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Abstract

This paper considers the consequences of aggregate estimation of nonlinear empiri-

cal models with two-way heterogeneous, multiplicative fixed effects. Aggregate estima-

tors cannot control for micro-level interactions of these effects and are thus misspecified.

I characterize the bias in aggregate estimates and propose a set of disaggregate pseudo-

maximum likelihood (PML) estimators that control for the unobserved effects using

a structural gravity equation. I apply these estimators to bilateral trade data, where

the micro-level heterogeneity has the interpretation of product-level comparative ad-

vantage (PLCA), and find significant bias due to PLCA in more aggregated estimates.

After controlling for PLCA, remaining biases due to heteroskedasticity, sample selec-

tion, and heterogeneity in the common parameters are relatively small. I also show that

the pooled product-level Poisson PML estimator has a number of desirable properties,

including that it estimates an ideal index of heterogeneous coefficients and outperforms

a product-by-product estimator out-of-sample. Applied to panel data, I find that con-

trolling for PLCA reveals a significant decline in the distance elasticity over time.
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1 Introduction

In the presence of micro-level heterogeneity, estimation based on aggregated data gener-

ally leads to biased estimates of model parameters (van Garderen et al., 2000). In this

paper, I consider the estimation of nonlinear empirical models with two-way heterogeneous,

multiplicative fixed effects and the bias in estimates based on aggregated data. When the

micro-level effects are considered incidental parameters, it is tempting and convenient to

ignore the possibility of heterogeneity and aggregate to the level of interest in the outcome

variable. I consider a popular class of nonlinear estimators, including fixed-effects pseudo-

maximum likelihood (PML) and structural gravity estimators, that consistently estimate

the common parameters using disaggregated data. I show that aggregate estimators in this

class must control for an additional unobservable component that accounts for micro-level

interactions between the heterogeneous fixed effects. Aggregate estimation necessarily omits

this component, which is generally correlated with the explanatory variables and cannot be

controlled for using aggregate fixed effects, and thus yields biased estimates.

My primary application is to bilateral trade flows, where the interaction between unob-

served importer-product and exporter-product effects embodies product-level comparative

advantage (PLCA), which is correlated with trade costs and influences sector-level trade

flows. However, this framework can be applied in many contexts in which the outcome

varies along multiple dimensions, such as panel data with individual and time effects that

vary by product, location, employer, academic subject, or type of health condition, or in

dyadic data in which agents interact multiple times or in multiple ways, as with product-

level trade flows. Often, interest lies in the effect of an explanatory variable on a unit of

observation (such as a firm, worker, or country) at a higher level of aggregation than the

heterogeneity in the fixed effects (e.g., the worker-employer or country-product level). The

focus of this paper is on the estimation of such an effect and the bias in estimates using

aggregated data. This is a common practice in many fields, including the international trade

literature, where gravity estimation almost universally uses aggregate data.1

I propose a set of disaggregate PML estimators that control for the heterogeneous un-

observed effects using a set of structural gravity equations. These estimators consistently

identify the common parameters, are straightforward to implement, and can be applied out-

side of an international trade context. I consider pooled estimators, which maintain the

assumption of homogeneous common parameters implicit in aggregate estimators, as well

1In the set of papers compiled by Head and Mayer (2014) for a meta-analysis of gravity estimates, more
than 80% used only aggregate data. Of the papers that used disaggregated data, the median number of
industries was 16. Only two used product-level data, and both used single-country datasets that did not
allow them to control for multilateral effects.
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as estimators that allow for heterogeneity in the common parameters. The latter can yield

an overwhelming number of parameter estimates, hindering exposition and interpretation

of the results. Statistical tests may also lack power because the heterogeneous parameters

are less precisely estimated and require testing multiple hypotheses.2 As a solution to both

problems, I propose an ideal coefficient index whose interpretation is analogous to estimates

based on aggregate data. I show that pooled Poisson PML (PPML) automatically estimates

this index, making it a particularly useful estimator.

I apply these estimators to data on bilateral trade of manufactures at the 6-digit HS

product level. To assess the severity of the bias in aggregate estimates, I compare the results

to standard gravity estimators using data aggregated to the sector level, defined either as all

manufactures or 2-digit ISIC industries. I find large and statistically significant bias in sector-

level estimates. For example, the distance elasticity is biased downward by 17% for PPML

and upward by 70% for fixed-effects OLS in aggregate estimations. Substantial differences

across sector-level estimators – attributed to biases in OLS due to heteroskedasticity and

sample selection and to finite sample biases in PML estimators by Santos Silva and Tenreyro

(2006) and others – become small and statistically insignificant in product-level estimates,

indicating that such biases become much less important once the estimation controls for

PLCA. I also find that industry-level estimates are nearly identical to aggregate estimates

for all manufactures, indicating the importance controlling for heterogeneity in unobserved

effects at the lowest level of aggregation possible.

These findings make a strong case that gravity estimation should always make use of the

most disaggregated data available. A remaining question is whether pooled or heterogenous

estimators should generally be the preferred replacement for aggregate estimators. I address

this question in two ways. First, I test for heterogeneity in coefficient estimates and find that

homogeneity can be rejected for many, though far from all, products. Second, I develop and

implement a split-sample bootstrap procedure to examine the out-of-sample performance of

the estimators and find that the pooled estimator outperforms the heterogenous estimator,

indicating that the latter overfits the product-level data in-sample. This is consistent with

the conclusion of Baltagi (2008) that homogeneous panel estimators tend to perform well out

of sample. Based on these results, I propose a rule of thumb: Pool to the level of aggregation

of primary interest in the outcome. Pooled PPML is particularly useful in this regard, as it is

a pooled estimator that also delivers an ideal index of heterogeneous coefficients, making it a

strong candidate to be the workhorse estimator in applications where any form of micro-level

heterogeneity is suspected.

This is not the first paper to recommend disaggregate gravity estimation. Most notably,

2See, e.g., Anderson (2008) for a discussion of the multiple inference problem.
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Anderson and van Wincoop (2004) demonstrate that estimates suffer from aggregation bias

when trade costs vary across products, and Anderson and Yotov (2010a,b) argue that pa-

rameter heterogeneity across industries is significant. By contrast, I show that aggregate

estimates are biased due to PLCA even when parameters are homogeneous. In fact, because

pooled PPML estimates the ideal coefficient index, all of the bias in aggregate PPML esti-

mates is due to PLCA. Even for other estimators that do not share this property, the bias

due to PLCA swamps the bias due to heterogeneity in my empirical application. The empir-

ical tools that I implement also obviate many possible reasons why researchers have largely

ignored the guidance of Anderson and van Wincoop (2004) that the “obvious recommenda-

tion is to disaggregate”. Specifically, the pooled estimators and coefficient index alleviate the

reporting, efficiency, and multiple inference concerns, and I show that the common parame-

ters as well as the coefficient index for heterogeneous border costs can be identified without

product-level data on domestic trade flows, which are often unavailable. In addition, the

product-level estimators are not overly computationally burdensome.3 Thus, I argue that

the product-level estimators are unambiguously superior to sector-level estimators.

The predicted effects of changes in trade barriers based on sector-level estimates can be

misleading both due to bias in estimates of the common parameters and as a direct result

of ignoring patterns of PLCA. To demonstrate this, I evaluate the Modular Trade Impact

(MTI) of eliminating border costs. The MTI is a very useful impact measure because it can

be calculated using the common parameter estimates from a disaggregate structural gravity

estimator and requires no additional data nor any restrictions on the form of demand across

products, details of factor markets, or sources of comparative advantage. The product-

level models predict much more consistent and substantially smaller changes in trade flows

than the sector-level models. The former distinction is primarily due to bias in sector-level

parameter estimates, while the latter is largely a result of sector-level MTI calculations

ignoring PLCA.

I also consider the bias in sector-level panel estimates that include country-pair fixed

effects to control for all static determinants of bilateral trade flows. I find that, when

estimating the effect of free trade agreements (FTAs) in isolation, sector-level estimates

overstate the effect by 30% for PPML and nearly 90% for OLS. When controlling for time-

variation in the effects of other common gravity variables, I find less bias in the effect of FTAs,

but sector-level estimates fail to identify a 4-6% per-decade fall in the distance elasticity and a

6-8% per-decade fall in the effect of sharing a common language. These results are consistent

3Matlab routines for the structural gravity PML estimators and fixed-effects OLS are available on
the author’s website. Product-level PPML and fixed-effects OLS can be implemented in Stata using the
ppml panel sg and reg hdfe commands, respectively. The baseline estimates can be computed in about
15 minutes on a standard desktop computer.
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with increasing specialization over time for country pairs that are geographically close and

who tend to sign FTAs, and they help explain the “puzzling” persistence of distance elasticity

estimates (Disdier and Head, 2008).

Gravity estimation has a long tradition in the international trade literature (Head and

Mayer, 2014). Following Eaton and Kortum (2002) and Anderson and van Wincoop (2003),

the gravity literature has adopted estimation methods consistent with trade theory, using

the structure of trade models to control for unobserved country-specific effects. I contribute

to this literature in two ways. First, I cast the structural gravity equation as a method-of-

moments estimator for a general nonlinear empirical model with two-way fixed effects. This

demonstrates that structural gravity estimators are valid even when output and expenditure

are observed with error, which is not true under standard derivations in which an error term

is appended after imposing the equilibrium conditions of an underlying theoretical model.

It also implies that structural gravity estimators are generally applicable in fields beyond

international trade. Second, I show that unbiased estimation of the effects of explanatory

variables on sector-level trade flows requires controlling for PLCA, and I develop a set of

estimators that use product-level data to do so.

This paper is related to the literature devoted to the estimation of nonlinear models with

two-way fixed effects. Fernández-Val and Weidner (2016) review this literature and derive

unbiased maximum likelihood estimators that treat the unobserved effects as parameters

to be estimated. Charbonneau (2012) and Jochmans (2017) derive alternative estimators

that eliminate two-way fixed effects using differences of pairwise interactions of residuals. I

show that the well-known structural gravity equation also constitutes a method-of-moments

estimator based on a conditional mean assumption. The split sample bootstrap procedure

that I implement adapts model evaluation techniques used in time series (White, 2003),

panel data (Baltagi, 2008), and cross-section (Anderson, 2008; Fafchamps and Labonne,

2017) applications to a setting with dyadic data.

There is a vast literature devoted to aggregation issues in estimation.4 This paper con-

tributes most directly to the literature on estimation of non-linear micro-level models using

aggregated data, including Lewbel (1992) and van Garderen et al. (2000). In the interna-

tional trade literature, a number of papers, including Hillberry and Hummels (2002), Hill-

berry (2002), and Yi (2003), develop models in which the production and demand structure

depends on trade costs and show that this leads to bias in aggregate estimates. While they

rely on the structure of their models to infer trade costs, I take the alternative approach of

employing estimators that control for all possible patterns of unobserved micro-level hetero-

geneity using product-level data. Another related paper is Hallak (2010), which finds that

4See, for example, the review by Stoker (1993).
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tests of the Linder (1961) hypothesis based on aggregate data are biased because income per

capita is correlated with patterns of comparative advantage.

My paper is also related to a fast-growing strand of the international trade literature

featuring models with rich sectoral heterogeneity. Costinot and Rodŕıguez-Clare (2014) and

Kehoe et al. (2017) review recent advances in this area. Because my empirical framework is

consistent with the structure of the vast majority of these models, the proposed estimators

can be used to parameterize them. A case in point is French (2016), which uses the pooled

PPML estimator, developed in an earlier version of this paper, to calibrate a many-product

Eaton and Kortum (2002) model and finds that the welfare gains from trade depend on the

patterns of PLCA in the data.

In the next section, I specify the empirical model and characterize the bias in aggregate

estimates in the presence of heterogeneous fixed effects. Section 3 introduces the application

to trade flows and refines the bias characterization in this setting. Section 4 develops a set of

product-level structural gravity estimators and discusses practical estimation issues. Sections

5 and 6 present the empirical results and extension to panel data. Section 7 concludes.

2 Empirical Model

Given observational units indexed by (n, i), where n = 1, .., N and i = 1, ..., I, suppose

that a scalar outcome variable, Xjk
ni , is observed across micro-level categories indexed by

k = 1, .., Kj, where j = 1, .., J indexes categories at a higher level of aggregation. Further

suppose that interest lies in the effect on the aggregate variable, Xj
ni =

∑Kj

k=1 X
jk
ni , of a set of

explanatory variables, zjni.
5 I consider an empirical model in which the conditional mean of

Xjk
ni is given by a nonlinear function of zjni together with unobserved multiplicative effects

that are heterogeneous across k:

Assumption 1.

E
[
Xjk
ni

∣∣∣Zj,Γjk
]

= ωjkni = φjkn ψ
jk
i f(zjni,β

jk), (1)

where φjkn and ψjki are unobserved effects, zjni is an L × 1 vector of explanatory variables,

βjk is an L × 1 vector of (potentially k-specific) common parameters, Zj = (zj11, ...,z
j
NI)
′,

and Γjk = (βjk ′,φjk1 , ...,φ
jk
N ,ψ

jk
1 , ...,ψ

jk
I )′.6

It is also useful to define the disturbance term ηjkni = Xjk
ni /ω

jk
ni . The model is semipara-

metric in that the joint distribution of φjkn , ψjki , and ηjkni is not specified. Because my focus

5The analysis that follows holds analogously for the weighted average outcome X̄j
ni =

∑Kj

k=1 w
kXjk

ni , as
long as the weights are exogenously given.

6Assuming strict exogeneity of the explanatory variables allows me to consider a broader class of estima-
tors. However, this assumption can be relaxed in many settings.
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is on situations in which the researcher may be tempted to estimate an aggregate version

of (1), the explanatory variables are assumed to be constant across k. All of the estimation

methods that I employ can accommodate explanatory variables that vary by k, but I leave

this case for future work for brevity and notational convenience. In what follows, every

object is allowed to vary across j, so to avoid excessive notation I omit the j superscript

wherever there is no ambiguity.

