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Abstract

In this paper we introduce a new nonparametric test for Granger non-causality which avoids

the over-rejection observed in the frequently used test proposed by Hiemstra and Jones [1994.

Testing for linear and nonlinear Granger causality in the stock price-volume relation. Journal of

Finance 49, 1639–1664]. After illustrating the problem by showing that rejection probabilities

under the null hypothesis may tend to one as the sample size increases, we study the reason behind

this phenomenon analytically. It turns out that the Hiemstra–Jones test for the null of Granger

non-causality, which can be rephrased in terms of conditional independence of two vectors X and

Z given a third vector Y, is sensitive to variations in the conditional distributions of X and Z that

may be present under the null. To overcome this problem we replace the global test statistic by an

average of local conditional dependence measures. By letting the bandwidth tend to zero at

appropriate rates, the variations in the conditional distributions are accounted for automatically.

Based on asymptotic theory we formulate practical guidelines for choosing the bandwidth

depending on the sample size. We conclude with an application to historical returns and trading

volumes of the Standard and Poor’s index which indicates that the evidence for volume Granger-

causing returns is weaker than suggested by the Hiemstra–Jones test.
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1. Introduction

Granger (1969) causality has turned out to be a useful notion for characterizing
dependence relations between time series in economics and econometrics. Intuitively,
for a strictly stationary bivariate process fðX t;Y tÞg, fX tg is a Granger cause of fY tg if
past and current values of X contain additional information on future values of Y

that is not contained in past and current Y-values alone. If we denote the
information contained in past observations X s and Y s, spt, by FX ;t and FY ;t,
respectively, and let ‘�’ denote equivalence in distribution, the formal definition is:

Definition 1. For a strictly stationary bivariate time series process fðX t;Y tÞg, t 2 Z,
fX tg is a Granger cause of fY tg if, for some kX1,

ðY tþ1; . . . ;Y tþkÞjðFX ;t;FY ;tÞfðY tþ1; . . . ;Y tþkÞjFY ;t.

Since this definition is general and does not involve any modelling assumptions, such
as a linear autoregressive model, it is often referred to as general or, by a slight abuse
of language, nonlinear Granger causality.

Traditional parametric tests for Granger non-causality within linear autoregres-
sive model classes have reached a mature status, and have become part of the
standard toolbox of economists. The recent literature, due to the availability of ever
cheaper computational power, has shown an increasing interest in nonparametric
versions of the Granger non-causality hypothesis against general (linear as well as
nonlinear) Granger causality. Among the various nonparametric tests for the
Granger non-causality hypothesis, the Hiemstra and Jones (1994) test (hereafter HJ
test) is the most frequently used among practitioners in economics and finance.
Although alternative tests, such as that proposed by Bell et al. (1996) and by Su and
White (2003), may also be applied in economics and finance, we limit ourselves to a
discussion of the HJ test and our proposed modification of it.

The reason for considering the HJ test here in detail is our earlier finding (Diks
and Panchenko, 2005) that this commonly used test can severely over-reject if the
null hypothesis is true. The aim of the present paper is two-fold. First, we derive the
exact conditions under which the HJ test over-rejects, and secondly we propose a
new test statistic which does not suffer from this serious limitation. We will show
that the reason for over-rejection of the HJ test is that the test statistic, due to its
global nature, ignores the possible variation in conditional distributions that may be
present under the null hypothesis. Our new test statistic, provided that the
bandwidth tends to zero at an appropriate rate, automatically takes into account
such variation under the null hypothesis while obtaining an asymptotically correct
size.

The practical implication of our findings is far-reaching: all cases for which
evidence for Granger causality was reported based on the HJ test may be caused by
the tendency of the HJ test to over-reject. Reports of such evidence are numerous in
the economics and finance literature. For instance, Brooks (1998) finds evidence for
Granger causality between volume and volatility on the New York Stock Exchange,
Abhyankar (1998) and Silvapulla and Moosa (1999) in futures markets, and Ma and
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Kanas (2000) in exchange rates. Further evidence for causality is reported in stock
markets (Ciner, 2001), among real estate prices and stock markets (Okunev et al.,
2000, 2002) and between London Metal Exchange cash prices and some of its
possible predictors (Chen and Lin, 2004). Although we do not claim that the
reported Granger causality is absent in all these cases, we do state that the statistical
justification is not warranted.

