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Abstract

This paper explores the problem of assembling capital for projects. It can be diffi-

cult to assemble capital, when it is disaggregated, for a project that exhibits increas-

ing returns. Small investors may be reluctant to participate, as they may question the

ability of the project owner to raise the additional capital he requires. This suggests

the possibility that agents with blocks of capital (capital that is already aggregated)

might earn rents. Similarly, agents with “network capital” — that is, an ability to

aggregate the capital of others — may earn rents. In this paper, we develop a theory

of the rents attached to capital assembly, and discuss the implications for a range of

issues from investment, to growth, to inequality.
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1 Introduction

This paper explores the problem of assembling capital for projects. Under the usual

economic assumption of decreasing-returns-to-investment, this problem does not arise;

but when there are increasing returns over some range, investors may only be willing

to invest in projects when they believe others are willing to do so. In such instances,

assembling capital (or coordinating investors) is a relevant — and often critical — con-

sideration. This paper addresses the issue by viewing the process of assembling capital

as part of the equilibrium, and it explores the consequences of capital assembly for a

range of features of investment. One striking implication is that certain agents who

possess a privileged network position can use their “network capital” to improve over-

all investment and they receive outsize returns for doing so. Our theory also predicts

that investors with blocks of capital will serve as anchor investors for projects and earn

higher rates of return than small investors.

Our theory speaks to a fundamental aspect of the investment process that existing

models fail to address. In contrast to existing theories, which assume surplus maximiza-

tion, we emphasize the importance of scarce resources — network capital and block

capital — for the execution of valuable projects. This implies that these resources earn

rents — potentially large ones — in market equilibrium. It also implies that institutions

may be important, as they may affect the supply of these scarce resources, and hence the

extent to which valuable projects are implemented.

There are many “real-world” examples where people earn enormous sums that seem

hard to explain with traditional economic theories.

Warren Buffett’s investment in Goldman Sachs provides a good illustration of the

power of blocks of capital. In September of 2008, soon after the collapse of Lehman

Brothers, Buffett agreed to provide Goldman with $5 billion of capital. His investment,

plus the additional $2.5 billion Goldman was able to raise from small investors on the

back of his investment, helped Goldman weather the financial crisis. The deal was made

on very favorable terms to Buffett. Berkshire Hathaway (Buffett’s company) received a

10% annual dividend on its “perpetual preferred” stock, plus warrants to buy $5 billion

of common stock at 8% percent below the previous day’s closing price.1 By comparison,
1Bary, Andrew, “Warren Buffett Makes an Offer Goldman Sachs Can’t Refuse,” The Wall Street Journal
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the investors who provided the additional $2.5 billion dollars did not receive nearly as

favorable terms.

The founding of Federal Express — by entrepreneur Fred Smith — provides a good

illustration of the role of network capital. Notably, its establishment required significant

capital investment upfront. Before the company could even open its doors, it needed to

have in place a fleet of jets, a central hub with sorting facilities, and pickup and delivery

operations in twenty-five cities. Furthermore, capital was needed to cover the losses the

company could expect to run for the first several years (four, as it turned out) while it

built up demand for its service.

Fred Smith relied heavily on his social connections to coordinate investors on the

idea of his company. A graduate of Yale, he had been a member of Skull and Bones,

where he befriended both George W. Bush and John Kerry; and he established valuable

contacts in the airline industry running a business with his stepfather that bought and

sold jets. Smith was also a talented communicator and salesman. As one early FedEx

employee put it: “Fred turned on the charm in a way that few others can match.”2

The success of the company also depended heavily upon Smith’s ability to assemble

a top-notch management team; this task involved coordination as well. For instance,

FedEx’s initial COO Roger Frock remarked: “How could I even consider joining Fred in

his crazy scheme?...I...knew that Art’s [head of air operations] broad vision and mellow

personality would be tremendous assets for Federal Express.”3

There is empirical support for the idea that social connections yield substantial re-

turns. Hochberg et al. (2007), for instance, find that socially connected venture capital

firms do especially well. The VC industry, in general, is characterized by strong net-

work ties among VC firms that typically syndicate their deals with others. Hochberg et

al. (2007) find that the “centrality”4 of VCs in their network increase their internal rates

of return from 15% to 17% for a one standard-deviation increase in centrality. Similarly,

they find that the more central a VC firm, the better the performance of its portfolio com-

panies. A one standard deviation change in VC centrality increases the probability that

28 September 2008, Retrieved from http://www.wsj.com.
2Frock (2006), p. 62.
3Ibid., p. 95.
4In the sense of “eigenvector centrality” (Bonacich (1972)).
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a portfolio company survives its first funding-round from 66.8% to 72.4%. A possible

interpretation of their findings is that VC firms provide startups with network capital in

exchange for a share of their returns.

We analyze a model in which a project owner tries to raise capital for a project that

exhibits increasing returns over some range. We first show that by making an anchor

investment in the project, a large investor with a block of capital can move the project

from a “bad” equilibrium with low investment to a “good” equilibrium with high in-

vestment. Since a large investor spurs others to invest by making an anchor investment,

he need not finance the entire shift to the good equilibrium himself. We characterize the

minimum capital block-size needed to effect a shift to the good equilibrium — as well

as the rate of return earned on such an investment. Interestingly, by holding a subordi-

nated claim rather than a senior claim (equity or junior debt), a large investor can move

the project to the good equilibrium with a smaller block of capital.

We then consider the possibility of a central network actor generating a rent by as-

sembling the capital of small investors into a larger block; and we discuss how this

might be micro-founded.

There is a large literature on investment, ranging from so-called “Q-theory” to lumpy-

investment models (see Akerlof and Holden (2016), footnotes 3 and 4 for some notable

references). Relative to those papers, we focus specifically on a setting in which there

are increasing returns and we emphasize the strategic aspects of capital assembly.

Increasing returns naturally brings to mind the trade literature on the subject — es-

pecially Krugman (1980, 1981), Helpman (1981), and Helpman and Krugman (1985).

These models focus on a different issue from our paper. They assume, in contrast, that

the efficient scale can easily be achieved. They explore the tradeoff between efficiency

(which is achieved by industries being large) and variety (for which consumers have a

preference).

Closer to us, a different strand of papers considers the possibility that increasing

returns can generate multiple equilibria. For instance, Murphy et al. (1989) propose this

as a reason for poverty traps.5

5By contrast, Romer (1986) considers increasing returns that come from technological rather than pecu-
niary externalities. Relatedly, Aghion and Howitt (1992) emphasize the fact that technological innovations
improve the quality of products, rendering previous, inferior ones, obsolete.