I apply this model to bilateral trade data, where n and i are countries, k is a product

category, and j is the sector of interest. However, this setup is applicable in numerous

settings where unobserved heterogenous effects interact. For example, one may wish to

identify (a) the effect of R&D expenditure using a panel of firms (n indexing firms and

i indexing time), where unobservable firm-product effects may interact with unobservable

product-time spillovers to influence patenting activity or (b) the effect of class size on student

outcomes (n indexing student and i indexing semester), where academic achievement depends

on the interaction between student proclivity in a subject, φkn, and peer effects that vary by

subject and semester, ψki .

The most common approach to controlling for the unobserved effects in specifications like

(1) is to treat them as parameters to be estimated.7 While it is common to estimate a log-

linear version of (1) by OLS, Assumption 1 does not imply consistency of OLS, as Santos Silva

and Tenreyro (2006) show. Instead, the common parameters and unobserved effects can be

consistently estimated by a fixed-effects (FE) pseudo-maximum likelihood (PML) estimator

based on (1) in its multiplicative form.8 Another approach is to structurally control for

the unobserved effects. This is exemplified by structural gravity estimators of international

trade models, introduced by Anderson and van Wincoop (2003), which impose the model’s

market-clearing conditions to express φn and ψi as functions of data and parameters.

To consider both approaches in a common framework, I define the following class of

method-of-moments estimators. Given scalar residual functions, r(Xk
ni, ω̂

k
ni) and r̃(Xk

ni, ω̂
k
ni),

where ω̂kni = φ̂knψ̂
k
i f(zni; β̂

k), that satisfy E[r(Xk
ni, ω

k
ni)|Z,Γk] = 0 and E[r̃(Xk

ni, ω
k
ni)|Z,Γk] =

7See Head and Mayer (2014) and Fernández-Val and Weidner (2016) for discussions of the international
trade and panel estimation literatures.

8Fernández-Val and Weidner (2016) prove the consistency of maximum likelihood estimators of nonlinear
models with two-way fixed effects under only a conditional mean assumption.
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0 under Assumption 1, these estimators solve empirical moment conditions of the form

N∑
n=1

I∑
i=1

r(Xk
ni, ω̂

k
ni)Zni = 0 (2)

I∑
i=1

r̃(Xk
ni, ω̂

k
ni) = 0, ∀n, k, (3)

N∑
n=1

r̃(Xk
ni, ω̂

k
ni) = 0, ∀i, k. (4)

where Zni = hni(Z, Γ̂
k) is an L × 1 vector that depends on the explanatory variables and

parameters.9

Fally (2015) shows that FE OLS and FE PML estimators imply “adding-up” constraints

of the form of (3) and (4). For these estimators, r(·) = r̃(·), and the functional form depends

on the chosen objective function. Structural gravity estimators are equivalent to specifying

r̃(Xk
ni, ω̂

k
ni) = Xk

ni − ω̂kni. Thus, they solve concentrated empirical moment conditions of the

form
N∑
n=1

I∑
i=1

r(Xk
ni, X̂

k
ni(β̂

k))Zni = 0, ∀k, (5)

where

X̂k
ni(β̂

k) =
Xk
n

Φk
n

Y k
i

Ψk
i

f(zni; β̂
k), (6)

and where Xk
n ≡

∑
iX

k
ni, Y

k
i ≡

∑
nX

k
ni, and Φk

n and Ψk
i solve the system of equations

Φk
n =

∑
i

Y k
i

Ψk
i

f(zni; β̂
k) and Ψk

i =
∑
n

Xk
n

Φk
n

f(zni; β̂
k). (7)

Poisson PML (PPML) is a special case for which the FE and structural estimators coincide

because the Poisson likelihood function implies the same form for r̃(·) as is imposed by the

structural gravity estimators.10

Equation (6) is a disaggregated structural gravity equation in its most common form,

with Φk
n and Ψk

i being the “multilateral resistance” (MR) terms defined by Anderson and van

9In many settings Zni = h(zni, β̂
k, φ̂k

n, ψ̂
k
i ) or even Zni = zni. The more general specification includes

structural m-estimators whose first-order conditions include functions of explanatory variables and unob-
served effects across observations. Note that I do not claim that all such estimators are consistent for β.
I define this class to characterize the bias in estimates of β based on aggregated data, given a consistent
micro-level estimator in the class.

10Fally (2015) and Arvis and Shepherd (2013) provide formal proofs of this equivalence.
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Wincoop (2003).11 Treating structural gravity estimators as method-of-moments estimators

based on Assumption 1 is useful for two reasons. First, it makes clear that structural gravity

estimators are applicable outside of an international trade context. Second, structural gravity

models are typically derived under the assumption that ηkni = 1 and an error term appended

to (6) ex post, which is inconsistent with the fact that shocks to Xk
ni are also shocks to Xk

n

and Y k
i . My derivation justifies the specification of the MR terms as functions of observed,

rather than expected, values of Xk
n and Y k

i .

If not for heterogeneity in the unobserved effects and common parameters, (1) and (6)

would hold at the aggregate level. Thus, a common practice is to estimate an aggregate

version of (1). Such an exercise implicitly assumes homogeneity of the unobserved effects

and either likewise assumes homogeneity of the common parameters or seeks to estimate

an index of β or an average partial effect of an explanatory variable. I use the following

proposition to characterize the potential bias in estimates based on such practice.

Proposition 1. Let ᾱ denote a sector-level index of a given set of product-level param-

eters, α = {αk : k = 1, .., K}, which is homogeneous of degree 1. Assumption 1 im-

plies that E[r(Xni, ω̄niTni)|Z, Γ̄, Tni] = 0 and E[r̃(Xni, ω̄niTni)|Z, Γ̄, Tni] = 0, where ω̄ni =

φ̄nψ̄if(zni; β̄), Γ̄ = (β̄′, φ̄1, ..., φ̄N , ψ̄1, ..., ψ̄I)
′, and Tni is given by

Tni =
∑
k

φkn
φ̄n

ψki
ψ̄i

f(zni;β
k)

f(zni; β̄)
. (8)

Proofs of all propositions are provided in Appendix B. The Tni term summarizes the effect

of the interaction of the unobserved effects on Xni. In the context of bilateral trade flows, Tni

embodies the effect of countries’ product-level comparative advantage on sector-level trade

flows. The magnitude of Tni is also affected by heterogeneity in β as well as the choice of

index β̄. Regarding the former, Tni will tend to be greater (smaller) if f(zni;β
k) tends to

be greater (smaller) for observations where the interaction effect is greater.

In general, Assumption 1 implies neither E[r(Xk
ni, ω̄ni)|Z, Γ̄] = 0 nor E[r̃(Xk

ni, ω̄ni)|Z, Γ̄] =

0. Instead, Proposition 1 implies aggregate analogues of the method-of-moments estimators

11Some authors refer to FE estimators as “structural” because they control for model-implied fixed effects.
To be clear, I reserve the term “structural” to refer to estimators that solve for the MR terms using (7).
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given by (2)-(4), which take the form

N∑
n=1

I∑
i=1

r(Xni, ˆ̄ωniTni)Zni = 0

I∑
i=1

r̃(Xni, ˆ̄ωniTni) = 0, ∀n,

N∑
n=1

r̃(Xni, ˆ̄ωniTni) = 0, ∀i.

where ˆ̄ωni = ˆ̄φn
ˆ̄ψif(zni;

ˆ̄β). Typical aggregate estimators omit Tni, which is unobservable,

meaning that they are generally misspecified, yielding biased estimates of β̄. Further, Tni

cannot be estimated using aggregate data because it varies by both n and i.

The severity and direction of the bias depends on the relationship between Tni and zni

in the data and the form of f(·). Given that the empirical model imposes no restrictions on

the distribution of the micro-level unobserved effects or their relationship with zni, Tni and

zni will generally be related and estimates of β̄ biased. To illustrate, suppose that f(·) takes

the commonly assumed exponential form:

Assumption 2. f(zni;β
k) = ez

′
niβ

k
.

For OLS, the bias can be expressed using the well-known omitted variable bias formula:

plimN→∞
ˆ̄βOLS = β̄ + plimN→∞ (Z ′Z)−1Z ′ ln(T ), (9)

where ln(T ) ≡ (ln(T11), ..., ln(TN1), ..., ln(TNN))′.12 Therefore, if a regressor is positively

correlated with Tni, omitting Tni will tend to bias its coefficient upward. Nonlinear estimators

do not generally yield analogous closed-form expressions. However, Neuhaus and Jewell

(1993) derive an approximation for PML estimators which takes a very similar form to (9),

in which the final term is replaced by the expected change in ln(Tni) conditional upon a

change in zni. Thus, the intuition regarding the direction of the bias is the same.

3 Application to Trade Flows

To assess the severity of the bias in estimates that ignore unobserved micro-level effects

and to evaluate the relative merits of different approaches to controlling for micro-level

12To highlight the bias due to omitting Tni, this expression implicitly assumes that the aggregate errors
are homoskedastic so that there is no bias due to the log transformation of the data.
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heterogeneity, I consider the estimation of the determinants of bilateral international trade

flows. A wide range of models imply that trade flows are characterized by a specification

which takes the form of (1).13 For concreteness, consider a model economy consisting of N

countries, each of which contains buyers who demand goods from j = 1, ..., J sectors. Each

sector is made up of a finite number of product categories, k = 1, ..., Kj, and each category

contains a continuum of product varieties u ∈ U jk, of which a weak subset U jk
n ⊆ U jk

are available in n. Given this basic setup, a wide variety of assumptions regarding buyers’

objectives, technologies, and market structure imply that trade flows from i to n of product

k are consistent with (1).14

In this setting f(zjni;β
jk) represents the effect of trade barriers on trade flows of product

k, and ηjkni represents exogenous shocks to observed product-level trade flows that do not

affect the conditional expectation of Xjk
ni .

15 This specification allows for substantial hetero-

geneity in trade costs across products from variation in βjk, which subsumes heterogeneous

effects of regressors on trade costs, heterogenous trade cost elasticities, and heterogenous

country-specific border costs. This specification also allows for non-zero domestic trade costs

and asymmetric international trade costs, both of which have been found to be important

dimensions of variation in the literature.

In the context of trade flows, Tni has a clear interpretation as the effect of countries’

product-level comparative advantage (PLCA) on sector-level trade flows. To see this, note

that φki /φ̄i is a measure of i’s ability to produce k, relative to its own ability to produce a

bundle of all products, while ψkn/ψ̄n measures the relative strength of demand for k in n.

The latter can include both factors outside the model that determine relative expenditure

on k, Xk
n/Xn, and factors that endogenously determine Φk

n through (7). Their interaction

embodies the classic notion of comparative advantage; i will export more of k to n if i is better

able to supply k, relative to both i’s ability to supply other products and other countries’

ability to supply k to n. If this is the case for many products, then i will export relatively

more to n overall. In addition, parameter heterogeneity will amplify (weaken) the effect of

PLCA if trade costs tend to be lower (higher) for i’s comparative advantage products in n.

While Assumption 1 is sufficient for identification of β, to gain further insight into the

bias in sector-level estimates, it is useful to impose slightly more structure in the form of the

13See Anderson (2011) and Head and Mayer (2014) for discussions of this class of theoretical models.
14These include those delineated by Arkolakis et al. (2012) as well as Arkolakis et al. (2015) and Melitz

and Ottaviano (2008).
15Such shocks may include measurement error or any phenomenon that breaks the link between observed

shipments and the forces that determine goods and factor prices in general equilibrium, such as lumpiness in
trade flows, shipping lags, inventories, or price stickiness. Egger and Nigai (2015) show that it is problematic
to relegate unobserved trade costs to the error term, in contrast to the argument of Anderson and van
Wincoop (2003) that resulting biases are likely to be small.
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following assumption:

Assumption 1′. Observed trade flows from i to n of product k are given by

Xk
ni =

cki f(zni;β
k)

Φk
n

Xk
nη

k
ni,

where Φk
n =

∑
i c
k
i f(zni;β

k).

Most models that are consistent with Assumption 1 are also consistent with Assumption

1′.16 The term cki includes all exogenous and endogenous factors that affect country i’s overall

ability to supply product k, such as productivity, factor prices, and the mass of firms that

produce varieties of k. The term Φk
n is an index of all exporters’ abilities to deliver product

k to destination n, which also serves to ensure that product-level trade flows sum across

exporters to product-level expenditure. Assumption 1′ does not necessarily require further

restrictions on the form of buyers’ objective functions.17 In particular, I do not impose any

restrictions on factor markets or the demand system that determines buyers’ allocation of

expenditure across sectors or products. The latter implies that I also impose no restrictions

on the input-output structure of the economy.

Assumption 1′ implies that Tni is a function of trade costs. Thus, significant PLCA will

cause Tni and zni to be strongly related and the bias in sector-level estimates severe. This

can be seen in the following result:

Proposition 2. Given Assumptions 1′ and 2, changes in ln(Tni) associated with changes in

Z are given by

d ln(Tni) =
∑
k

X̂k
ni

X̂ni

[
dz′ni(β

k − β̄)−
∑
m

dz′nmβ̄

(
X̂k
nm

Xk
n

− X̂nm

Xn

)

−
∑
m

dz′nm
(
βk − β̄

) X̂k
nm

Xk
n

+ d ln(Xk
n)

]
,

(10)

where X̂ni =
∑

k X̂
k
ni, holding constant all values of Xn and cki and normalizing Tni such that

16See Head and Mayer (2014), who refer to the aggregate analogue of Assumption 1 as “general gravity”
and that of Assumption 1′ as “structural gravity”. However, note that the “general gravity” assumption is
sufficient for estimation using a structural gravity estimator.

17Different micro structures require different functional form restrictions. The Armington model (Anderson
and van Wincoop, 2003) requires that buyers have CES preferences. French (2015) and Arkolakis et al. (2015)
provide models with perfect and monopolistic competition that relax this assumption. Assumption 1′ does
require that buyers maximize an objective function that is separable across varieties – i.e., expenditure on
(j, k, u) is given by xjkn (u) = f jkn (u,pjk

n , X
jk
n ), where pjk

n is the set of prices of varieties of (j, k). This implies
the “trade separability” property assumed by Anderson and van Wincoop (2004).
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∑
i X̂nid lnTni = 0.18

The first term in brackets represents the direct effect of parameter heterogeneity on Tni.