This paper is organized as follows. In Section 2 we show that the HJ test statistic
can give rise to rejection probabilities that tend to one with increasing sample size
under the null hypothesis. In Section 3 the reason behind this phenomenon is studied
analytically and found to be related to a bias in the test statistic due to variations in
conditional distributions. The analytic results suggest an alternative test statistic,
described in Section 4, which automatically takes these variations into account, and
can be shown to give asymptotic rejection rates equal to the nominal size for
bandwidths tending to zero at appropriate rates. The theory is confirmed by the
simulation results presented at the end of the section. In Section 5 we consider an
application to S&P500 volumes and returns for which the HJ test indicates volume
Granger-causing returns, while our test indicates that the evidence for volume
causing returns is considerably weaker. Section 6 summarizes and concludes.
2. The Hiemstra–Jones test

In testing for Granger non-causality, the aim is to detect evidence against the null
hypothesis

H0 : fX tg is not Granger causing fY tg,

with Granger causality defined according to Definition 1. We limit ourselves to tests
for detecting Granger causality for k ¼ 1, which is the case considered most often
in practice. Under the null hypothesis Y tþ1 is conditionally independent of
X t;X t�1; . . ., given Y t;Y t�1; . . .. In a nonparametric setting, conditioning on the
infinite past is impossible without a model restriction, such as an assumption that the
order of the process is finite. Therefore, in practice, conditional independence is
tested using finite lags lX and lY :

Y tþ1jðX
lX
t ;Y

lY
t Þ�Y tþ1jY

lY
t ,

where X lX
t ¼ ðX t�lXþ1; . . . ;X tÞ and Y lY

t ¼ ðY t�lYþ1; . . . ;Y tÞ. For a strictly stationary
bivariate time series fðX t;Y tÞg this is a statement about the invariant distribution of
the (lX þ lY þ 1)-dimensional vector W t ¼ ðX

lX
t ;Y

lY
t ;ZtÞ, where Zt ¼ Y tþ1. To keep

the notation compact, and to bring about the fact that the null hypothesis is a
statement about the invariant distribution of W t, we often drop the time index and
just write W ¼ ðX ;Y ;ZÞ, where the latter is a random vector with the invariant
distribution of ðX lX

t ;Y
lY
t ;Y tþ1Þ. In this paper we only consider the choice

lX ¼ lY ¼ 1, in which case W ¼ ðX ;Y ;ZÞ denotes a three-variate random variable,
distributed as W t ¼ ðX t;Y t;Y tþ1Þ. Throughout we will assume that W is a
continuous random variable.
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The HJ test is a modified version of the Baek and Brock (1992) test for conditional
independence, with critical values based on asymptotic theory. To motivate the test
statistic it is convenient to restate the null hypothesis in terms of ratios of joint
distributions. Under the null the conditional distribution of Z given ðX ;Y Þ ¼ ðx; yÞ is
the same as that of Z given Y ¼ y only, so that the joint probability density function
f X ;Y ;Zðx; y; zÞ and its marginals must satisfy

f X ;Y ;Zðx; y; zÞ

f X ;Y ðx; yÞ
¼

f Y ;Zðy; zÞ

f Y ðyÞ
, (1a)

or equivalently

f X ;Y ;Zðx; y; zÞ

f Y ðyÞ
¼

f X ;Y ðx; yÞ

f Y ðyÞ

f Y ;Zðy; zÞ

f Y ðyÞ
(1b)

for each vector ðx; y; zÞ in the support of ðX ;Y ;ZÞ. The last equation is identical
to f X ;ZjY ðx; zjyÞ ¼ f X jY ðxjyÞf ZjY ðzjyÞ, which explicitly states that X and Z are
independent conditionally on Y ¼ y, for each fixed value of y.