3



There is also a literature on contribution games, beginning with Admati and Perry

(1991). Andreoni (1998) particularly relates to our paper. In a charitable-giving context,

he considers the role of a large contributor or government in achieving successful coor-

dination. Relative to these papers, the novel features of our analysis are our focus on an

investment context and our examination of the rents associated with playing a pivotal

role in coordination.6

There is a large literature in corporate finance on the value of controlling blocks and

large shareholders (see Grossman and Hart (1980) and Shleifer and Vishny (1986) for

early contributions and Becht et al. (2003) for further discussion and references). In

these models, the value of large stakes comes from control rights; but there is scant

consideration of the coordination problems involved in raising capital.

The remainder of the paper is organized as follows. Section 2 gives a simple example

that highlights the basic features of our model. Section 3 develops the model more

formally. We first examine the role a large investor can play in assembling capital for

a project; we then embed our analysis in a market setting (with multiple projects) and

analyze the market equilibrium; finally, we consider the role that networked agents can

play and examine the market returns to network capital. Section 4 discusses a set of

issues related to network capital such as: how it is acquired and whether agents can

invest in it. Section 5 considers some possible objections to our approach and contains

some concluding remarks.

2 An illustrative example

Imagine a project owner is trying to assemble capital for a project. When k units of

capital are invested in the project, it yields a return f(k). f(k) has the shape shown

in Figure 1; it exhibits increasing returns for intermediate values of k and decreasing

returns for high and low values of k.

6Another related paper is Bernstein and Winter (2012). They consider a setting in which a large player
imposes positive externalities on smaller players and earns a rent as a result. An example would be a
national brand store’s importance for small stores in a shopping mall. Our setting differs since all players
impose externalities on all others (those externalities being proportional to players’ size). Bernstein and
Winter (2012)’s argument why the large player earns rents does not apply in our setting. In our theory
large players earn rents for a different reason: their coordinating role.
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Figure 1 – An example

Case 1: Small investors only

Suppose there are many small, risk averse investors, each with only a negligible

amount of capital. They can invest in the project or earn a market rate of interest, rmkt.

We will show in the next section that there are two equilibria, one good and one bad;

however, the bad equilibrium is likely to prevail. In the bad equilibrium, the project

owner obtains kL units of capital at the market interest rate and receives a payoff of ∆1.

In the good equilibrium, the project owner receives the surplus-maximizing amount of

capital, kH , at the market interest rate and receives a payoff of ∆2 > ∆1.

Why is the bad equilibrium likely to prevail? Observe that there is a region in which

the project is in the “red,” yielding an insufficient return to pay off investors (f(k) <

(1 + rmkt)k). In Figure 1, this is the region between k1
M and k3

M , in which f(k) dips below

Line 1. Investors take a risk when they try to coordinate on lending kH rather than kL,

since the project may end up in the region in which it is undercapitalized and in the

“red.” In game-theoretic terms, the bad equilibrium “risk dominates” the good one.
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There is a large literature showing that risk dominant equilibria tend to be focal.7

To summarize, we find that a bad equilibrium, with a kL-level of investment, is likely

to prevail when capital is disaggregated (i.e., investors have only negligible amounts of

it).

Case 2: One large investor

Let us assume now that, in addition to small investors, there is a large investor with

a block of capital of size kblock.

If the large investor has enough capital, he can ensure the optimal level of investment

(kH). It is obvious that he can do so if kblock ≥ kH ; but he may be able to bring about the

optimal level of investment even if he is unable to fund the entire project. For instance,

a block of size k3
M − k1

M is adequate. Small investors are happy to lend when the project

is in the “black”; there is only reluctance to lend between k1
M and k3

M , when the project

is in the “red.” A block of size k3
M − k1

M is enough to bridge this gap.

In fact, it turns out that the large investor can bring about the good equilibrium with

less capital still. It is sufficient to have a block of size k (k is graphically represented in

Figure 1). Suppose the large investor loans k for the project and, additionally, enables

the project owner to pay off small investors first. (This could be achieved either by

taking junior debt or equity in the project.) Small investors are paid off in this scenario

so long as f(k) does not dip below Line 2. f(k) is tangent to Line 2 at k2
M but never dips

below; hence, small investors are certain to be paid off. Since small investors need not

worry about being paid off, they will be willing to provide the project owner with the

additional capital he needs to reach the good equilibrium.

Therefore, a large investor with a block of size kblock ≥ k can generate a surplus of

size ∆2 −∆1.

Market rates of return: large versus small investors

Consider next a market setting, with many projects, in which interest rates are en-

dogenous. In a competitive capital market, if block capital is scarce, large investors earn

7For notable early contributions see Cooper et al. (1990) and Huyck et al. (1990).
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higher rates of return than small investors. Large investors receive, in addition to rmkt,

the surplus their blocks help generate.

For example, an investor with a block of size k who invests in a project of the type

shown in Figure 1 receives (1 + rmkt)k + (∆2 −∆1).8 He therefore earns a rate of return:

r = rmkt +
∆2 −∆1

k
.

The difference between large investors’ and small investors’ rates of return is poten-

tially quite significant. A numerical example helps to illustrate. Figure 1 corresponds

to a particular numerical example in which rmkt = 5% and f(k) = 2.55k − 0.0975k2 +

0.0016k3− 0.0000075k4. In the good equilibrium, kH = 100 and ∆2 = 25; in the bad equi-

librium, kL = 10 and ∆1 = 6.775. The block size needed to reach the good equilibrium is

k = 14.881. It follows that r = 127.5%. Therefore, while a small investor earns a return

of 5%, an investor with a block of size k earns a return of 127.5%.

Network Capital

If investors are networked, connected agents may be able to play a role in assembling

capital. A privileged network position, moreover, can be a source of rents. A connected

agent may be able to pool the capital of a group of small investors into a block and earn

the difference between the block interest rate and rmkt (the non-block rate).

We will say that agents with the ability to pool others’ capital have “network capital”

and we will index their network capital by the amount of physical capital they are able to

assemble. Observe that n units of network capital generates a rent of (rmkt(n)− rmkt) · n,

where rmkt(n) denotes the market interest rate on a block of physical capital of size n.