The second term represents the effect of PLCA. Note that the values in parentheses can

be thought of as measures of revealed comparative advantage for country m in market n.19

Thus, an increase in trade barriers between m and n – i.e., a change in explanatory variable

l such that
∑

kX
k
nβ

k(l)dz
(l)
nm < 0 – will disproportionately shift n’s sector-level expenditure

toward i if m’s PLCA is positively correlated with n’s product-level imports from i, X̂k
ni. The

third term represents the effect of the interaction of parameter heterogeneity with PLCA.

This expression simplifies considerably if we assume that β is homogeneous across prod-

ucts and consider only the partial effect of zni on Tni:

∂ ln(Tni)

∂zni
= −β̄

∑
k

Xk
n

Xni

(
Xk
ni

Xk
n

− Xni

Xn

)2

+
∑
k

Xk
ni

Xni

∂ ln(Xk
n)

∂zni
. (11)

Consider that β̄ is the direct partial effect of zni on ln(Xni). Equation (11) demonstrates

that this effect is weakened in proportion to the strength of i’s PLCA in n, measured by the

weighted variance of its product-level revealed comparative advantage. Intuitively, stronger

comparative advantage ameliorates the effects of trade barriers.20

What does this imply for the bias in sector-level estimates of β̄? Clearly, the bias will

be more severe the stronger are countries’ patterns of PLCA. Further, if the bilateral effect

of trade costs on Tni, given by (11), dominates the multilateral effects, given by (10), or if

the latter are uncorrelated with zni, then Tni will be negatively correlated with z′niβ̄. In

this case, omitting Tni will bias estimates of β toward zero, particularly for variables whose

effects are large in magnitude.21

Estimates of β̄ may be biased further when there is heterogeneity in parameters across

products. Anderson and van Wincoop (2004) consider this “aggregation bias” and make clear

that the value of β̄ estimated from aggregated data may not be an ideal index of β.22 While

(11) shows that the bias due to PLCA is distinct from aggregation bias due to parameter

heterogeneity, the latter can also be viewed as a consequence of omitting Tni, which captures

the aggregate effects of deviations of βk from β̄. Parameter heterogeneity may amplify or

18I suppress the argument β̂k when X̂k
ni(β̂

k) is evaluated at the true parameter value βk. The normalization
of Tni is isomorphic to a choice of index Φ̄n

19In fact, this is the Bilateral Additive Index, defined by French (2017), and equation (10) is closely related
to the Trade Elasticity Index.

20The sign of ∂ ln(Tni)/∂z
(l)
ni is always the opposite of the sign of β̄(l) under the natural assumption that

the elasticity of substitution across sources of a product is greater than the elasticity of substitution across
products, which ensures that the first expression in (11) is greater in absolute value than the second.

21I.e., those for which the size of β̄(l)z
(l)
nm/z′niβ̄ is significant.

22See also Hillberry (2002) and Anderson and Neary (2003) for systematic treatments of aggregation bias.
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offset comparative advantage bias, depending on the correlation between βk and PLCA, as

(10) shows. Which of these biases is of greater concern is an empirical question, which I

explore in Section 5. However, I show in Section 4.1 that aggregation bias is not a concern

for Poisson PML.

Further note that any bias that exists for an estimator at the product level may interact

with PLCA to further bias sector-level estimates. Assumption 1 ensures that E
[∑

k φ
k
nψ

k
i η

k
ni

]
=∑

k φ
k
nψ

k
i and thus that ηkni does not appear in (8). However, if an estimator is biased under

Assumption 1, as Santos Silva and Tenreyro (2006) show is the case for log-linear OLS, or

is biased in finite samples, then Tni will depend not only on patterns of PLCA but also the

interaction of these patterns with ηkni.

Some recent gravity estimations have taken advantage of the panel dimension of trade

data, estimating a trade cost function of the form

f(zni,t;β) = ξnie
z′ni,tβ,

which allows for the inclusion of country-pair fixed effects to control for all time-invariant

trade barriers.23 Sector-level panel estimation also suffers from bias in the presence of PLCA.

Because Tni is a general equilibrium object that is a function of all trade costs and patterns of

comparative advantage, both of which are time-varying, Tni is also time-varying and cannot

be controlled for using static fixed effects.24 For simplicity and because it is still the most

common form of gravity estimation, I focus on cross-sectional estimation in the baseline

analysis. However, it is conceptually straightforward to extend the results to panel data,

and I return to panel estimation in Section 6.

4 Gravity Estimation with PLCA

My model shows that sector-level gravity estimation that ignores PLCA is generally biased.

To assess the severity of this bias in practice, I propose and implement a set of estimators

that are robust to any form of PLCA. These estimators make use of product-level trade

data, which are now widely available for most countries. They also easily accommodate two

common complications for product-level estimation: the overwhelming number of product-

level coefficients estimated and the lack of disaggregated data on domestic trade flows.

23Baier and Bergstrand (2007) is a seminal article that employs this strategy, followed by many others.
24Similarly, the two-stage estimation approach proposed by Egger and Nigai (2015) also suffers from the

same form of bias. Their first stage – decomposing trade flows into country-specific and bilateral components

– yields the product of the fitted values ez
′
ni

ˆ̄βT̂ni. Without controlling for Tni, estimates of β based on these
values will be biased in the same way as traditional sector-level gravity estimations.
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4.1 Estimation Methods

There are several options for estimating β using an estimator in the class defined by (2)-(4).

The key choices lie along four dimensions: (a) modelling the error term, (b) controlling for

the unobserved effects, (c) whether to pool across products, and (d) the level of aggregation

at which to define a sector.

4.1.1 Modelling the Error Term

The optimal moment conditions depend on assumptions about the error term, ηkni. In the

trade literature, the first generation of theory-consistent gravity estimations used nonlinear

least squares or OLS based on the logged form of a gravity equation.25 Since Santos Silva and

Tenreyro (2006) demonstrated that the log transformation leads to inconsistent estimates in

the presence of heteroskedasticity, PML estimators have become more widely used.

PML estimators maximize a likelihood function based on a linear-exponential probability

distribution, such as the Poisson, gamma, and Gaussian distributions. Gourieroux et al.

(1984) show that each of these is consistent as long as the conditional mean is correctly

specified. They differ only in how they weight observations based on the assumed form of

heteroskedasticity. Specifically, gamma, Poisson, and Gaussian (NLS in levels) PML imply

the following specifications of r(·):26

Distribution r(Xk
ni, ω̂

k
ni)

Gamma PML (GPML) (Xk
ni − ω̂kni)(ω̂kni)−1

Poisson PML (PPML) (Xk
ni − ω̂kni)

Gaussian PML (NLS) (Xk
ni − ω̂kni)ω̂kni

Log-linear least squares implies r(Xk
ni, ω̂

k
ni) = ln(Xk

ni) − ln(ω̂kni). While Santos Silva and

Tenreyro (2006) prefer PPML due to its performance in Monte Carlo experiments, I also

employ GPML, NLS, and log-LS for robustness and due the popularity of the latter in the

literature.27

25Anderson and van Wincoop (2003) and Eaton and Kortum (2002) are seminal examples, respectively.
26For the FE estimators, Zni = ∂ ln f(zni,β

k)/∂βk. For the structural estimators, Zni =
∂ ln X̂(βk)/∂βk = ∂ ln f(zni,β

k)/∂βk − ∂ ln(Φk
n)/∂βk − ∂ ln(Ψk

i )/∂βk. The latter terms drop out of the

moment conditions for structural PPML because (7) implies that
∑

i(X
k
ni − X̂k

ni)∂ ln(Φk
n)/∂βk = 0 and∑

n(Xk
ni − X̂k

ni)∂ ln(Ψk
i )/∂βk = 0, which constitutes an alternative proof of the main results of Fally (2015)

and Arvis and Shepherd (2013).
27Another popular PML estimator is the negative binomial, which nests Poisson PML as a special case.

However, Head and Mayer (2014) summarize several compelling arguments against using this estimator,
including that estimates depend on the unit of measurement of the dependent variable.
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4.1.2 Controlling for Fixed Effects

Both FE and structural estimators have been frequently employed in aggregate estimations.

In the class of log-LS estimators, the FE approach corresponds to log-linear OLS (under

Assumption 2), as in Eaton and Kortum (2002) and many subsequent papers, while the

structural approach corresponds to the NLS (in logs) estimator of Anderson and van Wincoop

(2003). PPML, which is both a FE and structural gravity estimator, has recently risen in

popularity based on the findings of Santos Silva and Tenreyro (2006).

The relative merits of FE and structural gravity estimators depend on several practical

considerations. It is tempting to favor FE estimators based on the argument that they

impose less structure and thus are more robust to model misspecification. However, as

Anderson and van Wincoop (2003) point out, the structural approach actually imposes no

more structure on the estimation. While the structural approach imposes (7), Fally (2015)

shows that the FE estimators implicitly impose similar adding-up constraints, meaning that

the only difference between the two approaches is in the functional form of r̃(·).
Fernández-Val and Weidner (2016) show that fixed effect (FE) estimators have asymptotic

bias on the order of 1/N , with two notable exceptions. If (1) is estimated by log-linear OLS,

then it is equivalent to the classic two-way within estimator, which is unbiased. However,

as Santos Silva and Tenreyro (2006) show, Assumption 1 does not imply consistency of

log-linear OLS. Taking logs also drops zero-valued observations, leading to potential sample

selection bias.28 The other exception is the FE PPML estimator, which Fernández-Val and

Weidner (2016) show has no asymptotic bias. The structural gravity estimators do not

suffer from asymptotic bias under the assumption that (7) holds non-stochastically because

they solve the concentrated moment conditions (5), which do not depend on the unobserved

effects. The equivalence between structural and FE PPML implies that the former is also

generally unbiased under Assumption 1 alone.29

An additional practical disadvantage of the FE estimators is that estimation may be com-

putationally intensive for large datasets because the total number of parameters to estimate

grows with (N +I)×K.30 By contrast, the structural gravity estimators are straightforward

28Eaton and Tamura (1994), Hallak (2006), and Helpman et al. (2008) propose estimators that deal with
the issue of sample selection bias while maintaining the log-linear regression approach. However, in Monte
Carlo experiments, Santos Silva and Tenreyro (2006) find that such methods perform comparatively poorly.

29It is plausible that the other structural estimators are also generally unbiased because they control for
the unobserved effects by imposing the same empirical moment conditions as FE PPML, but I leave this
question for future work.

30In my empirical application, the dataset contains trade flows among 130 countries in 4,208 product
categories. FE estimation would require 1,188,864 dummy variables, meaning that forming the matrix of
independent variables would require nearly 80 terabytes of computer memory.
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to compute because (7) has a unique solution, and efficient algorithms exist to find it.31 The

FE OLS and PPML estimators are also exceptions to this consideration. Efficient computa-

tional methods exist to compute the OLS within estimator.32 The FE PPML estimator can

be computed in the same way as the structural estimator.

Thus, my preferred estimators are the disaggregate structural gravity estimators. For

comparison with the aggregate FE estimators common in the literature, I also estimate FE

specifications for all aggregate estimators. However, due to computational difficulty and their

asymptotic bias problem, I do not estimate disaggregate FE GPML or FE NLS specifications.

4.1.3 To Pool or Not to Pool?

Given an objective function and a strategy for controlling for the FEs, I consider two methods

for estimating β using product-level trade data: product-by-product and pooled product-

level estimation. Sector-level gravity estimation implicity imposes the restriction that βk =

β̄, for all k. If we maintain this homogeneity assumption, then it is efficient to apply the

chosen product-level estimator to the full set of product-level data, pooled across products.

Product-by-product estimation relaxes the homogeneity assumption but may be less efficient.

In addition to controlling for PLCA, both estimators control for aggregation bias due to

parameter heterogeneity. Product-by-product estimators do so by directly estimating hetero-

geneous coefficients. Pooled estimators estimate an average, or index, of the heterogeneous

coefficients across products. In this regard, product-by-product estimation is the natural

extension of the industry-by-industry estimations of, e.g., Anderson and Yotov (2010a,b)

and Bergstrand et al. (2015), which sought to address this issue. Pooled estimation is anal-

ogous to the estimation of “average treatment effects” – common in the labor econometrics

literature and adapted to aggregate gravity estimation by Baier and Bergstrand (2007) –

across both countries and products.

Though one may be inclined to prefer the flexibility of product-by-product estimators, it

is important to consider the tradeoffs between pooled and product-by-product estimation.

In addition to efficiency concerns, the high degree of flexibility of product-by-product es-

timators may cause them to overfit the sample data, reducing their predictive power. For

example, Baltagi (2008) finds that homogeneous estimators consistently outperform hetero-

geneous estimators across a wide range of panel estimations. I evaluate this in the empirical

application (see Section 5.3).

31Poissonnier (2019) shows that iterating on (7) from any positive starting values converges to the unique
solution, up to a scalar normalization.

32See, for example, the algorithms of Guimarães and Portugal (2010) and Gaure (2013).
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4.1.4 Choice of Sector

The final choice is the level of aggregation at which to define a sector. Though the vast

majority of gravity estimations treat countries as one-sector economies, recent papers have

considered multiple sectors, typically defined at roughly the 2-digit ISIC level, while still

largely focusing on aggregate outcomes.33 In keeping with the literature, I consider single-

sector specifications that treat manufacturing as one sector and multi-sector specifications

that define sectors as 2-digit ISIC industries. Multi-sector pooled estimation can be seen

as an intermediate step between single-sector pooled estimation and product-by-product

estimation, which implicitly treats each product as a different sector.

4.2 An Ideal Coefficient Index

One complication of product-level estimation is that, if we allow for heterogeneity across

products, the large number of coefficients makes reporting and inference based on the esti-

mates impractical. A solution to both problems is using a summary index of the estimates.