The HJ test employs ratios of correlation integrals to measure the discrepancy
between the left- and right-hand sides of (1a). For a multivariate random vector V

taking values in RdV the associated correlation integral CV ðeÞ is the probability of
finding two independent realizations of the vector at a distance smaller than or equal
to e:

CV ðeÞ ¼ P½kV 1 � V2kpe�; V1;V2 indep. �V

¼

Z Z
Iðks1 � s2kpeÞf V ðs1Þf V ðs2Þds2 ds1,

where Iðks1 � s2kpeÞ is the indicator function, which is one if ks1 � s2kpe and zero
otherwise, and kxk ¼ supi¼1;...;dV

jxij denotes the supremum norm. Hiemstra and
Jones (1994) argue that (1a) implies for any e40:

CX ;Y ;ZðeÞ
CX ;Y ðeÞ

¼
CY ;ZðeÞ
CY ðeÞ

(2a)

or equivalently

CX ;Y ;ZðeÞ
CY ðeÞ

¼
CX ;Y ðeÞ
CY ðeÞ

CY ;ZðeÞ
CY ðeÞ

. (2b)

The HJ test consists of calculating sample versions of the correlation integrals in
(2a), and then testing whether the left-hand- and right-hand-side ratios differ
significantly or not. The estimators for each of the correlation integrals take the form

CW ;nðeÞ ¼
2

nðn� 1Þ

XX
ioj

IW
ij ,

where IW
ij ¼ IðkW i �W jkpeÞ. For the asymptotic theory we refer to Hiemstra and

Jones (1994).
As stated in the Introduction, the main motivation for the present paper is that in

certain situations the HJ test rejects too often under the null, and we wish to
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formulate an alternative procedure to avoid this. Before investigating the reasons for
over-rejection analytically, we use a simple example to illustrate the over-rejection
numerically, and to show that simple remedies such as transforming the data to
uniform marginals and filtering out GARCH structure do not work. Diks and
Panchenko (2005) demonstrated that for a process with instantaneous dependence
in conditional variance the actual size of the HJ test was severely distorted. Here
we illustrate the same point for a similar process, but without instantaneous
dependence:

X t�Nð0; cþ aY 2
t�1Þ,

Y t�Nð0; cþ aY 2
t�1Þ. ð3Þ

This process satisfies the null hypothesis; fX tg is not Granger causing fY tg. The
values for the coefficients a and c are chosen in such a way that the process remains
stationary and ergodic (c40, 0oao1).

We performed some Monte Carlo simulations to obtain the empirical size of the
HJ test for the ARCH process (3) with coefficients c ¼ 1, a ¼ 0:4. For various
sample sizes, we generated 1 000 independent realizations of the bivariate process
and determined the observed fraction of rejections of the null at a nominal size of
0:05.

The solid line in Fig. 1 shows the rejection rates found as a function of the time
series length n. The simulated data were normalized to unit variance before the test
was applied, and the bandwidth was set to e ¼ 1, which is within the common range
ð0:5; 1:5Þ used in practice. For time series length no500 the test based on the original
series under-rejects. Its size is close to nominal for series length n ¼ 500. For longer
series the actual size increases and becomes close to one when n ¼ 60 000. The
reason that the observed size increases with the series length n is that, as detailed in
the next section, the test statistic is biased in that it does not converge in probability
to zero under the null as the sample size increases. As the sample size increases the
bias converges to a nonzero limit while the variance decreases to zero, giving rise to
apparently significant values of the test statistic. In comparison with the process with
instantaneous dependence considered in Diks and Panchenko (2005) the current
process indicates less size distortion. This is due to the weaker covariance between
the concentration measures HX and HZ for the current process, which is the main
cause of the bias.

As suggested by Pompe (1993) in the context of testing for serial independence,
transforming the time series to a uniform marginal distribution by using ranks may
improve the performance of the test. Here we investigate if it reduces the bias of the
HJ test. The long-dashed line in Fig. 1 shows that the uniform transform improves
the size for time series of length n ¼ 1 000, but magnifies the size distortion for time
series length n42 000.