3 The model

This section develops the model more formally. It is organized along similar lines to

Section 2. Sections 3.1 through 3.4 consider a setting in which a project owner is trying

8The project owner receives a payoff of ∆1. Because of competition between project owners to obtain
block capital, the block investor receives the entire surplus from reaching the good equilibrium (∆2−∆1).
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to raise capital from investors. We initially assume that there are only small investors;

we then show that a large investor can improve the overall level of investment. Section

3.5 moves to a market setting, with many projects, and examines the market equilibrium.

Interest rates are endogenous (in contrast to Sections 3.1 through 3.4). Finally, Section

3.6 discusses network capital and proposes one possible micro-foundation.

3.1 Setup

The owner of a project is trying to raise capital and there is a continuum of potential

investors (i ∈ [0, K]). In aggregate, potential investors possess K units of capital; each

one has an equal, negligible amount.

At time 1, the project owner decides (i) how much capital he will try to raise (kP ≥ 0)

and (ii) the interest rate (rP ≥ 0) he will pay to those who invest in the project.

At time 2, after observing the project owner’s choices, potential investors simultane-

ously decide under what circumstances they are willing to invest in the project. Each

investor chooses ai(κ) ∈ {0, 1} for all κ ∈ [0, kP ). ai(κ) = 1 indicates that investor i

is willing to invest if the project owner has raised κ units of capital at the point he ap-

proaches i.

At time 3, the project owner approaches investors in a random order. Agent i be-

comes an investor in the project if, when approached, he is willing to invest and the

project owner has yet to meet his capital target, kP . Let k denote the total amount of

capital raised at time 3.

At time 4, the project yields a return f(k). The project owner receives f(k)− (1+rP )k

when the project is in the “black” (that is, when f(k) − (1 + rP )k ≥ 0) and 0 when the

project is in the “red.” Agents who invested in the project receive a rate of return rP

when the project is in the “black”; they receive equal shares of f(k) when the project is

in the “red,” with an associated rate of return f(k)
k
− 1. Agents who do not invest in the

project receive the market rate of interest, rmkt.

The project owner is risk neutral. Investor i’s utility is given by u(1 + ri), where ri
denotes investor i’s rate of return.9 u is strictly increasing and weakly concave: u′ >

9We use this utility function to ensure that investors care about their negligible gains/losses.
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0, u′′ ≤ 0. As a tie-breaking rule, we assume, for ease of later exposition, that investors

prefer all else equal to choose a(κ) = 1 when there is a possibility of being approached

by a project owner who has raised κ and a(κ) = 0 otherwise.

We make a set of simplifying assumptions regarding f(k). Under these assumptions,

f(k) resembles the production function in Figure 1. Later, we will discuss how our

analysis can be generalized. Let π(k) = f(k)− (1 + rmkt)k. We assume:

1. π(k) is continuous and π(0) = 0.

2. π(k) has its global maximum at kH ≤ K and π(kH) = ∆2.

3. π(k) also has a local maximum at kL < kH and π(kL) = ∆1.

4. π(k) < 0 if and only if k1
M < k < k3

M , where kL < k1
M < k3

M < kH .

5. π(k) has its global minimum at k2
M and π(k2

M) = −∆3.

3.2 Analysis

Let us compare two strategies the project owner might follow. Strategy 1: set out to raise

kL at the market rate of interest (kP = kL and rP = rmkt). Strategy 2: set out to raise kH at

the market rate of interest (kP = kH and rP = rmkt). (We will later discuss whether there

might be a third strategy that is preferable to these two.)

First, consider what happens when the project owner follows Strategy 1.

Proposition 1. Suppose, at time 1, the project owner sets out to raise kL at interest rate rmkt.

In the unique Nash equilibrium of the time-2 subgame, the project owner successfully raises kL
and receives a payoff of ∆1.

The project owner only seeks to raise kL and the project is in the black for all k ≤ kL.

Therefore, the project owner has no trouble raising kL from investors.

Now, consider what happens when the project owner follows Strategy 2.

Proposition 2. Suppose, at time 1, the project owner sets out to raise kH at interest rate rmkt.

There are two Nash equilibria of the time-2 subgame:
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1. In one, the project owner only raises k1
M and receives a payoff of 0.

2. In the other, the project owner successfully raises kH and receives a payoff of ∆2.

The time-2 subgame is a coordination game with two equilibria. In Equilibrium 1,

investors are willing to invest up to the point the project dips into the red (ai(κ) = 1

if and only if κ < k1
M ); this results in the project owner raising k1

M . In Equilibrium 2,

investors are willing to invest even when the project is in the red (ai(κ) = 1 for all κ);

this results in the project owner raising kH .

Observe that Strategy 1 yields a higher payoff if Equilibrium 1 prevails while Strat-

egy 2 yields a higher payoff if Equilibrium 2 prevails. As we will see presently, Equi-

librium 1 risk dominates Equilibrium 2. There is a large literature showing that, in co-

ordination games, risk dominant equilibria tend to be focal. Consequently, the project

owner has good reason to select Strategy 1.

Harsanyi and Selten (1988)’s concept of risk dominance captures the idea that certain

equilibria in coordination games may be less risky than others. Suppose a 2x2 coordi-

nation game has two pure-strategy Nash equilibria, (U,U) and (D,D). Players may be

uncertain whether the other player intends to play U or D. Harsanyi and Selten say that

(U,U) risk dominates (D,D) if players prefer to play U when the other player chooses

U with probability 1
2

and D with probability 1
2
.

Harsanyi and Selten’s original paper defines risk dominance for 2x2 games only.

There are several papers that propose generalizations to games with n players and more

than two actions (see, for instance, Morris et al. (1995) and Kojima (2006)). Below, we

define a version of risk dominance that applies to a game with a continuum of players;

it closely relates to Kojima (2006).10

Definition 1. Let G be a simultaneous-move game with a continuum of players. Suppose there

are two Nash equilibria, a1 and a2, and player i receives a payoff u(ai, θ) when he plays ai,

a fraction θ of opponents play their equilibrium-1 strategies, and a fraction 1 − θ play their

10Kojima introduces the equilibrium concept of “u-dominance” for a class of games with pairwise incen-
tive maximizers (“PIM games”). An action is u-dominant if it is the (unique) best response to a distribution
of actions of other players where the number of opponents using an action is uniformly distributed. For
symmetric 2x2 games this is equivalent to risk dominance. Our generalization of risk dominance is very
similar to this, but the environment we study is not a PIM game.
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equilibrium-2 strategies. We will say that a1 is risk dominant if all players strictly prefer their

equilibrium-1 strategies to their equilibrium-2 strategies when θ is uniformly distributed on

[0, 1]:

E[u(a1
i , θ)|θ ∼ U [0, 1]] > E[u(a2

i , θ)|θ ∼ U [0, 1]] for all i.