Anderson and Neary (2003) and Anderson and van Wincoop (2004) discuss the reporting

issue and construction of an ideal trade cost index. Anderson (2008) discusses the multiple

inference problem, which is well-understood in theory but only recently garnering significant

attention in applied fields, and advocates for inference using summary indexes to reduce the

number of hypotheses tested.

Simple or weighted average trade costs have often been reported in the gravity literature

but do not accurately reflect the overall level of trade restrictiveness. Anderson and Neary

(2003) propose a summary trade cost index defined as the uniform trade cost that preserves

the level of aggregate trade flows. While useful for summarizing overall trade barriers, their

index does not directly measure the overall, or average, effect of an explanatory variable, as

a coefficient estimated by a gravity model is meant to do. Therefore, I propose a coefficient

index that implies the same expected aggregate trade flows, given the explanatory variables,

as a given set of heterogeneous coefficient estimates, β̂.

Specifically, I define β̄ to be the uniform coefficient vector that satisfies the conditions∑
n

∑
i

[
X̂ni(β̂)− X̂ni(β̄)

]
zni = 0, (12)

where X̂ni(β̂) =
∑

k X̂
k
ni(β̂

k), and X̂k
ni(β̂

k) represents trade flows predicted by the structural

gravity equation (6) given β̂. Because these conditions are analogous to aggregate versions

of sample moment conditions in the class defined by (2)-(4), this index can be interpreted

33E.g., Anderson and Yotov (2010a,b), Caliendo and Parro (2015), and Levchenko and Zhang (2016).
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analogously to the coefficients of an aggregate estimator. If Z were to contain country pair

dummies, then X̂ni(β̄) = X̂ni(β̂) would hold for every country pair, and the coefficient index

would be analogous to the Anderson and Neary (2003) index.34 Otherwise, if L < N2, then

(12) imposes the weaker condition that deviations of X̂ni(β̄) from X̂ni(β̂) are uncorrelated

with zni. Note that because (6) and (7) are motivated independently from trade theory, this

index generalizes to any application where one is interested in prediction conditional upon

Xk
n and Y k

i , rather than conditional upon the values of the fixed effects.

Pooled PPML is quite useful for calculating the coefficient index, as the following propo-

sition shows.

Proposition 3. The pooled product-level PPML estimator has the following properties:

(i) When applied to fitted values consistent with (6) and (7), given parameter vector β̂,

pooled PPML yields the coefficient index, β̄, defined by (12).

(ii) When applied directly to product-level trade data, pooled PPML yields the coefficient

index, β̄, defined by (12), for the set of coefficients estimated by product-by-product

PPML, β̂ = β̂PPML.

Property (i) yields a straightforward method for calculating the coefficient index for any

set of heterogeneous coefficients: simply perform pooled PPML using the fitted values based

on those coefficients. Property (ii) states that, when applied to actual data, pooled PPML

automatically estimates the coefficient index for product-by-product PPML. Property (ii) is

very useful for inference because it implies that pooled PPML yields both an estimate of an

ideal coefficient index and a valid estimate of the covariance matrix. Thus, any statistical

tests that could be performed based on a sector-level estimation can be performed in the

same way based on pooled PPML, and the results have a clear interpretation.35

4.3 Estimation with Missing Domestic Data

Data on production, expenditure, and domestic trade flows are typically not available at a

level of disaggregation comparable to international trade data. This may appear to be a

34That is, ez
′
niβ̄ is the uniform trade barrier that yields the same sector-level bilateral trade flows as the

trade barriers implied by heterogeneous coefficients. This index differs in that it takes total product-level
exports and imports as given, whereas the Anderson and Neary (2003) index requires specifying countries’
expenditure functions over all products and assuming perfect competition. To borrow the language of Head
and Mayer (2014), the coefficient index is a modular, rather than general equilibrium, index.

35Property (i) does not imply that PPML “estimation” using fitted values from a product-by-product
estimation yields a valid estimate of the covariance matrix for the coefficient index, using standard techniques.
A straightforward, though computationally intensive, method of obtaining this is the pairs cluster bootstrap
discussed in detail by Cameron et al. (2011).
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problem for structural estimators because (7) depends on the values of Xn and Yi in the

data. To see that this is not the case, note that βk can always be specified to include

country-specific border costs. These costs can be semi-parametrically estimated using the

following specification:

Assumption 2′.

f(zni,β
k) = f̃(z̃ni,γ

k)eδ
k
n

where z̃ni is a Q× 1 vector of observable variables and γk is a Q× 1 parameter vector.36

In this specification, δkn is an importer-specific border cost.37 The structural estimators that

I implement rely on the following result:

Proposition 4. Given Assumption 2′, a structural gravity pseudo-maximum likelihood esti-

mator for γk solves empirical moment conditions of the form

N∑
n=1

∑
i 6=n

r(Xk
ni, X̃

k
ni(γ̂

k))Z̃ni = 0, ∀k,

where

X̃k
ni(γ̂

k) =
Mk

n

Φ̃k
n

Ek
i

Ψ̃k
i

f̃(z̃ni, γ̂
k), (13)

for all n 6= i, and where Mk
n =

∑
i 6=nX

k
ni, E

k
i =

∑
n6=iX

k
ni, and Φ̃k

n and Ψ̃k
i are given by

Φ̃k
n =

∑
i 6=n

Ek
i

Ψ̃k
i

f̃(z̃ni, γ̂
k) and Ψ̃k

i =
∑
n 6=i

Mk
n

Φ̃k
n

f̃(z̃ni, γ̂
k). (14)

Equation (13) is a slight variation of (6) with two important distinctions. First, it is spec-

ified in terms of product-level exports and imports, rather than production and expenditure.

Second, trade flows depend only on γk, the vector of coefficients excluding border costs, δk.

Thus, Proposition 4 implies structural gravity PML estimators can identify γ using highly

disaggregated trade data without comparable domestic data and without estimating δ.

Proposition 4 also implies that it is possible to calculate the coefficient index for γ̂ without

36For notational completeness, under Assumption 2′, βk = (γk′, δk′)′, zni = (z′ni,1
′
ni)
′, δk = (δk1 , ..., δ

k
n)′,

and 1ni is an N × 1 vector with nth element equal to 1 when n 6= i and all other elements equal to zero.
37All the results that follow are isomorphic to the specification of border costs as importer-specific,

exporter-specific, or some combination. While Waugh (2010) argues that exporter-specific border costs
are more consistent with international data on prices of tradeable goods, Ramondo et al. (2016) find that
domestic trade frictions can account for much of this phenomenon.
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data on domestic trade flows or an estimate of δ. Using this result, (12) can be rewritten as∑
n

∑
i 6=n

[
X̃ni(γ̄)− X̂ni(γ̃)

]
zni = 0, (15)

where X̃ni(γ̂) =
∑

k X̃
k
ni(γ̂

k).

4.4 Identifying Border Costs

While identification of γ does not require identification of δ, border cost estimates are

themselves of interest in many contexts. Though data on Xk
nn is typically not available,

sector-level domestic trade flow data often is available. In such cases, it is possible to identify

the sector-level coefficient index of δ̂, even though the individual elements of δ̂ cannot be

identified. Given a consistent estimate of γ, the predicted value of Xk
nn, based on (13), is

X̂k
nn = e−δ̂

k
n
Mk

n

Φ̃k
n

Ek
i

Ψ̃k
i

f̃(z̃nn, γ̂
k),

where Φ̃k
n and Ψ̃k

i solve (14) given γ̂k. If data on Xk
nn were available, then a valid method-

of-moments estimator of δkn would be

δ̂kn = ln

(
Mk

n

ˆ̃Φk
n

Ek
i

ˆ̃Ψk
i

f̃(z̃nn, γ̂
k)

)
− ln(Xk

nn).

Because the values of Φ̃k
n and Ψ̃k

i do not depend on δkn, the elements of δ̄ can be easily

calculated as

δ̄n = ln

(∑
k

Mk
n

ˆ̃Φk
n

Ek
i

ˆ̃Ψk
i

f̃(z̃nn, γ̄)

)
− ln(Xnn), (16)

which does not require knowledge of Xk
nn. Note that δ̄n is calculated based on the coefficient

index γ̄, not on heterogeneous coefficient estimates.38 This is because (12) defines the coef-

ficient index for all coefficients simultaneously. While, it is straightforward to calculate an

index of δ̂ given a set of heterogeneous coefficients γ̂, it is not clear how one should interpret

a uniform border cost index together with heterogeneous bilateral trade costs.

Together, Proposition 4 and equations (15) and (16) provide a method to estimate the

coefficient index β̄ = (γ̄ ′, δ̄′)′ given product-level international trade flow data and sector-

level domestic trade flow data. The procedure is as follows: (i) Estimate γ̂ based on (13),

(ii) compute γ̄ using (15), and (iii) compute δ̄ using (16).

38The fitted MR terms in (16) are also calculated given γ̄.
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Table 1: Estimation Specifications

Single-Sector Multi-Sector Product-

Sector-Level Pooled-IL Pooled-PL Sector-Level Pooled-PL by-Product

Log-LS
FE X X X X X X

Struc. X X X X X X

GPML
FE X

Struc. X X X X X X

PPML
FE X X X X X X

Struc. X X X X X X

NLS
FE X

Struc. X X X X X X

4.5 Estimation Specifications

In the empirical application, I perform sector- and product-level gravity estimations that

vary along four dimensions: objective function, controls for fixed effects, pooling, and sector

definition. Table 1 summarizes the specifications that I estimate. Based on the insights of

my model and the known properties of the estimators discussed, pooled product-level PPML

is my preferred estimator for applications where one is primarily concerned with the overall

magnitude of trade barriers or the overall effect of one or more variables on trade flows. This

is due to (a) the robustness of PPML estimates in the presence of heteroskedasticity and

zeros and its lack of asymptotic bias, (b) the consistency between structural and FE PPML

estimators, (c) the ease of interpretation and the comparability of pooled estimates with the

aggregate estimates typical of the literature, and (d) the interpretability of pooled PPML as

an ideal index of heterogeneous coefficients.

4.6 Data

I use data on bilateral product-level trade flows from the U.N. Comtrade database for 2003,

classified at the 6-digit level of the Harmonized System (1996 revision). Data on bilateral

relationships are taken from CEPII’s Gravity dataset. For specifications that treat man-

ufacturing as a single sector, total manufacturing output is taken from the OECD STAN

database, where available, or the UNIDO INDSTAT database. Where not available from

either source, it is imputed using manufacturing value added from the World Bank’s WDI

database. For multi-sector specifications, output by 2-digit ISIC (Rev. 3) industry is taken

from the UNIDO INDSTAT database. The full sample consists of trade flows among 130

countries classified into 4,608 product categories. Table A1 lists the countries in the sample

and the source of manufacturing output data for each. Industry-level output data is only
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available for a subset of these countries, so δ̄jn is not identified for all countries in industry-

by-industry estimations. Table A2 lists the set of industries and number of countries with

output data for each industry. Further details are provided in Appendix C.

For the panel estimation in Section 6, trade data are from the NBER-UN dataset de-

scribed by Feenstra et al. (2005). I use data for 1965-2000, in five-year increments, at the

4-digit SITC (Rev. 2) level, for a balanced panel of countries. This sample includes 87 coun-

tries, 8 time periods, and 641 manufacturing SITC codes. While not at the lowest level of

aggregation available, this dataset features the largest number of countries and years for a

consistent classification of product-level trade flows. Data on free trade agreements are from

Baier and Bergstrand (2007).39

5 Empirical Results

In the baseline estimations, to keep the specification as parsimonious as possible and consis-

tent with log-linear specifications in the literature, I specify f̃(z̃ni,γ
k) = ez̃

′
niγ

k
, where z̃ni

includes (logged) bilateral distance and an indicator for whether countries shares a common

border. This is comparable to many studies, such as Anderson and van Wincoop (2003)

and Waugh (2010), that use distance and political borders as proxies for geographic and

policy barriers to trade, respectively. In Section 6, I expand the set of covariates to include

additional variables related to trade policy.

5.1 Baseline Estimates

Table 2 presents the estimates from the baseline single-sector specifications. Table 3 presents

the coefficient indexes based on the multi-sector and product-by-product estimates. Full

results for the multi-sector estimations are presented in Tables A3 and A4 in Appendix A.

The single-sector, sector-level estimates (Table 2a) are roughly in line with the liter-

ature. Bilateral trade is generally decreasing in distance and higher if countries share a

border, and there is a great deal of variation across sector-level estimators. The distance

elasticity varies by a factor of 2.5 from -0.94 to -2.41, and the effect of sharing a border

varies from a statistically insignificant 0.20 to 0.96. The pooled industry-level (Table 2b)

and industry-by-industry estimates (Table 3a) show a nearly identical pattern. Santos Silva

and Tenreyro (2006) attribute such differences to bias due to heteroskedasticity and sample

selection associated with Log-LS and to finite sample biases for the PML estimators.

