variance is increasing in µ up until µ = 1/2, at which point it is decreas-
ing in µ, leading to the perhaps counterintuitive result that the more contagious a virus
is, the less effective it is to lower its infectiousness. The reason for this is that efforts to
decrease µ may have the unintended result of also increasing the variance in the spread
of the virus. By contrast, φ does not suffer from this problem, so a reduction in φ (e.g.
shelter-in-place) will unambiguously result in a reduction in both the mean and variance
of the reproductive rate of the virus.

4.4 Conclusion

By modeling the reproduction rate as something that emerges from primitives of how in-
fections occur we have highlighted the importance of considering the whole distribution
of the reproduction rate for understanding the spread of a virus, and the optimal policy
response to it.
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5 Appendix A

We make some remarks here about the matching technology when the independence as-
sumption of matches is violated. The main effect of losing the independence of matches
is that it invalidates Rpop

t . Recall that Rpop
t is defined as the population-level reproductive

rate, that is, a random variable whose distribution is equal to the number of new infec-
tions in the population from time t to time t+ 1. In general, we can define the changes in
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St, It, and rt by the discrete Markov process:

∆St+1 = −Rpop
t (23)

∆It+1 = Rpop
t − Itγ (24)

∆Rt+1 = Itγ, (25)

We want to work out a general form for Rpop
t without independence of matchings. Sup-

pose we fix an interaction structure in the population at time t by the configuration model
or some other method. Let mk (k = 1, . . . , nt) denote the number of susceptible individu-
als who interact with exactly k different infected individuals. Then denoting by [l] the set
{1, 2, . . . , l}, we can write the population reproduction rate as

Rpop
t = St

-

../
m1!

j1=0

Ij1 +
m2!

ji=0
i∈[2]

Ij1∪j2 +
m3!

ji=0
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jk

0
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= St

nt!

l=1

ml!

ji=0
i∈[l]

I!
k≤l jk

. (27)

Note that for an arbitrary collection of events
3

k Ak, the indicator variable of their union
satisfies

I!
k Ak

= 1−
4

k

(1− IAk
). (28)

Which allows us to rewrite the above as

Rpop
t =

nt!

l=1

ml!

ji=0,i∈[l]

$
1−

4

k≤l

(1− Ijk)

%
St. (29)

It is clear that this makes the system of equations in Equations (23) to (25) particularly
difficult to work with let alone to solve in some kind of closed form. At this point it
is worth looking into the matching technology in the hope that Rpop

t can be simplified.
Indeed, under the assumption of a large N and a small φ(N) as outlined in Section 2.1,
matches are approximately independent. This means that mk → 0 for all k ≥ 2 It follows
that the number of infected-susceptible matches in the population is m1 = ItmSt, which
gives us

Rpop
t =

m1ItSt!

j=1

Ij,
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as used in the paper.

6 Appendix B

A natural question is whether or not there exists a closed form expression for the un-
conditional mean and variance E(Rt) and Var(Rt). We present some results here which
indicate that whilst in theory such an expression exists, it is rather difficult to write down.
First, recall that the mean of Rt depends entirely on the mean of St. Our first lemma
establishes an equation for the mean of St in terms of lower order terms IkSk for k < t.

Lemma 5 For all t ∈ N,

E(St) = S0 +
m

2

t−1!

k=0

E(IkSk).

Proof. First, note that for all t ∈ N, we have

St =
t!

k=0

∆Sk, (30)

where we let ∆S0 = S0. Hence it follows that

E(St) = S0 +
t!

k=1

E(∆Sk). (31)

Note then that since ∆Sk+1 =
)mIkSk

k=1 Ij , we have by Wald’s identity that

E(∆Sk+1) = E(mIkSk)E(Ij) =
m

2
E(IkSk). (32)

Finally then substitution (32) into (31) and relabelling the index, we have

E(St) = S0 +
m

2

t−1!

k=0

E(IkSk), (33)

proving the lemma.
We can see from Lemma 5 that the expectation of St depends entirely upon the expec-

tation of ItSt.
We have from Lemma 4 an expression for It in terms of ∆Sk for k < t. This allows us

to find a closed form expression for ItSt from which we can calculate its mean. However,
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before we are ready to compute the expectation of ItSt, we need to know how to compute
E(∆Sk∆Sl) for both l = k and l ∕= k. We establish this with the following lemma.