As another solution one might argue that it is possible to filter out the conditional
heteroskedasticity using a univariate (G)ARCH specification. This would remove the
bias caused by the conditional heteroskedasticity in the HJ test. However, such a
filtering procedure has several drawbacks. First, it may affect the dependence



ARTICLE IN PRESS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000

ac
tu

al
 s

iz
e

n

original
uniform
filtered
exot filt

Fig. 1. Observed rejection rates (empirical size, number of realizations: 1 000) of the HJ test ðe ¼ 1Þ for the

bivariate ARCH process (3) as a function of the time series length n (nominal size 0:05) for: original data
(solid line), uniformly transformed data (long-dashed line), ARCH filtered data (dashed line) and for data

generated with model (4) and filtered with a misspecified ARCH(1) model (dotted line).
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structure and consequently the power of the test. Second, a (G)ARCH filter may not
fully remove the conditional heteroskedasticity in the residuals. To illustrate the
latter point we filtered the original series considered before by a univariate ARCH(1)
model. The parameters of the model were estimated for every realization using the
asymptotically efficient two-stage procedure of Engle (1982). Fig. 1 (dashed line)
shows that the filtering removes the bias for time series length no30 000; however,
the actual size remains distorted for longer series.

It is important to mention that in the previous case the correct model for the
conditional variance of series Y t was used and, as the next section clarifies, most of
the source of the bias was removed. In practice, the correct model is not known and
the model used to filter out the heteroskedasticity is likely to be misspecified. To
show the effect of model misspecification we generated data according to the
following ‘exotic’ ARCH model:

X t�Nð0; cþ aY 2
t�1 expð�bY 2

t�1ÞÞ,

Y t�Nð0; cþ aY 2
t�1 expð�bY 2

t�1ÞÞ. ð4Þ

With parameters c ¼ 1, a ¼ 2 and b ¼ 0:4 the process (4) is stationary and the
fluctuations in the conditional variance are similar in magnitude as for the ARCH
process (3) with the coefficients considered before. Instead of using a correctly specified
filter we proceeded as before, calculating the size using a conventional ARCH(1) filter
prior to application of the HJ test. The results represented by the dotted line in Fig. 1
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indicate that the misspecified ARCH(1) filter is not able to remove large part of the
source of bias and the sensitivity of the HJ test to dependence in the conditional variance
leads to over-rejection, even for shorter time series.

3. Bias from correlations in conditional concentrations

In this section we show that the reason that the HJ test is inconsistent is that the
assumption made by HJ that (1a) implies (2a) does not hold in general. In fact, (2a)
follows from (1a) only in specific cases, e.g. when the conditional distributions of Z and
X given Y ¼ y do not depend on y. To see this, note that under the null hypothesis

P½kX 1 � X 2koe; kZ1 � Z2koejY 1 ¼ Y 2 ¼ y�

¼ P½kX 1 � X 2koejY 1 ¼ Y 2 ¼ y�P½kZ1 � Z2koejY 1 ¼ Y 2 ¼ y�, ð5Þ

whereas Eq. (2b) states

P½kX 1 � X 2koe; kZ1 � Z2koejkY 1 � Y 2koe�

¼ P½kX 1 � X 2koejkY 1 � Y 2koe�P½kZ1 � Z2koejkY 1 � Y 2koe�. ð6Þ

In general, these conditions are not equivalent. In both equations a statement
regarding the factorization of probabilities is made, but the events on which the
conditioning takes place differ. In general, under the null the conditional
distributions of X and Z are allowed to depend on Y. Therefore, the distributions
of X 1 � X 2 and Z1 � Z2 will generally depend, under the null, on Y 1 and Y 2. For
small e the condition in Eq. (6) holds for many close but very different Y 1, Y 2 pairs.
Therefore, even for small e the left-hand side of Eq. 6 behaves as an average of that
of (5) over all possible values of y. Because factorization of densities is not preserved
under averaging, e.g. af 1ðxÞg1ðzÞ þ ð1� aÞf 2ðxÞf 2ðzÞ typically cannot be written as
the product of a function of x and of z, the average probability on the left-hand side
of (6) will typically not factorize in the form on the right-hand side.

Although this argument shows that the relationship tested in the HJ test is
generally inconsistent with the null hypothesis, one might argue that the test could
still be asymptotically valid if appropriate measures are taken to eliminate the ‘bias’
in Eq. (2a) asymptotically, for example by allowing for the bandwidth e to tend to
zero at an appropriate rate with increasing sample size.