39Updated data are available on Jeffrey Bergstrand’s website (https://www3.nd.edu/~jbergstr/).
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Table 2: Single-Sector Estimation Results

(a) Sector-Level Estimations

Log LS GPML PPML NLS

(1) (2) (3) (4) (5) (6) (7) (8)

mean(δ̄n) −0.83 −0.78 −0.18 −2.42 −3.70 −3.70 −3.79 −3.77

Distance −1.95 −2.11 −2.41 −1.50 −0.96 −0.96 −0.94 −0.95

(0.07) (0.10) (0.14) (0.07) (0.07) (0.07) (0.13) (0.11)

Shared Border 0.96 0.54 0.66 0.20 0.54 0.54 0.49 0.50

(0.19) (0.35) (0.29) (0.24) (0.12) (0.12) (0.18) (0.21)

Exporter FEs Y Y Y Y

Importer FEs Y Y Y Y

Structural MR Y Y Y Y

Observations 11,193 11,193 16,770 16,770 16,770 16,770 16,770 16,770

(b) Pooled Industry-Level Estimations

Log LS GPML PPML NLS

(1) (2) (3) (4) (5) (6) (7) (8)

mean(δ̂n) −0.57 −0.81 −2.29 −3.33 −3.33 −3.30

Distance −1.94 −1.95 −1.41 −1.01 −1.01 −1.04

(0.06) (0.09) (0.09) (0.07) (0.07) (0.13)

Shared Border 1.01 0.69 0.44 0.55 0.55 0.47

(0.14) (0.26) (0.21) (0.12) (0.12) (0.20)

Exp-Prod FEs Y Y

Imp-Prod FEs Y Y

Structural MR Y Y Y Y

Observations 11,193 11,193 16,770 16,770 16,770 16,770

(c) Pooled Product-Level Estimations

Log LS GPML PPML NLS

(1) (2) (3) (4) (5) (6) (7) (8)

mean(δ̄n) −2.74 −2.24 −2.96 −2.95 −2.95 −3.32

Distance −1.15 −1.35 −1.20 −1.16 −1.16 −1.02

(0.05) (0.07) (0.15) (0.08) (0.08) (0.11)

Shared Border 0.79 0.75 0.37 0.51 0.51 0.55

(0.10) (0.11) (0.32) (0.12) (0.12) (0.21)

Exp-Prod FEs Y Y

Imp-Prod FEs Y Y

Structural MR Y Y Y Y

Observations 3,571,896 3,571,896 77,276,160 77,276,160 77,276,160 77,276,160

Notes: Standard errors (in parentheses) are robust to multi-way clustering by both importer and exporter.
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Table 3: Multi-Sector Estimation Results

(a) Coefficient Index: Sector-Level Industy-by-Industry Estimations

Log LS GPML PPML NLS

(1) (2) (3) (4) (5) (6) (7) (8)

mean(δ̄n) −0.75 −0.96 −2.18 −3.33 −3.33 −3.33

Distance −1.88 −1.91 −1.49 −1.01 −1.01 −1.02

[0.08] [0.13] [0.10] [0.11] [0.11] [0.13]

Shared Border 0.99 0.58 0.31 0.55 0.55 0.52

[0.19] [0.44] [0.27] [0.16] [0.16] [0.22]

Exp-Ind FEs Y Y

Imp-Ind FEs Y Y

Structural MR Y Y Y Y

Observations 11,193 11,193 16,770 16,770 16,770 16,770

(b) Coefficient Index: Pooled Product-Level Industy-by-Industry Estimations

Log LS GPML PPML NLS

(1) (2) (3) (4) (5) (6) (7) (8)

mean(δ̄n) −2.63 −2.14 −2.64 −2.95 −2.95 −3.05

Distance −1.19 −1.38 −1.38 −1.16 −1.16 −1.13

[0.06] [0.08] [0.13] [0.10] [0.10] [0.19]

Shared Border 0.80 0.79 0.19 0.51 0.51 0.52

[0.12] [0.14] [0.29] [0.17] [0.17] [0.32]

Exp-Prod FEs Y Y

Imp-Prod FEs Y Y

Structural MR Y Y Y Y

Observations 3,571,896 3,571,896 77,276,160 77,276,160 77,276,160 77,276,160

(c) Coefficient Index: Product-by-Product Estimations

Log LS GPML PPML NLS

(1) (2) (3) (4) (5) (6) (7) (8)

mean(δ̂n) −2.28 −1.82 −2.23 −2.95 −2.95 −2.91

Distance −1.30 −1.47 −1.48 −1.16 −1.16 −1.17

[0.16] [0.16] [0.19] [0.24] [0.24] [0.37]

Shared Border 0.86 0.88 0.36 0.51 0.51 0.56

[0.32] [0.32] [0.41] [0.40] [0.40] [0.59]

Exp-Prod FEs Y Y

Imp-Prod FEs Y Y

Structural MR Y Y Y Y

Observations 3,570,985 3,571,727 76,739,520 76,655,670 76,655,670 73,402,290

Notes: Standard errors are robust to multi-way clustering by both importer and exporter. Numbers in square
brackets are median standard errors across industries for industry-by-industry estimations and across products for
product-by-product estimations.
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By contrast, the estimates are much more consistent across product-level estimators. To

demonstrate the economic significance of these differences, Figure 1 plots the cumulative

effect of distance on bilateral trade flows estimated by each specification.40 It is clear that,

over the observed range of distances, the sector-level estimates diverge markedly, while the

product-level estimates are nearly indistinguishable. To place these numbers in perspective,

given a trade cost elasticity equal to 6, single-sector, sector-level PPML implies a median

bilateral trade cost equivalent to a 725% ad valorem tariff, versus 2,299% for FE Log-LS.

The equivalent values for the respective product-level estimators are 858% and 818%. These

results indicate that failing to control for PLCA significantly biases sector-level estimates,

even at the 2-digit industry level. The similarity among product-level estimates suggests

that most of the discrepancy among sector-level estimators results from misspecification

of the conditional expectation of Xj
ni by omitting T jni, rather than from heteroskedasticity,

sample-selection, or finite sample biases.

Further, the results suggest that the choice between sector-level and product-level esti-

mation is of greater consequence than the definition of a sector. Because pooled PPML au-

tomatically delivers the ideal coefficient index, all three product-level specifications estimate

identical coefficients. Even for the other estimators, the differences across sector definitions

tend to be smaller than the differences between sector-level and product-level estimates.

Interestingly, the product-by-product estimates diverge somewhat more across estimators

than the pooled estimates. This may indicate that the heteroskedasticity, sample-selection,

and finite sample biases are more severe when allowing for more heterogeneity. The latter

two seem especially plausible because the heterogeneous specifications necessarily have fewer

observations to identify each parameter, and the heterogeneous coefficient estimates are con-

siderably noisier than the pooled estimates. In addition, comparing the estimates in Tables

2b and 3a with those in Table 2a shows that industry-level versus fully aggregate estimation

makes little difference.41

To gain insight into the underlying sources of bias in the sector-level estimates, I de-

compose the difference between sector-level and product-level estimates into components

attributable to PLCA, parameter heterogeneity, and other forms of misspecification or finite

sample biases that induce interactions between the estimation error and the components of

Tni. To do so, I repeat the sector-level estimations using aggregated trade flows predicted by

(13) and (14), based on product-level estimates. The bias attributable to PLCA is the dif-

ference between sector-level estimates based on values predicted under the assumption that

40Figure 1 plots the value of mean(ˆ̄δn) + ˆ̄γDistance ln(Distance).
41Anderson and Yotov (2010a,b) find differences between aggregate and industry-by-industry estimates.

However, they consider only a simple average, not an ideal index, of industry-level coefficients and do not
test for statistical significance of the differences.
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Table 4: Sources of Bias in Sector-Level Estimates

Comparative Finite Sample/
Advantage Heterogeneity Misspecification Total

FE Log-LS
Distance 0.13 0.04 -0.83 -0.65
Border 0.01 0.18 -0.09 0.10

Struc. Log-LS
Distance 0.18 0.00 -0.82 -0.64
Border -0.11 0.07 -0.30 -0.34

Struc. GPML
Distance 0.33 0.02 -0.38 -0.02
Border 0.25 0.07 -0.47 -0.16

PPML
Distance 0.21 0 0 0.21
Border 0.02 0 0 0.03

Struc. NLS
Distance 0.21 -0.01 0.03 0.23
Border -0.02 -0.05 0.00 -0.06

each product-specific coefficient vector is equal to the coefficient index of product-by-product

estimates, γk = γ̄, and the coefficient index itself. The bias attributable to heterogeneity

is the difference between sector-level estimates based on predicted values from the product-

by-product estimates, and those under the assumption that γk = γ̄. The bias attributable

to the final source is the difference between the sector-level estimates from the actual data

and those based on the product-by-product predicted values. By construction, the three bias

measures sum to the difference between the sector-level estimates and the coefficient index of

product-by-product estimates. To summarize, the first measure is the effect of aggregation

on estimates given homogeneous parameters, the second is the additional effect of param-

eter heterogeneity, and the third is the effect of allowing Tni to include the product-level

estimation errors.

Table 4 reports the bias decomposition for each estimator. As expected, failing to control

for PLCA biases the distance elasticity away from zero, and it does so by a similar magnitude

for each estimator. The direction and magnitude of the bias in the shared border effect varies

across estimators, which is not surprising given that shared border accounts for a relatively

small share of overall trade costs. Ignoring heterogeneity generally results in relatively little

bias once PLCA has been controlled for. PPML has exactly zero additional bias due to

parameter heterogeneity because sector-level PPML estimates an ideal coefficient index under

the assumption of no PLCA.42 The final form of bias is very large for the log-LS and GPML

42Specifically, sector-level PPML imposes the condition that φkn = φ̄nφ
k and ψk

i = ψ̄iψ
k.
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estimators. This phenomenon appears to be driven by zeros in the product-level data.43

This is consistent with the findings of Santos Silva and Tenreyro (2006) of significant bias in

log-LS and GPML estimates in the presence of zeros. These results indicate that this form

of bias is small in estimates that control for PLCA, but the bias interacts with patterns of

comparative advantage to produce large biases in sector-level estimates. This bias is also

zero for PPML, which imposes that the product-level estimation errors, rather than nonlinear

transformations of the errors, are orthogonal to the components of Tni.
44

5.2 Tests for Bias

I this section, I formally test for the bias in sector-level estimates indicated by the results

summarized by Tables 2 and 3. I first consider tests based on the single-sector estimates in

detail before summarizing the results of analogous tests based on the multi-sector estimates.

5.2.1 Single-Sector Tests

First, I perform an auxiliary estimation to test whether sector-level trade flows depend upon

PLCA.45 Pooled product-level estimation yields fitted values of Tni, up to an importer- and

exporter-specific scale factor. Using these fitted values, I perform a sector-level estimation

that takes the following form:

E[Xni] = ρnυie
z̃′niγ̂ T̂αni

where ρn and υi are importer and exporter FEs. I do this for each of the sector-level

estimators that have product-level analogues, using the values of T̂ni calculated from the

analogous product-level estimation. The first row of Table 5 presents the test statistics and

p-values of the null hypothesis α = 0, which is resoundingly rejected for each estimator.

Thus, PLCA is a significant driver of sector-level trade flows.

The remaining rows of Table 5 present the results of three cluster-robust Hausman tests

based on the comparison of estimates of γ across estimators. If the conditional expectation

of Xk
ni is correctly specified and if sector-level trade flows are unaffected by PLCA, then all

43Equations (13) and (14) always predict positive (though potentially very small) trade flows as long as
Mk

n and Ek
i are positive. Generating zeros by either imposing that X̂k

ni = 0 if Xk
ni = 0 or by rounding all

values for which X̂k
ni < x̄ to zero, where x̄ is chosen to equate the number of zeros in the data and fitted

values, yields estimates much closer to those obtained from the actual aggregated data.
44This is not to say that PPML cannot suffer from finite sample bias (see Head and Mayer (2014) for a

counterexample), only that any such bias is identical in sector-level and product-level estimates.
45Directly testing for heterogeneity in the country-by-product fixed effects is not straightforward. The

shear number of parameters makes it practically infeasible to compute the covariance matrix required to test
such a hypothesis. In addition, as Cameron and Miller (2015) point out, if there is significant clustering in
estimation errors, which appears to be the case with product-level trade data, the estimated variance matrix
will be rank deficient, making such a test impossible even given sufficient computing power.
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Table 5: Hausman Tests for Bias in Sector-Level Estimates

H0 Test
Statistic

FE
Log LS

Structural
Log LS

Structural
GPML

Structural
PPML

Structural
NLS

α = 0 t(129) 20.69 23.72 31.49 24.06 16.83
P > |t| 0.000 0.000 0.000 0.000 0.000

γAgg = γPool F (2, 129) 57.84 73.45 2.78 21.42 3.07

P > F 0.000 0.000 0.066 0.000 0.050

γAgg = γAgg,PPML F (2, 129) 45.27 140.78 32.83 0.19

P > F 0.000 0.000 0.000 0.828

γPool = γPool,PPML F (2, 129) 1.05 9.88 0.10 1.86

P > F 0.354 0.000 0.908 0.159
Notes: All tests are based on estimated variance matrices that are robust to multi-way clustering by both importer
and exporter. In the calculation of p-values, the test statistic is treated as being distributed t(N − 1), for the first
row, and F (Q,N − 1), for the remaining rows, where N = 130 is the number of clusters, and Q = 2 is the number
of elements of γ.

of the estimators presented in Table 2 will have the same probability limit.46 Therefore, I

test for bias in sector-level estimators by testing the equality of the sector- and product-

level estimates. The second row of Table 5 presents the results of these tests. Equality

is resoundingly rejected for both log-LS estimators and PPML. It is rejected at the 5%

significance level for structural NLS and at the 10% level for structural GPML. This result

permits the formal conclusion that sector-level gravity estimates are biased due to PLCA.

The final two rows of Table 5 test the hypotheses that the sector- and product-level

estimates are equal to their PPML counterparts. Equality is resoundingly rejected for all

sector-level estimators except NLS and cannot be rejected at any reasonable level of sig-

nificance for the product-level estimators other than structural log-LS. Even in the latter

case, the product-level test statistic is dramatically smaller. These tests formally confirm

the patterns apparent in Table 2 and support the conclusion that differences in sector-level

estimates can be attributed to failure to control for PLCA. In fact, it is not possible to

reject the hypothesis that product-level FE log-LS is unbiased, despite the nearly forgone

conclusion in the literature to the contrary.47

46In the case of log-LS estimators, this also requires that these estimators not be inconsistent due to
heteroskedasticity and sample-selection bias.