Lemma 6 Let k, l ∈ N. Then

E(∆Sk∆Sl) =
(Nd)2

4
E (Ik−1Sk−1Il−1Sl−1) .

Proof. Notice firstly that ∆Sk and ∆Sl are not independent. Indeed, suppose l < k, then
Sk−1 appears in the upper limit of the sum for ∆Sk, and one has that Sk−1 =

)k−1
j=0 ∆sj .

We have

∆Sk∆Sl =

$
mIk−1Sk−1!

j=1

Ij

%$
mIl−1Sl−1!

q=1

Ij

%
.

Noting that this is a sum over (mIk−1Sk−1)(mIl−1Sl−1) products of independent indicator
variables, we apply Wald’s identity to get

E(∆Sk∆Sl) = E ((mIk−1Sk−1)(mIl−1Sl−1))E(IjIl) (34)

= (Nd)2E (Ik−1Sk−1Il−1Sl−1)E(Ij)E(Il) (35)

=
(Nd)2

4
E (Ik−1Sk−1Il−1Sl−1) , (36)

completing the proof.
We are now ready to provide a recursive formula for ItSt, which will allow us to com-

pute its expectation.

Lemma 7 The expectation E(ItSt) satisfies the recursive equation

E(ItSt) =
5
1− γ +

m

4

6
E(It−1St−1)−

(Nd)2

4
E
"
(It−1St−1)

2
#

− (Nd)2

4

t−1!

k=1

"
1 + (1− γ)t−k

#
E(St−1It−1Sk−1Ik−1).

Proof. Recall that in the proof of Lemma 4 we used the fact that It = (1 − γ)It−1 + ∆St.
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Hence we may write

ItSt = ((1− γ)It−1 +∆St)

$
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t−1!

k=1

∆Sk +∆St

%

= (1− γ)It−1St−1 − S0∆St −∆St
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Now using Lemma 4, we have

It−1 = I0(1− γ)t −
t−1!
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(1− γ)t−k∆Sk,

and hence that

ItSt = (1− γ)It−1St−1 − S0∆St −∆St
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∆Sk − (∆St)
2

+ I0(1− γ)t∆St −∆St
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Which we can rewrite by collecting ∆St terms as

ItSt = (1− γ)It−1St−1 −
"
S0 + I0(1− γ)t

#
∆St − E

"
(∆St)

2
#
−

t−1!

k=1

(1 + (1− γ)t−k)E(∆St∆Sk).

Finally, applying Lemma 6 and (32), we have the desired result.
An alternative but less useful expression for E(ItSt) in terms of lower order terms

can be derived by using the following lemma. This lemma is a little more involved but
establishes ItSt in terms of Ik and Sk for k < t.

Lemma 8 For all t ∈ N we have

ItSt = S0I0(1− γ)t +
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Proof. Recall from (30) that St = S0 +
)t

k=1 ∆Sk. Substituting this, and the equation we
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established in Lemma 4 into the expression ItSt, we have for any t ∈ N,
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Now we work with the double sum to put it into the form given in the lemma. we have
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Focusing on the second summation, we note that by summing over the upper and lower
triangles of an l × k matrix, we can write

t!
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Then by swapping the labels l and k on the second sum, this gives
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completing the proof.
Putting ItSt in the above form allows us to apply the expectation operator in a clean

way. In particular, applying Lemma 6 and (32), we can evaluate the expectation of ItSt
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using Lemma 8 as
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