For ease of exposition, this definition focuses on the case where there are two Nash

equilibria. However, it easily generalizes (see the Appendix).

When θ is uniformly distributed on [0, 1], there is a chance the project will end up un-

dercapitalized and in the red. Consequently, investors’ equilibrium-1 strategies (which

do not involve investing in projects that are in the red) are safer than their equilibrium-2

strategies (which do). Equilibrium 1 therefore risk dominates Equilibrium 2.

Proposition 3. Equilibrium 1 risk dominates Equilibrium 2.

It follows that, if the project owner uses risk dominance as the criterion to assess

what will happen at time 2, he prefers Strategy 1 to Strategy 2 . A remaining question is

whether there might be a Strategy 3 that dominates both Strategies 1 and 2. Clearly, it

would not be optimal to offer an interest rate below the market rate since this leads to

zero investment. It might be optimal, though, to offer a rate greater than rmkt. Doing so

might get agents to overcome their fear of investing in the project when it is in the red.

Specifically, Strategy 3 would involve offering an interest rate r̃ > rmkt and seeking to

raise k̃ = arg maxk[f(k)− (1 + r̃)k].

Proposition 4 (stated below) says that, if agents are sufficiently risk averse, Strategy

1 is optimal. There are two reasons for this result. First, if agents are sufficiently risk

averse, no above-market interest rate will induce agents to invest when the project is in

the red. Second, even if it is possible to induce agents to invest in the project when it is in

the red, it may require paying a high interest rate. If r̃ is large, the project owner’s payoff

from raising k̃ at rate r̃ will be less than the payoff from following Strategy 1 (∆1). In

other words, the cost to the project owner of paying the higher interest rate may exceed

the benefit.

Proposition 4. Let ρ(w) = − u′(w)
u′′(w)

denote investors’ Arrow-Pratt coefficient of absolute risk

aversion. Suppose the project owner uses risk dominance as the criterion to assess what will
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happen at time 2. There exists a ρ such that the project owner prefers to follow Strategy 1

whenever investors’ risk aversion exceeds ρ (ρ(w) > ρ for all w).

For the remainder of Section 3, we will focus on the case where Strategy 1 is optimal.

We focus on this case for simplicity; but a version of our argument regarding the value

of block capital goes through even when Strategy 3 is optimal. In that case, block capital

is valuable because it reduces the interest rate the project owner needs to pay to small

investors.

3.3 A large investor

Suppose that, in addition to small investors, there is one large investor with a block of

capital of size kblock > 0 and the same utility function as small investors. At time 1, the

large investor can make a loan to the project owner. A loan contract between the project

owner and the large investor specifies five things:

1. The loan size (klarge ≤ kblock).

2. The interest rate (rlarge).

3. Whether the loan is junior seniority or standard seniority.

4. The point at which the loan is to be made (κlarge).

5. The amount of capital the project owner will try to raise from small investors (kP )

and the interest rate he will pay them (rP ).

Points 3 and 4 require further elaboration. We assume the loan can either be junior

seniority or standard seniority. If it is junior seniority, the large investor gets paid off

after small investors. If the loan is standard seniority, the large and small investors have

the same seniority; when the project is in the red, the large investor receives a fraction

of f(k) proportional to the amount of capital he loaned (klarge
k

).

κlarge denotes the point at which the large investor makes a loan. We assume that

the large investor puts klarge into the project at the point the project owner has raised

κlarge from small investors. If the project owner never manages to raise κlarge from small

12



investors, the large investor does not put capital into the project and he earns the market

rate of interest on kblock.

Let rmkt(k) denote the market rate of return on a block of capital of size k. rmkt, the

rate of return that can be earned by small investors, is equal to rmkt(0). We assume that

the project owner and the large investor engage in Nash bargaining over the contract

and have equal bargaining power.

Analysis

If a large investor has sufficient capital, he can help the project owner reach kH . For

instance, if kblock ≥ kH , the large investor can loan the project owner all the capital he

needs (klarge = kH).

It is not necessarily surplus-maximizing, though, for the project owner to obtain all

of his capital from the large investor. If larger blocks of capital are more expensive than

smaller blocks of capital (that is, rmkt(k1 + k2) · (k1 + k2) > rmkt(k1) · k1 + rmkt(k2) · k2 for

all k1, k2), it is optimal to obtain as much capital as possible from small investors. If the

project owner obtains a block, he will want to obtain the minimal-size block needed to

reach kH .

This begs the question: how large a block is needed to reach kH? First, suppose the

large investor makes a standard-seniority loan. A block of size k3
M − k1

M is sufficient

to reach kH if it is invested after the project owner has raised k1
M from small investors

(klarge = k3
M − k1

M and κlarge = k1
M ). A block investment of this type bridges the region

where the project is in the red and small investors are unwilling to invest. If the block

size is any smaller, though, it is impossible to reach kH .

Now suppose the large investor makes a junior-seniority loan. To reach kH , the block

only needs to be large enough to ensure that small investors are paid off. It is easily

shown that the minimum block-size required to reach kH is k = ∆3

1+rmkt
and that k <

k3
M − k1

M . The block can be invested at any point before the project dips into the red

(κlarge ≤ k1
M ).

We conclude that, if the project owner borrows from the large investor, he will obtain

a junior-seniority loan of size k. He will obtain such a loan if doing so generates a

positive surplus (S). The project owner and the large investor will negotiate an interest
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rate (rlarge) that ensures an equal division of surplus. The surplus is equal to:

S = (∆2 −∆1)− C − (rmkt(k)− rmkt(0)) · k (1)

∆2 − ∆1 is the benefit associated with reaching kH rather than kL. C denotes the cost

of breaking up a block of capital of size kblock into two pieces. C is equal to: kblock ·
rmkt(kblock) − k · rmkt(k) − (kblock − k) · rmkt(kblock − k). The final term of S reflects the

interest premium that must be paid on a block of capital of size k.

The following proposition summarizes.