47While the NLS estimates are surprisingly consistent across specifications, this is a notoriously unreliable
estimator (see, e.g., Santos Silva and Tenreyro, 2006) that is very sensitive to outliers. This is consistent with
the relatively large standard errors for pooled product-level NLS. Therefore, I caution against the adoption
of sector-level NLS based on these results alone.
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Table 6: Multi-Sector Hausman Tests for Bias: Share Rejected

H0 FDR FE
Log LS

Structural
Log LS

Structural
GPML

Structural
PPML

Structural
NLS

α = 0 0.10 1.00 1.00 1.00 1.00 1.00
0.01 1.00 1.00 1.00 1.00 1.00

γjAgg = γjPool 0.10 1.00 1.00 0.48 0.90 0.57

0.01 1.00 1.00 0.29 0.81 0.52

γjAgg = γjAgg,PPML 0.10 1.00 1.00 0.86 0.05

0.01 1.00 1.00 0.76 0.00

γjPool = γjPool,PPML 0.10 0.33 0.62 0.52 0.14

0.01 0.14 0.57 0.24 0.10

Notes: False discovery rate (FDR), the expected share of rejected null hypotheses that are Type I errors,
is controlled at the specified level using the method of Benjamini and Hochberg (1995). All tests are based
on estimated variance matrices that are robust to multi-way clustering by both importer and exporter
(except where indicated in Tables A3 and A4 in Appendix A). Test statistics are treated as being distributed
F (Q,N − 1) where N = 130 is the number of clusters, and Q = 2 is the number of elements of γ.

5.2.2 Multi-Sector Tests

Tables A3 and A4 in Appendix A present test statistics for the industry-by-industry estimates

analogous to those in Table 5.48 Table 6 summarizes these results, presenting the share of

industries for which each hypothesis is rejected. To control for overrejection due to multiple

inference, Table 5 reports the share of rejections after controlling the false discovery rate

(FDR), or the expected share of rejected null hypotheses that are actually true, at the 10%

and 1% levels, using the procedure of Benjamini and Hochberg (1995).

We can resoundingly reject the hypothesis that α = 0 in the auxiliary estimations for

every industry and estimator. Thus, PLCA is a significant driver of sector-level trade flows,

even within 2-digit industries. As with the single-sector estimations, in most cases we can

reject equality between sector-level and product-level estimates, indicating that significant

bias remains at the 2-digit industry level. For all but NLS, we can reject equality between

the PPML estimates and the others for almost all sector-level estimations, where the failure

to reject for NLS is largely due to the inefficiency of this estimator. We cannot reject equality

with PPML for the product-level estimators for a large share of sectors. Thus, the overall

findings are consistent with the single-sector results and support the conclusion that sector-

level estimates are significantly biased and that differences among sector-level estimators can

be largely attributed to PLCA.

48For NLS, multi-way clustering by exporter and importer produced an estimated covariance matrix that
was not positive semi-definite for a handful of industries. In these instances, which are indicated in Tables
A3 and A4, the test statistic is robust to clustering by importer.
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5.3 Tests for Pooling

The empirical results provide substantial evidence that sector-level gravity estimates are sig-

nificantly biased due to PLCA, regardless of whether the estimation allows for heterogeneity

across industries. I now turn to the question of whether heterogeneity in common parameters

is a significant concern in its own right and thus whether the preferred alternative to sector-

level estimation is pooled or product-by-product estimation. For brevity, I consider only

PPML estimates because pooled PPML automatically delivers an ideal coefficient index.

There is substantial variation in the estimated heterogeneous coefficients. However, these

coefficients are identified much less precisely than their homogeneous counterparts. I take

two approaches to evaluate the significance of this heterogeneity. First, I test for equality

between the heterogeneous and homogeneous coefficients. Second, I evaluate the out-of-

sample predictive power of the homogeneous and heterogeneous estimators.

Standard Chow-type tests for poolability test whether every heterogeneous coefficient is

equal to its homogeneous counterpart and thus rejects if any of the coefficients is significantly

different.49 Given the number of products in the dataset, it would be shocking if the null

of homogeneity were not rejected by such a test. However, what is of practical concern in

most applications is not whether there is any heterogeneity but how much heterogeneity

is present in the parameter estimates and whether this heterogeneity significantly affects

inference or predictions regarding the effects of the explanatory variables on overall trade

flows. Therefore, I conduct a series of Hausman tests for equality of the heterogeneous

coefficients with their homogeneous counterparts one-by-one for each industry and product.

Table 7 shows the share of industries and products for which we can reject equality with

the homogeneous coefficients, controlling the FDR as in Table 6, for distance and shared

border separately and joint tests for both coefficients. There is significant, though far from

universal, heterogeneity across both industries and products within industries. Unlike the

tests for bias, this conclusion is not qualitatively changed when we control for PLCA, though

there is some disagreement between the sector- and product-level estimates regarding which

industries and products are significantly heterogeneous. Interestingly, there is far more

heterogeneity in the distance elasticity than the shared border effect, indicating that the

heterogeneity lies primarily in the effect of distance on trade costs, not in the trade elasticity,

because the latter would tend to shift coefficients proportionally for a given product.

Despite evidence of heterogeneity, the reporting, multiple inference, and overfitting con-

49See Baltagi (2005). These tests are typically only valid under the assumption of normally distributed
errors. Further, if errors are clustered by country, which appears to be the case, such tests are not possible if
the number or products exceeds the number of countries due to the rank deficiency of the covariance matrix
for the heterogeneous coefficients (Cameron and Miller, 2015).
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Table 7: Hausman Tests for Heterogeneity: Share Rejected

H0 FDR Distance Shared
Border

All
Coeffs.

γjAgg = γAgg 0.10 0.52 0.14 0.90
0.01 0.33 0.05 0.43

γjk = γjAgg 0.10 0.45 0.15 0.49
0.01 0.19 0.03 0.26

γjPool = γPool 0.10 0.48 0.10 0.71
0.01 0.38 0.05 0.67

γjk = γjPool 0.10 0.40 0.14 0.45
0.01 0.16 0.02 0.24

Notes: False discovery rate (FDR), the expected share of rejected null
hypotheses that are Type I errors, is controlled at the specified level us-
ing the method of Benjamini and Hochberg (1995). All tests are based
on estimated variance matrices that are robust to multi-way clustering
by both importer and exporter. Test statistics are treated as being dis-
tributed F (L,N − 1) where N = 130 is the number of clusters, and L is
the number of restrictions tested.

cerns mean there remains a pragmatic argument for using a pooled estimator when hetero-

geneity is not of primary interest. Therefore, I test the out-of-sample performance of each

PPML estimator. Concerns with multiple inference and overfitting are not unique to gravity

estimation. In a number of fields, split-sample techniques are often employed to address

these issues.50 I adapt these techniques to gravity estimation to develop a test for overfitting

that is intuitive and straightforward to implement.

The basic strategy is to split the data into training and evaluation samples, use the former

for estimation, and evaluate the performance of the estimated models in the latter. There are

two non-trivial choices to make before applying this strategy to gravity estimation: the loss

function and the evaluation sample. I use two loss functions: root mean square error (RMSE)

and the (negative) Poisson log-likelihood. RMSE is the standard loss function in the time-

series and panel forecasting literatures, while PPML maximizes the Poisson log-likelihood

in the training samples.51 In time-series and panel data models with a time dimension, it is

natural to split the sample into earlier and later periods. With micro data, observations are

split randomly into two samples that are identical in expectation. With bilateral trade data,

neither practice is appropriate. There is no natural ordering of observations, and trade flows

almost certainly violate the i.i.d. assumption implicit in random assignment. Instead, I split

50E.g., evaluation of time series models, based on Diebold and Mariano (1995), and panel estimators, as
in Baltagi et al. (2000) and those surveyed by Baltagi (2008). Fafchamps and Labonne (2017) and Anderson
and Magruder (2017) propose split-sample techniques to identify of causal effects in micro data.

51To a second-order approximation, the negative Poisson log-likelihood is equal to
∑

(Xk
ni− X̂k

ni)
2/Xk

ni up
to addition by a constant. Thus, it penalizes deviations for large observations less than RMSE.
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Table 8: In- and Out-of-Sample Fit of PPML Estimators

Sector-Level Pooled Product-Level Product-

Criterion Single-Sector Multi-Sector Single-Sector Multi-Sector by-Product

In-Sample
Pois. LLF 1.055 1.071 1.102 1.102 1.104

RMSE 4.602 3.352 1.608 1.551 1.445

Out-of-Sample
Pois. LLF 1.045 1.060 1.091 1.091 1.089

RMSE 4.639 3.446 1.692 1.699 1.750

Best Predictor
Pois. LLF 0 0 0.400 0.595 0.005

RMSE 0 0 0.444 0.311 0.245

Notes: RMSE ×106. Poisson LLF ×106. Poisson LLF = 1
BN(N−1)K

∑
b

∑
n

∑
i 6=n

∑
kX

k(−b)
ni ln

(
X̂

k(−b)
ni

)
− X̂k(−b)

ni

the set of countries randomly, which preserves the network structure and error clustering

present in the data. To ensure that the findings are representative of the overall sample, I

repeat the analysis many times across random sub-samples.52

Specifically, I perform the following steps b = 1, .., B times:

1. Randomly split the set of N countries into two sets of N/2 countries, C(b) and C(−b).

2. Construct the sets of trade flows, X
jk(b)
ni and X

jk(−b)
ni , and independent variables, z̃

(b)
ni

and z̃
(−b)
ni , for the subsets C(b) and C(−b).

3. Estimate γ̂(b) based on the dataset {Xjk(b)
ni , z̃

(b)
ni }.

4. Predict trade flows for C(−b) using (13) and (14) based on γ̂(b), given z̃
(−b)
ni .

This procedure yields B sets of out-of-sample predicted trade flows. The average loss

over the evaluation samples measures the out-of-sample performance of the estimator for

a representative set of countries. Because the sampling procedure is consistent with the

structure of trade flows in the model and errors that are clustered by country, the distribution

of loss function values across bootstrap iterations can be used to test for the best out-of-

sample predictor.53

Table 8 presents the results of 40,000 bootstrap iterations. The product-level estimators

far outperform the sector-level estimators in all regards. As expected, allowing for more

heterogeneity improves in-sample fit. However, the out-of-sample fit of single-sector pooled

PPML dominates the others on average in RMSE. For Poisson loss, multi-sector pooled

PPML slightly outperforms single-sector pooled PPML, with a difference in the sixth digit,

52This procedure is analogous to the bootstrap procedure of Snijders and Borgatti (1999).
53While it is well beyond the scope of this paper to derive the asymptotic properties of this evaluation

measure, it can be seen as an application of the Reality Check Bootstrap of White (2003), which produces
asymptotically valid p-values. It can also be seen as a bootstrapped form of cross-validation (Stone, 1978).
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and the latter outperforms all others. The bottom two rows of Table 8 show the share

of bootstrap iterations for which each estimator is the best out-of-sample predictor. For

Poisson loss, product-by-product PPML dominates the pooled estimators less than 1% of

time. For RMSE loss, none of the product-level estimators are clearly dominated, though

pooled PPML is most often the best predictor. Because the loss values for single-sector and

multi-sector pooled PPML are highly correlated, product-by-product PPML is the third best

predictor in RMSE more than 70% of the time.

These results indicate that overfitting is a concern for the product-by-product estimator,

consistent with the findings of Baltagi (2008) for a range of heterogeneous panel estimators.

While the results do not clearly reject the product-by-product estimator, there is a strong

argument to prefer the pooled estimators, unless heterogeneity is a primary concern, due to

their relative parsimony, pragmatic usefulness, and other desirable properties. Therefore, I

propose the following approach: Pool to the level of aggregation most relevant to the research

question, while acknowledging the correct interpretation of the pooled coefficient estimates

as indexes of coefficients that likely vary at the product level.

5.4 Heteroskedasticity

The baseline results suggest that bias due to heteroskedasticity is less of a concern than

previously thought once we control for PLCA. However, it is still useful to evaluate the

properties of the estimation errors to help in selecting among these estimators. I follow

Manning and Mullahy (2001) in estimating the relationship between the squared residual

and a power function of the model predicted values – referred to by Head and Mayer (2014)

as a “MaMu” test – which is given by

(Xk
ni − X̂k

ni)
2 = λ0(X̂k

ni)
λ1 .

Manning and Mullahy (2001) suggest estimating this relationship by OLS in its log-linear

form, but Santos Silva and Tenreyro (2006) point out that this is only appropriate under

the same conditions for which log-LS is consistent. Therefore, in each case, I estimate this

relationship using the estimator that produced the residuals.54

The results of the MaMu tests are presented in Table 9. For each of the estimators, the

assumed value of λ1 can be rejected. The hypotheses that λ1 = 0 and λ1 = 2 can be easily

rejected in all cases. The preponderance of the evidence suggests that λ1 lies between 1 and

54Specifically, I use log-linear OLS with non-robust standard errors in the FE and Structural log-LS cases
and the same PML estimator with multi-way cluster-robust standard errors for the PML cases. Because the
log-LS estimators are valid when λ1 = 2, the MaMu tests based on them are valid tests of this hypothesis.
The PML-based MaMu tests provide asymptotically valid estimates of λ1, given robust standard errors.
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Table 9: MaMu Tests

FE
Log LS

Structural
Log LS

Structural
GPML

Structural
PPML

Structural
NLS

H0 λ1 = 2 λ1 = 2 λ1 = 2 λ1 = 1 λ1 = 0

Aggregate 1.78 1.81 1.66 1.42 1.27
(0.009) (0.009) (0.044) (0.050) (0.108)

Product-Level 1.93 1.30 1.13 1.43 0.92
(0.001) (0.001) (0.010) (0.062) (0.054)

Notes: Estimated values of λ̂1 and standard errors (in parentheses) are reported. Standard
errors for log least squares specifications are non-robust. All other standard errors are robust
to multi-way clustering by both importer and exporter.

2, and the MaMu tests based on product-level estimators suggest that λ1 is likely closer to

1 than to 2, including the failure to reject λ1 = 1 based on product-level structural NLS.

Interestingly, however, product-level FE log-LS finds λ1 very close to 2 in magnitude, which

may explain why the heteroskedasticity bias appears much less significant in product-level

data. Together with the other desirable properties of PPML, these results suggest that

product-level PPML be the preferred gravity estimator, though product-level GPML and

log-LS may be considered for robustness.