To see whether such an approach might work we examine the behavior of the
fractions in (2a) for small values of the bandwidth e. For continuous distributions
the following small e approximation is useful:

CV ðeÞ ¼
Z Z

Iðks1 � s2kpeÞf V ðs1Þf V ðs2Þds1 ds2

¼

Z Z
Beðs1Þ

f V ðs2Þds2 f V ðs1Þds1 þ oðedV Þ

¼ ð2eÞdV

Z
f 2

V ðsÞdsþ oðedV Þ

¼ ð2eÞdV HV þ oðedV Þ, ð7Þ
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where Beðs1Þ denotes a ball (or, since we use the supremum norm, a hypercube) with
radius e centred at s1. The constant HV �

R
f 2

V ðsÞds ¼ E½f V ðV Þ� can be considered
as a concentration measure of V. To illustrate this, consider a family of univariate
pdfs with scale parameter y, that is, f V ðv; yÞ ¼ y�1gðy�1vÞ for some pdf gð�Þ. One
readily finds

R
f 2

V ðs; yÞds ¼ ð1=yÞ
R

g2ðsÞds ¼ cnst:=y, which shows that, in the
univariate case, the concentration measure is inversely proportional to the scale
parameter y. For later convenience, for a pair of vector-valued random variables
ðV ;Y Þ of possibly different dimensions, we also introduce the conditional

concentration of the random variable V given Y ¼ y, as HV ðyÞ ¼
R

f 2
V jY ðvjyÞdv ¼

ð
R

f 2
V ;Y ðv; yÞdvÞ=f 2

Y ðyÞ.
By comparing the leading terms of the expansion in powers of e in Eqs. (2b) and

(7), we find that

E½f X ;Y ;ZðX ;Y ;ZÞ�

E½f Y ðY Þ�
¼

E½f X ;Y ðX ;Y Þ�

E½f Y ðY Þ�

E½f Y ;ZðY ;ZÞ�

E½f Y ðY Þ�
. (8)

That is, for e small, testing the equivalence of the ratios in (2a) amounts to testing (8)
instead of the null hypothesis. Unless some additional conditions hold, this will
typically not be equivalent to testing the null hypothesis. To see what these
additional conditions are it is useful to rewrite (8) as follows. For the left-hand side
one can write

E½f X ;Y ;ZðX ;Y ;ZÞ�

E½f Y ðY Þ�
¼

EY ½EX ;ZjY ½f X ;ZjY ðX ;ZjY Þf ðY Þ��

E½f Y ðY Þ�

¼

Z
EX ;ZjY¼y½f X ;ZjY ðX ;ZjyÞ�wðyÞdy

¼

Z
HX ;ZðyÞwðyÞdy,

where wðyÞ is a weight function given by wðyÞ ¼ f 2
Y ðyÞ=

R
f 2

Y ðsÞds. This brings about
the fact that the ratio on the left-hand side of (8) for small e is proportional to a
weighted average of the conditional concentration HX ;ZðyÞ, with weight function
wðyÞ. In a similar fashion, for the terms on the right-hand side one derives

E½f X ;Y ðX ;Y Þ�

E½f Y ðY Þ�
¼

Z
HX ðyÞwðyÞdy and

E½f Y ;ZðY ;ZÞ�

E½f Y ðY Þ�
¼

Z
HZðyÞwðyÞdy.

Under the null hypothesis, Z is conditionally independent of X given Y ¼ y,
so that HX ;ZðyÞ is equal to HX ðyÞHZðyÞ, for all y. It follows that the left- and right-
hand sides of (8) coincide under the null if and only if

R
HX ðyÞHZðyÞwðyÞdy�R

HX ðyÞwðyÞdy
R

HZðyÞwðyÞdy ¼ 0, or

CovðHX ðSÞ;HZðSÞÞ ¼ 0, (9)

where S is a random variable with pdf wðyÞ. Only under specific conditions, such as
either HX ðyÞ or HZðyÞ being independent of y, (9) holds under the null, and hence
(2a) as e tends to zero. Also if HX ðyÞ and HZðyÞ depend on y, (9) may hold, but this is
an exception rather than the rule. Typically the covariance between the conditional
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concentrations of X and Z given Y will not vanish, inducing a bias in the HJ test for
small e.