Proposition 5. Suppose the large investor has a block of capital of size k or greater; larger

blocks of capital are more expensive than smaller blocks of capital (rmkt(k1 + k2) · (k1 + k2) >

rmkt(k1) · k1 + rmkt(k2) · k2 for all k1, k2); and S > 0. Then, provided investors’ risk aversion

exceeds ρ, in equilibrium:

1. The large investor makes a junior-seniority loan of size k to the project owner at an early

point (κlarge ≤ k1
M ).

2. Small investors loan kH − k to the project owner at rate rmkt.

3. The large investor’s rate of return is: rmkt(k) + S
2k

.

4. The project owner’s payoff is: ∆1 + S
2

.

3.4 Generalizing

For ease of exposition, our focus thus far has been on production functions resembling

the one in Figure 1. Our analysis easily generalizes, though.

For instance, Figure 2a shows a production function that exhibits increasing returns

for low values of k rather than intermediate values of k. There is still a “good” equi-

librium and a “bad” equilibrium. In the bad equilibrium, zero capital is invested in the

project. In the good equilibrium, kH is invested in the project. The good equilibrium

generates a surplus of ∆; a block of capital of size k is needed in order to reach it since

f(k) dips into the red — down to Line 2 — between k = 0 and k = kH .
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Figure 2 – Other types of production functions
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Figure 2b shows a more complicated production function. π(k) = f(k)− (1 + rmkt)k

has three local maxima — at kL, kM , and kH . The project owner can reach kL without

any help from a block investor because the project is in the black for all k ≤ kL. To reach

kM , the project owner must obtain some help from a large investor since the project dips

into the red between kL and kM . The project dips down to Line 2 and hence a block of

size k1 is required to reach kM . To reach kH , the project owner must obtain a larger block

(of size k2) because the project dips further into the red — down to Line 3 — between

kM and kH .

3.5 Market Equilibrium

Our focus thus far has been on a single project and we have taken market interest rates

as exogenous. It is natural at this point to consider a market setting with many projects,

in which interest rates are endogenous, and ask what a market equilibrium might look

like.

A benchmark case to consider is a market with the following features:

1. There are many different types of projects (where a project’s type is defined by its

production function); there are many projects of any given type; and each project

is owned by a different agent.

2. The supply of block capital is fixed.

3. The supply of non-block capital is increasing in rmkt(0).

4. Breaking up blocks of capital is surplus-destroying.

What can we say about the market equilibrium? First, larger blocks of capital will be

more expensive than smaller blocks of capital in the following sense:

rmkt(k1 + k2) · (k1 + k2) > rmkt(k1) · k1 + rmkt(k2) · k2 for all k1, k2.

This follows from the fact that blocks can always be broken up as well as our assumption

that breaking up blocks is surplus-destroying (Assumption 4).
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Second, given that larger blocks are more expensive than smaller blocks, Proposition

5 implies that, when project owners obtain blocks, they will obtain the minimum-size

blocks they need to effect a shift of investment-level (say, from an investment level of kL
with surplus ∆1 to an investment level of kH with surplus ∆2).

Third, if a block of capital of size k is used in equilibrium to increase the level of

investment in a project from kL to kH :

rmkt(k) = rmkt(0) +
∆2 −∆1

k
, (2)

where ∆2−∆1 denotes the surplus associated with a shift from an investment level of kL
to an investment level of kH . The logic is as follows. Block capital is scarce (Assumptions

1 and 2) so interest rates will be bid up to the point where S (the surplus from investing

the block) is equal to zero. Additionally, blocks do not get broken up in equilibrium

given Assumption 4, so C = 0. When S = 0 and C = 0, Equation 1 implies Equation 2.

Finally, blocks will be deployed in equilibrium on the projects that maximize the size

of the associated surplus (∆2 − ∆1). Given the scarcity of block capital, many projects

will be undercapitalized in equilibrium. Furthermore, depending upon block interest

rates, a project of the type shown in Figure 2b might be funded up to kM (rather than kL
or kH).11

As a final note: Assumptions 1-4 are clearly strong and it is important to remember

that they are only meant to serve as a benchmark. In particular, one could imagine

settings where there are relatively few projects or where block capital is abundant. In

such a setting, ∆2 −∆1 might by partially or wholly captured by the project owner.

3.6 Network Capital

If investors are networked, a central network actor may be able to bring together a group

of small investors and get them to act collectively — like a large investor. We will say

11The owner of a project of the type shown in Figure 2b will base his decision of how much capital to
obtain on the interest premiums on blocks of capital of size k1 and k2. If the project owner obtains kL units
of capital, his payoff is f(kL) − (1 + rmkt(0))kL. If the project owner obtains kM (kH ) units, his payoff is
f(kM )− (1 + rmkt(0))kM − (rmkt(kM )− rmkt(0))k1 (f(kH)− (1 + rmkt(0))kH − (rmkt(kH)− rmkt(0))k2).
The project owner will choose the level of funding so as to maximize his payoff.
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that a central network actor possesses n units of network capital if he is able to bring

together a group of small investors with n units of physical capital. A block of network

capital of size n is a substitute for a block of physical capital of size n and hence should

earn an equivalent rent in a market equilibrium. Specifically, the rent on a block of

network capital of size n should be (rmkt(n)− rmkt(0)) · n.

While some readers may be happy to “black box” the concept of network capital,

others may be interested in understanding the process by which a central network actor

can assemble investors and generate a rent. We propose one possible micro-foundation

of network capital below.

A Formal Model

Suppose there is a continuum of small investors (i ∈ [0, K]). In aggregate, they pos-

sess K units of capital and each one has an equal, negligible amount. There are no large

investors. A network, g, exists among the investors; gij = 1 denotes that investors i and

j are connected and gij = 0 denotes that investors i and j are not connected.

Investors play a game with the following timing. At time 1, each investor with at

least one connection randomly selects one person to whom he is connected and listens

to a take-it-or-leave-it offer from him. Let Si denote the set of investors who listen to

offers from i.

At time 2, investors given the opportunities to make offers make their offers simul-

taneously. Investor i offers investor j ∈ Si an interest rate rioffer(j) in exchange for

allowing i to act as j’s proxy and invest j’s capital on his behalf.

At time 3, each investor who receives an offer simultaneously decides whether to

accept. Investors prefer to accept if they are otherwise indifferent. This results in each

investor having some capital he is responsible for investing (possibly a combination of

his own capital and the capital of others for whom he serves as proxy). Let ki denote the

amount of capital investor i is responsible for investing.