5.5 The Trade Impact of Changes in Border Costs

In addition to bias in parameter estimates, I also consider how ignoring PLCA biases the

predicted effects of changes in trade costs. In the spirit of Anderson and van Wincoop

(2003), Waugh (2010), and others, I consider a simple counterfactual experiment: the effect

of eliminating border costs.

To this end, I use the Modular Trade Impact (MTI), so termed by Head and Mayer (2014)

because it relies upon the modular nature of structural gravity models.55 The MTI allows

the MR terms to adjust to changes in trade costs but holds output and expenditure constant.

It is not a full general equilibrium trade impact (GETI) measure because factor prices are

held constant. The MTI is very useful for multi-sector and/or product-level gravity models

because, as my model makes clear, it is not necessary to specify the form of demand across

products, details of factor markets, or the sources of comparative advantage to estimate the

parameters of a trade cost function.56 Unlike the MTI, computing the GETI would involve

specifying and parameterizing each of these as well as separately identifying the set of trade

cost elasticities. Further, Head and Mayer (2014) and Anderson and van Wincoop (2003)

55See Anderson (2011) for a detailed analysis of this property.
56Behar and Nelson (2014) make the related point that, in their single-sector model with CES demand,

the MTI does not require an estimate of the elasticity of substitution across products.

36



Table 10: Median MTI of Elimination of Border Costs

Sector-Level Pooled PL Product-
Single-Sector Multi-Sector Single-Sector Multi-Sector by-Product

FE Log-LS 62.8 82.4 55.1 59.1 44.0
Struc. Log-LS 59.1 48.3 42.0 40.0 29.3
Struc. GPML 119.1 89.3 58.3 46.4 37.4
PPML 130.8 158.1 59.0 68.5 67.2
Struc. NLS 130.3 144.6 68.6 69.8 59.2

Notes: Percentage changes in trade flows are reported – i.e., 100× (MTIni − 1).

report that the differences between an MTI and GETI tend to be relatively small in practice,

especially for small changes in trade costs.

For the product-level gravity model, the MTI is defined as follows:

MTIni ≡
X1
ni

X0
ni

=

∑
j

∑
k
Y jk
i

Ψjk1
i

Xjk
n

Φjk1
n
ez

1′
niβ̂

jk

∑
j

∑
k
Y jk
i

Ψjk0
i

Xjk
n

Φjk0
n
ez

0′
niβ̂

jk
,

where superscript zeros denote baseline values and ones denote values after changes in trade

costs. For the single-sector, sector-level specifications, this expression reduces to

MTIni ≡
X1
ni

X0
ni

= e(z1
ni−z0

ni)
′ ˆ̄βΨ0

i

Ψ1
i

Φ0
n

Φ1
n

.

The values of Φk1
n and Ψk1

i are calculated according to (7). Because data on Xk
nn are unavail-

able, computations based on the product-level model use the predicted values of Y k
i and Xk

n,

calculated using (13) and (14) and the baseline estimates of γ and δ̄.

Table 10 presents the median MTI of setting all border costs to zero, using estimates from

the baseline specifications. As with the coefficient estimates, the MTIs based on sector-level

specifications are much more heterogeneous than those based on product-level specifications.

Also, the product-level MTIs tend to be much smaller. The former result is driven by the

heterogeneity in border costs estimated by the sector-level specifications. The latter depends

mostly on the effects of PLCA. Because the effects of trade costs are ameliorated by PLCA,

the product-level models predict a smaller MTI for a given partial trade impact than the

sector-level models. This effect can be offset if border effects are estimated to be much

smaller by the sector-level specifications. This is true for the log-LS and GPML estimators,

but the latter effect is never large enough to offset the former.

This simple exercise demonstrates both the ease and importance of accounting for PLCA

in predicting the effects of changes in trade costs, even for changes that are uniform across
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products. However, it is not clear whether MTIs based on the heterogeneous or homogeneous

specifications should be preferred. There is no clear pattern in the differences between the

MTIs based on homogeneous and heterogeneous specifications, except that the dispersion

across estimators is greater for the more heterogenous specifications. Because the more

heterogenous estimates tend to be noisier and have worse out-of-sample predictive power,

the same approach that I proposed for estimation – pool to the level of aggregation relevant

to the research question – is reasonable for prediction, as well.

6 Panel Estimation

The baseline estimates demonstrate that failing to control for PLCA causes substantial bias

in sector-level gravity estimates. To show this as clearly as possible, the baseline specification

was kept simple. In this section, I include other common gravity variables that proxy for

trade policy and cultural and political ties between countries, specifically whether country

pairs share a common language, historical colonial ties, or a free trade agreement (FTA).

These relationships are likely endogenous, as they are more likely to form between countries

that trade intensively for other reasons. Controlling for PLCA, which is one important

reason, will lessen but may not eliminate the endogeneity problem. To address this form of

endogeneity, I follow the approach of Baier and Bergstrand (2007) and others in using panel

data and including country-pair FEs to control for any time-invariant unobserved factors

that determine bilateral trade flows.

As shown in Section 3, sector-level panel estimation is also biased when failing to control

for PLCA. To evaluate the severity of the bias in practice, I perform sector-level and pooled

product-level estimations. In the spirit of Baier and Bergstrand (2007), I use trade flows

observed in five-year intervals and include FTA membership and its five-year lag to capture

the effects of FTAs that “phase in” over time. Because geographic and historical relationship

variables are not time-varying, they are absorbed by the county-pair FEs. Therefore, similar

to Bergstrand et al. (2015), I interact these variables with a time trend to estimate changes

in their effects over time.57 For brevity, I focus on FE Log-LS and PPML estimators.

The estimates are shown in Table 11. As in the baseline estimates, we see substantial

differences when controlling for PLCA. Product-level estimates of the FTA effect are smaller

by one quarter and one half for PPML and FE-OLS when estimated in isolation. This

phenomenon is much weaker when allowing for changes in the effects of other common

57Note that all specifications control for changing effects of national borders over time. Specifically, the
INTERni,t term estimated by Bergstrand et al. (2015), who assume changes in border costs over time are
equal across countries, is subsumed in the country- and product-specific border costs, δkn, which are allowed
to vary over time in the panel estimation.
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Table 11: Panel Estimation Results

(a) Sector-Level Estimations

Log LS PPML

(1) (2) (3) (4) (5) (6)

FTA 0.171 0.142 0.129 0.205 0.244 0.236

(0.128) (0.126) (0.124) (0.063) (0.053) (0.051)

FTAt−5 0.341 0.316 0.308 0.172 0.206 0.191

(0.193) (0.192) (0.186) (0.047) (0.059) (0.060)

Distance × t −0.011 −0.010 −0.002 −0.002

(0.015) (0.014) (0.010) (0.009)

Sh. Border × t 0.000 0.008 −0.048 −0.050

(0.032) (0.033) (0.018) (0.021)

Language × t 0.008 0.005

(0.023) (0.019)

Colony × t −0.121 −0.037

(0.023) (0.015)

Total FTA 0.512 0.458 0.437 0.377 0.450 0.427

(0.157) (0.161) (0.158) (0.079) (0.070) (0.070)

Exporter-Time FEs Y Y Y Y Y Y

Importer-Time FEs Y Y Y Y Y Y

Pair FEs Y Y Y Y Y Y

Observations 34,425 34,425 34,425 59,856 59,856 67,485

(b) Product-Level Estimations

Log LS PPML

(1) (2) (3) (4) (5) (6)

FTA 0.112 0.163 0.151 0.163 0.228 0.221

(0.039) (0.041) (0.036) (0.056) (0.039) (0.037)

FTAt−5 0.161 0.218 0.202 0.127 0.207 0.188

(0.038) (0.045) (0.041) (0.049) (0.053) (0.050)

Distance × t 0.031 0.030 0.019 0.019

(0.012) (0.012) (0.009) (0.008)

Sh. Border × t −0.008 0.012 −0.054 −0.036

(0.015) (0.011) (0.016) (0.018)

Language × t −0.040 −0.032

(0.009) (0.016)

Colony × t −0.088 −0.030

(0.014) (0.014)

Total FTA 0.272 0.381 0.353 0.291 0.435 0.408

(0.060) (0.055) (0.053) (0.082) (0.060) (0.059)

Exporter-Time FEs Y Y Y Y Y Y

Importer-Time FEs Y Y Y Y Y Y

Pair FEs Y Y Y Y Y Y

Observations 2,188,041 2,188,041 2,188,041 38,367,696 38,367,696 38,367,696

Notes: Standard errors (in parentheses) are robust to multi-way clustering by importer, exporter, and year.
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gravity variables. Instead, other differences emerge. In the product-level estimates, the

distance elasticity falls in absolute value by an economically and statistically significant 2-

3% per period, and the effect of a common language falls significantly, consistent with the

“flattening world” hypothesis (Friedman, 2007). These results are consistent with a trend

of strengthening bilateral comparative advantage between nearby countries, which tend to

sign FTAs and are more likely to share a language, perhaps due to shifting investment from

comparative disadvantage to comparative advantage products as trade barriers fall. These

results clearly demonstrate that, even when it is possible to control for unobserved country-

pair effects, it is still important to control for changes in PLCA over time.

7 Conclusion

This paper shows both theoretically and empirically that aggregate estimation of models with

heterogeneous multiplicative two-way fixed effects leads to biased parameter estimates and

misleading predictions. I propose a set of disaggregate PML estimators that are straight-

forward to implement. The ideal coefficient index and pooled estimators that I develop

also obviate reporting, efficiency, and multiple inference concerns that may have dissuaded

researchers from pursuing disaggregate estimation in the past. I apply these estimators to

data on product-level bilateral trade flows, where the interacted effects embody product-level

comparative advantage, and find that the bias in aggregate estimates is significant. Based

on the theoretical and empirical results, I argue that estimation of models with unobserved

multiplicative effects should always make use of the most disaggregated data available. In

particular, the desirable properties of the pooled PPML estimator make it a strong candidate

to be the workhorse estimator for such models.

The structural gravity PML estimators that I implement are efficient if the model errors

obey the implied distributional assumptions. However, in general an optimal GMM esti-

mator based on the structural gravity moment conditions may improve efficiency. Another

potentially fruitful avenue for future research is to explore possible efficiency gains by ex-

plicitly modelling the heterogeneity of the fixed effects, for example by imposing a factor

structure. In the context of trade flows, Lind and Ramondo (2018) and Hanson et al. (2015)

make substantial progress in modelling countries’ patterns of comparative advantage.
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A Additional Tables

Table A1: Countries and Sources of Manufacturing Output Data

Country Source Country Source Country Source
Albania INDSTAT Georgia INDSTAT Panama INDSTAT(int.)
Argentina WDI Germany STAN Papua New Guinea WDI
Australia INDSTAT Ghana INDSTAT Peru INDSTAT
Austria STAN Greece STAN Philippines INDSTAT
Azerbaijan INDSTAT Grenada INDSTAT Poland STAN
Bahamas WDI Guatemala WDI Portugal STAN
Bangladesh WDI Honduras WDI Qatar INDSTAT
Barbados WDI Hungary STAN Rep. of Korea STAN
Belarus WDI Iceland STAN Rep. of Moldova INDSTAT
Belize WDI India INDSTAT Romania INDSTAT
Benin WDI Indonesia INDSTAT Russian Federation INDSTAT
Bolivia WDI Iran INDSTAT Rwanda WDI
Botswana INDSTAT Ireland STAN Saint Kitts and Nevis INDSTAT
Brazil INDSTAT Israel STAN St. Lucia WDI
Brunei Darussalam WDI Italy STAN Samoa WDI
Bulgaria INDSTAT Jamaica WDI Sao Tome and Princ. WDI
Burkina Faso WDI Japan STAN Saudi Arabia INDSTAT(int.)
Burundi WDI Jordan INDSTAT Senegal WDI
Cambodia WDI Kazakhstan INDSTAT Slovakia STAN
Cameroon WDI Kenya INDSTAT Slovenia STAN
Canada STAN Kyrgyzstan INDSTAT South Africa INDSTAT
Cape Verde WDI Latvia INDSTAT Spain STAN
Central African Rep. WDI Lebanon WDI Sri Lanka INDSTAT(int.)
Chile INDSTAT Lithuania INDSTAT Sudan WDI
China INDSTAT Madagascar INDSTAT Swaziland WDI
Colombia INDSTAT Malawi WDI Sweden STAN
Costa Rica WDI Malaysia INDSTAT Switzerland STAN
Cte d’Ivoire WDI Maldives WDI Syria INDSTAT
Croatia WDI Malta INDSTAT TFYR of Macedonia INDSTAT
Cuba WDI Mauritania WDI Thailand INDSTAT(int.)
Cyprus INDSTAT Mauritius INDSTAT Togo WDI
Czech Rep. STAN Mexico STAN Trinidad and Tobago INDSTAT
Denmark STAN Morocco INDSTAT Tunisia INDSTAT
Dominica INDSTAT Mozambique WDI Turkey INDSTAT
Dominican Rep. WDI Namibia WDI USA STAN
Ecuador INDSTAT Nepal WDI Uganda WDI
Eritrea INDSTAT Netherlands STAN Ukraine INDSTAT
Estonia STAN New Zealand STAN United Kingdom STAN
Ethiopia INDSTAT Nicaragua WDI U. Rep. of Tanzania INDSTAT
Fiji INDSTAT Niger WDI Uruguay INDSTAT
Finland STAN Nigeria INDSTAT Venezuela WDI
France STAN Norway STAN Viet Nam INDSTAT
Gabon WDI Pakistan INDSTAT(int.) Zambia WDI
Gambia WDI

Notes: INDSTAT(int.) indicates that output data were interpolated based on INDSTAT data for years before and
after 2003.
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Table A2: ISIC Rev. 3 Industries

ISIC Industry Description HS-6 Codes Countries Trade Share
15A Food, beverages, and tobacco 428 76 6.6%
17 Textiles 541 63 3.3%
18 Wearing apparel; dressing and dyeing of fur 241 48 2.9%
19 Leather, leather products, and footwear 67 57 1.4%
20 Wood products, except furniture 69 75 1.3%
21 Paper and paper products 120 75 2.4%
22 Publishing, printing, reproduction of recorded media 36 78 0.9%
23 Coke, refined petroleum products, nuclear fuel 20 55 2.7%
24 Chemicals and chemical products 879 66 11.8%
25 Rubber and plastics products 121 76 3.0%
26 Non-metallic mineral products 170 79 1.5%
27 Basic metals 359 58 5.4%
28 Fabricated metal products, except mach. and equip. 221 74 2.7%
29 Other machinery and equipment 528 61 10.6%
30 Office, accounting and computing machinery 37 33 5.4%
31 Other electrical machinery and apparatus 134 62 4.7%
32 Radio, television, and communication equipment 101 48 8.5%
33 Medical, precision instruments, watches and clocks 212 53 3.9%
34 Motor vehicles, trailers and semi-trailers 54 56 13.6%
35 Other transport equipment 81 58 4.1%
36 Furniture, other manufacturing 189 64 3.2%
Notes: Column “Countries” lists number of sample countries with output data available for each ISIC industry.
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B Proofs

Proof of Proposition 1. Given Assumption 1, summing (1) over k and taking expectations

with respect to the data yields

E[Xni|Z,Γ] =
∑
k

φknψ
k
i f(zni;β

k),

where Γ =
(
Γ1′, ...,ΓK ′)′. Multiplying and dividing by f(zni; β̄), φ̄n, and ψ̄i yields

E[Xni|Z,Γ] = φ̄nψ̄if(zni; β̄)
∑
k

φkn
φ̄n

ψki
ψ̄i

f(zni;β
k)

f(zni; β̄)

≡ ω̄niTni

= E[Xni|Z, Γ̄, Tni].

(17)

Note that r(·) and r̃(·) are defined such that E[r(x,E[x|Ω])|Ω] = 0 and E[r̃(x,E[x|Ω])|Ω] =

0 for x ∈ R+, given information set Ω. Therefore, (17) implies that

E[r(Xni, ω̄niTni)|Z, Γ̄, Tni] = E
[
r(Xni,E[Xni|Z, Γ̄, Tni])

∣∣Z, Γ̄, Tni] = 0

Proof of Proposition 2. Assumptions 1′ and 2 imply that

X̂ni = φ̄nψ̄ie
z′niβ̄Tni, (18)

where

Tni =
∑
k

T ki c
k
i

φ̄i

Xk
n

Φk
nφ̄n

ez
′
ni(β

k−β̄). (19)

Totally differentiating (19), holding constant all values of T ki , cki , and Xn, yields

d ln(Tni) =
∑
k

X̂k
ni

X̂ni

[
dz′ni(β

k − β̄)− d ln(Φk
n) + d ln(Xk

n)− d ln(φ̄n)
]

(20)

Totally differentiating Φk
n, given by Assumption 1′, yields

d ln(Φk
n) =

∑
i

X̂k
ni

Xk
n

dz′niβ
k,
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Totally differentiating (18) yields

d ln X̂ni = dz′niβ̄ + d ln(φ̄n) + d ln(Tni),

using the fact that ψi is an index of T ki c
k
i , which are held fixed, and thus dψi = 0. Multiplying

d ln X̂ni by X̂ni/Xn and summing over i yields

d ln(φ̄n) = −
∑
i

X̂ni

Xn

dz′niβ̄,

which imposes the normalization
∑

i
X̂ni

Xn
dTni = 0 and uses the fact that

∑
i dX̂ni = 0, because

Xn is held constant. Substituting these result into (20) yields (10).

To verify that the normalization imposed on Tni is valid, multiply both sides of (20) by

X̂ni/Xn and sum over i. This implies that

∑
i

X̂ni

Xn

d ln(T̃ni) =
∑
i

X̂ni

Xn

∑
k

X̂k
ni

X̂ni

[
dz′ni(β

k − β̄)−
∑
m

dz′nm

(
X̂k
nm

Xk
n

βk − X̂nm

Xn

β̄

)
+ d ln(Xk

n)

]

=
∑
k

∑
i

X̂k
ni

Xn

dz′niβ
k −

∑
i

X̂ni

Xn

dz′niβ̄

−
∑
k

∑
m

X̂k
nm

Xn

dz′nmβ
k +

∑
m

X̂nm

Xn

dz′nmβ̄ +
∑
k

dXk
n

Xn

= 0,

where the last equality uses the fact that
∑

k dX
k
n = 0, because Xn is held constant.

Proof of Proposition 3.

Part (i). Given any set of heterogeneous coefficients, β̂, the coefficient index solves the

following set of equations∑
n

∑
i

∑
k

[
X̂k
ni(β̂

k)− X̂k
ni(β̄(β̂))

]
zni = 0.

The structural (and FE) pooled product-level PML estimator estimates a parameter vector
ˆ̄β that solves first-order conditions of the form∑

n

∑
i

∑
k

[
Xk
ni − X̂k

ni(
ˆ̄βPPML)

]
zni = 0. (21)
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When the pooled PPML estimator is applied to fitted values X̂k
ni(β̂

k), these two conditions

are identical, which implies that ˆ̄βPPML = β̄(β̂).

Part (ii). The structural (and FE) product-by-product Poisson PML estimator estimates a

parameter vector β̂
k

that solves first-order conditions of the form∑
n

∑
i

[
Xk
ni − X̂k

ni(β̂
k
PPML)

]
zni = 0, (22)

for all k. The coefficient index based on product-by-product PPML estimates solves∑
n

∑
i

∑
k

[
X̂k
ni(β̂

k
PPML)− X̂k

ni(β̄(β̂PPML))
]
zni = 0.

This condition implies that∑
n

∑
i

∑
k

X̂k
ni(β̄(β̂PPML))zni =

∑
n

∑
i

∑
k

X̂k
ni(β̂

k
PPML)zni

=
∑
k

[∑
n

∑
i

X̂k
ni(β̂

k
PPML)zni

]
=
∑
n

∑
i

∑
k

Xk
nizni

=
∑
n

∑
i

∑
k

X̂k
ni(

ˆ̄βPPML)zni,

where the third equality is a result of (22), and the last is a result of (21). Thus, it must be

the case that β̄(β̂PPML) = ˆ̄βPPML.

Proof of Proposition 4. Given Assumption 2′, (6) becomes

X̂k
ni(β̂

k) =
Xk
n

Φk
n

Y k
i

Ψk
i

f̃(z̃′niγ̂
k)eδ̂

k
n , (23)

for all n 6= i. Summing over all n 6= i implies

Êk
i =

Y k
i

Ψk
i

∑
n 6=i

Xk
n

Φk
n

f̃(z̃′niγ̂
k)eδ̂

k
n ≡ Y k

i

Ψk
i

Ψ̃k
i .

Substituting back into (23) yields

X̂k
ni(β̂

k) =
Xk
n

Φk
n

Êk
i

Ψ̃k
i

f̃(z̃′niγ̂
k)eδ̂

k
n ,
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for all n 6= i. Summing over all i 6= n implies

M̂k
n =

Xk
n

Φk
n

eδ̂
k
n

∑
n6=i

Êk
i

Ψ̃k
i

f̃(z̃′niγ̂
k) ≡ Xk

n

Φk
n

eδ̂
k
nΦ̃k

n.

Substituting this expression yields

X̂k
ni(β̂

k) =
M̂k

n

Φ̃k
n

Êk
i

Ψ̃k
i

f̃(z̃′niγ̂
k),

for all n 6= i. Summing again over all n 6= i implies that

Ψ̃k
i =

∑
n6=i

M̂k
n

Φ̃k
n

f̃(z̃′niγ̂
k)

It remains to be shown that Êk
i = Ek

i and M̂k
n = Mk

n . Note that

X̂k
nn(β̂k) =

M̂k
n

Φ̃k
n

Êk
n

Ψ̃k
n

f̃(z̃′nnγ̂
k)e−δ̂

k
n .

Structural gravity PML estimators maximize an objective function of the form

L =
∑
n

∑
i

Xk
nic(X̂

k
ni)− a(X̂k

ni) + b(Xk
ni),

where a(·) and c(·) are defined such that [c′(µ)]−1a′(µ) = µ, for a given scalar µ. Thus, β̂k

satisfies first-order conditions of the form

∑
n

∑
i

(
Xk
ni − X̂k

ni

)
c′(X̂k

ni)
∂X̂k

ni

∂β̂k
= 0. (24)

Recall that βk is of dimension L = Q + N , with the last N elements containing the

border cost coefficients δkn. The first-order condition with respect to δkn simplifies to

(
Xk
nn − X̂k

nn

)
c′(X̂k

ni) =
∑
n

∑
i

(
Xk
ni − X̂k

ni

)
c′(X̂k

ni)

[
∂M̂k

n

∂δ̂kn
+
∂Êk

i

∂δ̂kn
− ∂Φ̃k

n

∂δ̂kn
− ∂Ψ̃k

i

∂δ̂kn

]
. (25)

Let us conjecture that the values of δ̂kn are such that Xk
nn = X̂k

nn. This implies that Êk
i = Ek

i
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and M̂k
n = Mk

n and that

X̂k
ni(β̂

k) =
Mk

n

Φ̃k
n

Ek
i

Ψ̃k
i

f̃(z̃′niγ̂
k) ≡ X̃k

ni(γ̂
k),

where

Φ̃k
n =

∑
i 6=n

Ek
i

Ψ̃k
i

f̃(z̃′niγ̂
k) and Ψ̃k

i =
∑
n 6=i

Mk
n

Φ̃k
n

f̃(z̃′niγ̂
k).

Thus,
∂M̂k

n

∂δ̂kn
=
∂Êk

i

∂δ̂kn
=
∂Φ̃k

n

∂δ̂kn
=
∂Ψ̃k

i

∂δ̂kn
= 0,

(25) is satisfied, and (24) becomes

∑
n

∑
i 6=n

(
Xk
ni − X̃k

ni

)
c′(X̃k

ni)
∂X̃k

ni

∂γ̂k
= 0. (26)

Thus, the conjecture is verified. Further, Gourieroux et al. (1984) show that the solution to

(24) is unique, which implies that the value of γ̂k that solves (26) also constitutes the first

Q elements of the unique value of β̂
k

that satisfies (24).

C Data

C.1 Trade Data

Bilateral, product-level trade data are from the U.N. Comtrade database. The data are

classified into six-digit Harmonized System (HS), 1996 revision, product codes. The sample

consists of trade flows for the year 2003, which was chosen to maximize the number of

countries for which both gross output data from INDSTAT and trade data from Comtrade

were available. The sample consists of trade flows reported by exporters because these

values are more likely to be consistent with the gross output data, which is reported by the

producing country, and because exports are typically reported “free on board”, as opposed

to “cost, insurance, and freight”, and the former is consistent with the measure of trade

flows in the model.

The trade flow data were combined with manufacturing gross output data from several

sources. The manufacturing output data are classified according Revision 3 of the Interna-

tional Standard Industrial Classification (ISIC). To match the trade and output data, the

HS1996 codes were mapped to ISIC (Revision 3) codes using the concordance available from
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the U.N. Statistics Division.58 All HS codes not mapped to manufacturing ISIC codes (2-

digit industries 15-37) were dropped. This reduced the number of HS codes in the sample

to 4,608.

C.2 Gravity Variables

The bilateral relationship variables used to estimate trade costs are from the Gravity dataset

available from CEPII (see Mayer and Zignago, 2011). The estimations use the following

variables: population-weighted distance (distw), whether countries share a common border

(contig), whether they have a common official language (comlang off ), whether they have

ever had a colonial link (colony), whether they are currently parties to a regional trade

agreement (rta), and whether the share a common currency (comcur).

C.3 Manufacturing Output

Gross manufacturing output data come from three sources. First, the data are taken from the

OECD STAN database, where available. If countries are not included in this database, data

are from the Industrial Statistics Database (INDSTAT4), 2011 Edition, CD-ROM published

by UNIDO. Where data are available for years before and after, but not including, 2003,

log output is linearly interpolated based on the closest values before and after 2003. Where

data are not available from either sources, output is imputed from total manufacturing value

added obtained from the World Development Indicators database of the World Bank. Gross

output is obtained by scaling value added by a factor of 3.04.59

Gross output data at the 2-digit ISIC (Revision 3) level were obtained from the IND-

STAT2, 2014 Edition, CD-ROM published by UNIDO. Where countries reported data in

combined or aggregated categories ISIC categories, these observations were excluded. Table

A2 lists the ISIC categories, their descriptions, the number of 6-digit HS codes matched to

each ISIC industry, the number of countries that reported output data in each industry, and

the industry’s share in total world manufacturing Trade.

C.4 Constructing the Sample

To be included in the sample, data must be available for a country from the Comtrade

database and at least one of the STAN, INDSTAT, or WDI databases. To avoid problems

58This is available for free download from the following url:
http://unstats.un.org/unsd/cr/registry/regdntransfer.asp?f=183.

59This value is obtained from a cross-sectional regression of gross output on value added, omitting the
constant term. The regression R2 was equal to 0.99.
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related to entrepot trade, China, Hong Kong, and Macao are merged into a single country.

There were also several other cases in which there were apparent problems of entrepot trade

– i.e. reported exports exceeded reported gross output – which resulted in 8 countries

being dropped from the sample.60 Once the trade and manufacturing data were merged,

domestic absorbtion of domestic manufacturing output, Xii, was then calculated as total

manufacturing output minus total manufacturing exports to all countries (including non-

reporters), and total manufacturing absorbtion, Xi, was calculated as Xii plus total imports

from countries in the sample, yielding an internally consistent bilateral trade flow matrix.

For the industry-level sample, values of Xii that were computed to be less than zero were

excluded. The final sample consists of total gross manufacturing output and bilateral trade

flows for 130 countries and 4,608 6-digit manufacturing HS products.61

60The excluded countries are Armenia, Belgium, the Federated States of Micronesia, Guyana, Luxembourg,
Mali, Mongolia, and Singapore.

61Note that the industry-level estimations are based on the full sample of 130 countries. The lack of
industry-level output only reduces the number of border cost parameters (δ̄jn) that can be identified.
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