At time 4, each investor i invests ki in the market and generates a return Ri = (1 +

rmkt(ki)) · ki. Investor i then pays the promised rate-of-return — provided he is able to

do so — to those for whom he served as proxy. If he is unable, those for whom he served

as proxy equally divide Ri.
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Analysis

Let ni denote the expected mass of investors who receive offers from i. ni is a function

of the network topology (g). In a star network, for instance, ni = K for the investor at

the center of the star and ni = 0 for other investors.

We can think of ni as investor i’s network capital. Proposition 6 characterizes the

return investor i earns on ni.

Proposition 6. In equilibrium, investor i receives a monetary payoff of (rmkt(ni)− rmkt(0)) ·ni

with probability 1.

Proposition 6 is intuitive. In equilibrium, investor i assembles a block of capital of

size ni by promising to pay small investors rmkt(0); he earns rmkt(ni) on the block; and

he pockets the difference between rmkt(ni) and rmkt(0) ((rmkt(ni)− rmkt(0)) · ni).12

It is worth making two comments. First, when investors are more connected, the

supply of network capital is not necessarily greater. For instance, the star network max-

imizes the supply of network capital (since it aggregates investors’ capital into a single

block). In contrast, in a fully connected network (with all investors linked to all other

investors), ni = 0 for all i. It is harder to aggregate capital in a fully connected network

because there is no investor in a central position. This result is analogous to Calvo-

Armengol and de Marti (2009)’s finding that adding links to a network can impede co-

ordination.

Second, for simplicity, we assumed that all investors in the network have negligible

amounts of capital. More generally, the rent investor i earns from his network posi-

tion depends on whom he assembles capital from as well as how much he assembles.

For instance, assembling a block of size ni from small investors yields a rent of size

(rmkt(ni) − rmkt(0)) · ni whereas assembling a block of size ni from two large investors

with blocks of size ni

2
yields a rent of size (rmkt(ni) − rmkt(

ni

2
)) · ni. The rent is lower in

the latter case because block-holders demand a higher interest rate than small investors

(rmkt(
ni

2
) ≥ rmkt(0)).

12Note that it might be optimal for investor i to offer a higher interest rate than rmkt(0) to an investor j
who has a block of network capital himself (nj > 0); however, this has no effect on the return i earns on
ni because there are at most a finite number of investors with blocks of network capital.
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4 Discussion

A large economic literature — pioneered by Mincer (1958) and Becker (1962) — ob-

serves that a variety of seemingly disparate activities (for example: on-the-job training

or college education) can profitably be thought of as investments in human capital and

analyzed using a cohesive framework. This literature has analyzed issues such as: the

economic returns to human capital, the optimal level of investment, the incentive of

firms to provide it, whether human capital depreciates, and its role in understanding

inequality and economic growth.

In this paper we develop an analogous concept: network capital. We will now make

a few remarks.

1. People can invest in network capital, just as they can invest in human capital.13

Business schools are a notable example. According to The Economist: “Business

school gives one many advantages...but perhaps the most important of all is a net-

work of other successful people.”14 Networking is a huge focus of MBA students’

time, and some schools (e.g. London Business School) even offer workshops on

how to do so effectively.15

2. Cultural background and upbringing — which sociologists often refer to as “cul-

tural capital” — affect one’s ability to form ties (see Bourdieu and Passeron (1977)).

In this sense, one’s background affects one’s ability to invest in network capital.

Therefore, one can think of “cultural capital” as a precursor to network capital.

3. Because relationships need to be tended to, network capital can depreciate over

time, in a similar manner to physical and human capital.

13Glaeser et al. (2002) provide empirical support. In contrast to Putnam (1993) who pioneered the study
of social capital, Glaeser et al. (2002) focus on the investment decisions of individual actors rather than
aggregate group outcomes. Glaeser et al. (2002) find, for instance, that individuals put more effort into
making social connections in occupations where social skills are more important and that mobility reduces
people’s effort at making connections.

14“Network effects: A ranking of business schools’ alumni,” The Economist 6 February 2015, Retrieved
from http://www.economist.com.

15Pozniak, Helena, “MBAs and the power of networking,” The Independent 10 April 2013, Retrieved
from http://www.independent.co.uk.
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4. People can invest in network capital, but they can also have network capital con-

ferred on them (through the investments of others).

5. It may be particularly valuable to connect to highly-connected people (see Akerlof

and Holden (2016) for one rationale). Consequently, some people may become and

remain highly connected purely as a result of luck.

6. When agents invest in network capital, there are externalities. Such investments

affect the overall supply of network capital — not just an agent’s own supply. This

raises the question of appropriate policy interventions or institutions to achieve

the socially optimal level of investment.

7. An interesting issue concerns the incentives in a partnership to share connections.

On the one hand, hoarding connections increases one’s value to the firm. On the

other, hoarding connections reduces the firm’s value because it makes certain peo-

ple essential, and use of their connections cannot be compelled.16

5 Concluding remarks

We conclude by considering some issues raised by our theory, in particular whether

certain alternative model specifications could remove the benefit that accrues to block-

or network capital-holders.

First: could project owners and investors write conditional contribution contracts,

whereby investors’ capital only goes into a project if the total amount pledged is above

a threshold? Such contracts are not common in practice, which suggests that there are

theoretical reasons why they are rarely observed. One reason is that it is usually easy

to walk away from such pledges. An escrow account might help but such accounts are

known to be far from airtight. Furthermore, there is an incentive to wait to contribute to

see what other investors will do, which leads to a problem of a “race to the last.” Waiting

retains one’s option value; and there is also an informational benefit of waiting.

16This resembles the issue raised by Rajan and Zingales (1998). Access to assets (in this case, the con-
nections of the firm) may be preferable to ownership.
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Second: if the project owner tries to raise kH but fails, could he put kL into the project

and invest the remainder elsewhere at the market interest rate? Costs of delay in project

completion mean that, as a matter of practice, money is invested in projects as it comes

in — not held to be invested elsewhere. Project delay may also send a negative signal to

investors regarding the project owner’s ability to raise capital.17

Third: our model assumes that small investors have negligible amounts of capital.

If investors instead have small but finite amounts of capital, the “bad” equilibrium can

unravel. If the project owner tries to raise kH , the last investor needed to reach kH will

invest; the second-to-last investor, recognizing this, will invest; by iteration, all investors

are prepared to invest. This unraveling argument is fragile, however. For instance, it

falls apart if the project’s return (f(k)) is not strict common knowledge.18

Fourth: could a large fund play the role of a capital aggregator? As an empirical

matter, Vanguard, Fidelity, and other large funds do not invest in big projects like real

estate developments — nor do they serve as anchor investors. For moral hazard reasons,

there are limits placed on the classes of securities in which they can invest.19 Large

university endowments, like those of Yale and Harvard, that sometimes do make such

investments, act like rich individual investors rather than aggregators of funds. They do

not allow alumni and donors to co-invest with them, even though they obtain the same

kind of returns as block-holders in our model. Private equity and activist hedge funds,

by contrast, aggregate capital from a network of dispersed limited partners and make

investments where blocks of capital are particularly important — often to control board

17Furthermore, there might be transaction costs or liquidation costs associated with temporarily invest-
ing funds in the market.

18To illustrate why common knowledge matters, consider a setup as in Section 3.1 with two differences:
(1) each investor has a small, finite amount of capital and (2) while each investor knows the value of k3M ,
k3M (the point where the project moves from “red” back to “black”) is not common knowledge. If the
project owner has already raised k ≥ k3M , investors will contribute to the project. The last investor needed
to reach k3M will also invest in the project given that he can tip the project into the black. However, it does
not follow by backward induction that the second-to-last investor needed to reach k3M will be willing to
invest. While the second-to-last investor understands that the next investor can tip the project into the
black, he does not know whether the next investor will understand this himself (given that k3M is not
common knowledge). Hence, the unraveling argument breaks down. One way to think about anchor
investments is that they reduce the need for common knowledge.

19Without limits, the funds manager could take either too little or too much risk from the perspective of
the investor. For instance, the manager could invest in almost risk free assets such as government bonds
and receive essentially guaranteed carried interest, or gamble with the investors’ money in the hope of
large upside returns (and hence carried interest), but not take any risk themselves.
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seats and effect changes to the management team.

Fifth: one might wonder whether it is critical that the good equilibrium never arises

in the absence of a block investor. It is not. Our argument regarding the value of block

capital only requires that block capital raises the probability of the good equilibrium.

In this paper, we have examined the capital assembly problem, which arises when

there are increasing returns to investment. We have argued that holders of block capital

play an important role in capital assembly. By serving as anchor investors for projects,

they can increase the overall level of investment. Similarly, central network actors are

important because they can use their position to pool the capital of small investors into

blocks.

The potentially large returns earned by holders of network and block capital have

clear implications for income inequality. Our theory also has implications for corporate

finance. The problem we study may have a range of further implications. It is common

(e.g., in growth theory) to assume that projects/ideas are in short supply. In contrast,

the scarce resources in our theory are network and block capital. Our theory therefore

shifts the focus from the challenge of generating ideas to the challenge of implementing

and executing them.

6 Appendix

Definition 1 (Generalization). Let G be a simultaneous-move game with a continuum of play-

ers. Suppose there are nNash equilibria (a1, a2,..., an) and player i receives a payoff u(ai,θ) when

he plays ai, and a fraction θk of opponents play their equilibrium-k strategies (k = 1, 2, ..., n).

We will say that a1 is risk dominant if all players strictly prefer their equilibrium-1 strategies to

their other equilibrium strategies when θ is uniformly distributed on the standard (n-1)-simplex:

E[u(a1
i ,θ)|θ ∼ U(∆n−1)] > E[u(aji ,θ)|θ ∼ U(∆n−1)] for all j 6= 1.

Proof of Proposition 1. Suppose the project owner follows Strategy 1 at time 1 (i.e., he

chooses kP = kL and rP = rmkt). Let us consider the resulting time-2 subgame.

It is clearly an equilibrium for all investors to choose a(κ) = 1 for all κ < kP . Hence,
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an equilibrium exists in which the project owner raises kL. Furthermore, this is the

unique equilibrium in which the project owner raises kL since, if the project owner is

going to raise kL, it is optimal for an investor to choose a(κ) = 1 for all κ < kP (given the

tie-breaking rule).

We can prove by contradiction that an equilibrium does not exist in which the project

owner raises less than kL. Suppose the project owner raises k̂ < kL in equilibrium with

positive probability. Given that the project is in the “black” for all k ∈ [0, kL] and given

investors’ tie-breaking rule, investors will all choose a(k̂) = 1. Therefore, if the project

owner manages to raise k̂, investors always give him additional capital. It follows that

the project owner can never raise exactly k̂ (which is a contradiction). This completes

the proof.

Proof of Proposition 2. Suppose the project owner follows Strategy 2 at time 1 (i.e., he

chooses kP = kH and rP = rmkt). Let us consider the resulting time-2 subgame.

We can prove by contradiction that an equilibrium does not exist in which the project

owner raises less than k1
M . Suppose the project owner raises k̂ < k1

M in equilibrium with

positive probability. Given that the project is in the “black” for all k ∈ [0, k1
M ] and given

investors’ tie-breaking rule, investors will all choose a(k̂) = 1. Therefore, if the project

owner manages to raise k̂, investors always give him additional capital. It follows that

the project owner can never raise exactly k̂ (which is a contradiction).

Furthermore, by an analogous argument, an equilibrium does not exist in which the

project owner raises k̂ ∈ [k3
M , kH) with positive probability.

We can also prove by contradiction that an equilibrium does not exist in which the

project owner raises k̂ ∈ (k1
M , k

3
M) with positive probability. Suppose such an equilib-

rium exists. Given that the project is in the “red” at k̂, investors’ payoffs are lower

than they would be if they never invested in the project. Hence, investors are not best-

responding (which is a contradiction).

To summarize, for all values of k̂ except k1
M and kH , we have ruled out that the project

owner can raise k̂ with positive probability in equilibrium.

Now, suppose the project owner raises k1
M with positive probability. Given that the

project dips into the red when k ∈ (k1
M , k

3
M), investors all prefer to choose a(k1

M) = 0. If
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investors all choose a(k1
M) = 0, the project owner cannot raise more than k1

M . Further-

more, we have already shown that an equilibrium does not exist in which the project

owner raises less than k1
M with positive probability. Hence, if the project owner raises

k1
M with positive probability in equilibrium, he raises k1

M with probability 1 in equilib-

rium.

At this point, we have shown that at most two types of equilibria exist: (1) an equi-

librium in which the project owner raises k1
M with probability 1, and (2) an equilibrium

in which the project owner raises kH with probability 1. Let us now show existence of

such equilibria.

It is clearly an equilibrium for all investors to choose a(κ) = 1 for κ < k1
M and a(κ) = 0

for κ ≥ k1
M . This results in the project owner raising k1

M . Furthermore, this is the unique

equilibrium in which the project owner raises k1
M since, if the project owner is going to

raise k1
M , it is optimal for investors to choose a(κ) = 1 for κ < k1

M and a(κ) = 1 for

κ ≥ k1
M (given their tie-breaking rule).

It is also clearly an equilibrium for investors to choose a(κ) = 1 for all κ. This results

in the project owner raising kH . Furthermore, this is the unique equilibrium in which

the project owner raises kH since, if the project owner is going to raise kH , it is optimal

for investors to choose a(κ) = 1 for κ (given their tie-breaking rule). This completes the

proof.

Proof of Proposition 3. Let a1
i denote investor i’s equilibrium-1 strategy and a2

i denote in-

vestor i’s equilibrium-2 strategy. Investor i’s equilibrium-1 strategy involves choosing

ai(κ) = 1 if and only if κ < k1
M ; investor i’s equilibrium-2 strategy involves choosing

ai(κ) = 1 for all κ. Let u(a1
i , θ) denote i’s expected payoff when a fraction θ of other play-

ers follow their equilibrium-1 strategies and a fraction 1 − θ follow their equilibrium-2

strategies. We need to show that E[u(a1
i , θ)|θ ∼ U [0, 1]] > E[u(a2

i , θ)|θ ∼ U [0, 1]] for all i.

Observe that the difference between investor i’s equilibrium-1 and equilibrium-2

strategies is that, in equilibrium 1, investor i chooses ai(κ) = 0 for κ ≥ k1
M and, in

equilibrium 2, investor i chooses ai(κ) = 1 for κ ≥ k1
M . It is therefore sufficient to show

that investor i does strictly worse by choosing ai(κ) = 1 for κ ≥ k1
M .

If 0 < θ <
k3M−k

1
M

K−k1M
, the project owner raises k ∈ (k1

M , k
3
M); investors in this case

receive a rate of return below rmkt. θ ∼ U [0, 1] so there is a positive probability that
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0 < θ <
k3M−k

1
M

K−k1M
. Therefore, if an investor chooses to invest when κ ≥ k1

M , he receives a

rate of return below rmkt with positive probability. Investors therefore strictly prefer to

choose ai(κ) = 0 for κ ≥ k1
M . Hence, equilibrium-1 risk dominates equilibrium-2. This

completes the proof.

Proof of Proposition 4. Suppose the project owner follows a “Strategy 3” of the form rP =

r̃ and kP = k̃, where r̃ > rmkt and k̃ = arg maxk[f(k) − (1 + r̃)k]. We will show that,

if investors are sufficiently risk averse, Strategy 1 yields a higher payoff to the project

owner than Strategy 3.

First, observe that Strategy 3 yields a lower payoff to the project owner than Strategy

1 if k̃ ≤ k3
M . Therefore, we can restrict attention to the case where k̃ > k3

M .

Let us examine the time-2 subgame that results from following Strategy 3 at time

1. Following a logic analogous to that given in the proof of Proposition 2, the time-2

subgame has two equilibria. In equilibrium 1, investors supply the project owner with

k1
M units of capital (choosing a(κ) = 1 if and only if κ < k1

M ); in equilibrium 2, investors

supply the project owner with k̃ units of capital (choosing a(κ) = 1 for all κ).

Observe that, in equilibrium 1, the payoff to the project owner is 0. Therefore, the

project owner prefers to follow Strategy 1 if equilibrium 1 prevails. We will now show

that equilibrium 1 risk dominates equilibrium 2 if investors are sufficiently risk averse

(and hence, equilibrium 1 prevails).

To prove risk dominance, we need to show that when investors are risk averse,

E[u(a1
i , θ)|θ ∼ U [0, 1]] > E[u(a2

i , θ)|θ ∼ U [0, 1]] for all i. The difference between in-

vestor i’s equilibrium-1 and equilibrium-2 strategies is that, in equilibrium 1, investor

i chooses ai(κ) = 0 for κ ≥ k1
M and, in equilibrium 2, investor i chooses ai(κ) = 1 for

κ ≥ k1
M . Therefore, it is sufficient to show that investor i does strictly worse by choosing

ai(κ) = 1 for κ ≥ k1
M .

If 0 < θ <
k3M−k

1
M

K−k1M
, the project owner raises k ∈ (k1

M , k
3
M); investors in this case receive

a rate of return below rmkt. On the other hand, if θ > k3M−k
1
M

K−k1M
, the project owner raises

k > k3
M and investors receive a rate of return above rmkt. Therefore, when θ ∼ U [0, 1],

there is both an upside and a downside risk associated with choosing ai(κ) = 1 for

κ ≥ k1
M . Provided investors are sufficiently risk averse, though, the downside risk will
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dominate and investors will prefer to choose ai(κ) = 0 for κ ≥ k1
M . Hence, equilibrium-1

risk dominates when investors are sufficiently risk averse. This completes the proof.

Proof of Proposition 5. The proof of Proposition 5 is given in the text of Section 3.3.

Proof of Proposition 6. Let ni denote the expected mass of investors who receive an offer

from i. We will show that i’s expected monetary payoff is equal to (rmkt(ni)−rmkt(0))·ni.

Suppose j ∈ Si is one investor who receives an offer from i and suppose nj = 0.

Given that nj = 0, investor j is unable to form a block of capital himself (by serving as

a proxy for other investors). Therefore, if j reject’s i’s offer, he can only obtain the non-

block rate of return on his own capital (rmkt(0)). It follows that investor i will only offer

j the non-block rate of return (rmkt(0)); investor j will accept i’s offer and let i invest on

his behalf.

There can be at most a finite number of investors j ∈ Si for whom nj > 0. Therefore,

i will offer the non-block rate of return (rmkt(0)) to all investors he is connected to —

except possibly a set of measure zero — and these investors will accept his offer. Hence,

with probability 1, i obtains a block of capital of size ni. From serving as a proxy, he

earns the difference between the block rate of return and the non-block rate of return:

(rmkt(ni)− rmkt(0)) · ni.

In addition to earning a payoff from serving as a proxy, investor i receives a return on

his own capital (which he may invest himself or hand over to another investor to invest

on his behalf). Given that investor i has only a negligible amount of capital, he earns at

most a negligible amount from his own capital. Hence, we can ignore this contribution

to i’s monetary payoff. This completes the proof.
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