Therefore, letting the bandwidth tend to zero with increasing sample size in the HJ
test would not provide a theoretical solution to the problem of over- or under-
rejection caused by positive or negative covariance of the concentration measures,
respectively. In simulations for a particular process and small to moderate sample
sizes one can often identify a seemingly adequate rate for bandwidths vanishing
according to en ¼ Cn�b, for which the size of the HJ test remains close to nominal.
However, this does not imply that using the HJ test with such a sample size
dependent bandwidth is advisable in practice. The optimal choices for C and b may
depend strongly on the data generating process, and our results show that
asymptotically the HJ test for typical processes (those with non-vanishing covariance
of concentrations of X and Y) is inconsistent.

The fact that the conditional concentration measures of X lX
t and Y tþ1 given Y lY

t

affect the leading bias term poses severe restrictions on applicability to economic and
financial time series in which conditional heteroskedasticity is usually present.
Consequently, there is a risk of over-rejection by the HJ test which cannot be easily
eliminated either by using (G)ARCH filtering, or by using a bandwidth that
decreases with the sample size. To avoid this problem, in the next section we suggest
a new test statistic for which a consistent test is obtained as e tends to zero at the
appropriate rate. The idea is to measure the dependence between X and Z given
Y ¼ yi locally for each yi. By allowing for the bandwidth to decrease with the sample
size, variations in the local (fixed Y) conditional distributions of X and Z given Y are
automatically taken into account by the test statistic.
4. A modified test statistic

In comparing Eqs. (1b) and (8) it can be noticed that although (1b) holds point-
wise for any triple ðx; y; zÞ in the support of f X ;Y ;Zðx; y; zÞ, (8) contains separate
averages for the nominator and the denominator of (1b), which do not respect the
fact that the y-values on the rhs of (1b) should be identical. Eq. (1b) holds point-wise.
Therefore, rather than (8), the null hypothesis implies

qg � E
f X ;Y ;ZðX ;Y ;ZÞ

f Y ðY Þ
�

f X ;Y ðX ;Y Þ

f Y ðY Þ

f Y ;ZðY ;ZÞ

f Y ðY Þ

� �
gðX ;Y ;ZÞ

� �
¼ 0,

where gðx; y; zÞ is a positive weight function. Under the null hypothesis the term
within the round brackets vanishes, so that the expectation is zero. Although qg is
not positive definite, a one-sided test, rejecting when its estimated value is too large,
in practice is often found to have larger power than a two-sided test. In tests for
serial dependence Skaug and Tjøstheim (1993) report good performance of a closely
related unconditional test statistic (their dependence measure I4 is an unconditional
version of our term in round brackets).

We have considered several possible choices of the weight function g, being
(i) g1ðx; y; zÞ ¼ f Y ðyÞ, (ii) g2ðx; y; zÞ ¼ f 2

Y ðyÞ and (iii) g3ðx; y; zÞ ¼ f Y ðyÞ=f X ;Y ðx; yÞ.
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Monte Carlo simulations using the stationary bootstrap (Politis and Romano, 1994)
indicated that g1 and g2 behave similarly and are more stable than g3. We will focus on
g2 in this paper, as its main advantage over g1 is that the corresponding estimator has
a representation as a U-statistic, allowing the asymptotic distribution to be derived
analytically for weakly dependent data, thus eliminating the need of a computationally
more requiring bootstrap procedure. For the choice gðx; y; zÞ ¼ f 2

Y ðyÞ, we refer to the
corresponding functional simply as q:

q ¼ E½f X ;Y ;ZðX ;Y ;ZÞf Y ðY Þ � f X ;Y ðX ;Y Þf Y ;ZðY ;ZÞ�.

A natural estimator of q based on indicator functions is

TnðeÞ ¼
ð2eÞ�dX�2dY�dZ

nðn� 1Þðn� 2Þ

X
i

X
k;kai

X
j;jai

ðIXYZ
ik IY

ij � IXY
ik IYZ

ij Þ

" #
,

where IW
ij ¼ IðkW i �W jkoeÞ. Note that the terms with k ¼ j need not be excluded

explicitly as these each contribute zero to the test statistic. The test statistic can be
interpreted as an average over local BDS test statistics (see Brock et al., 1996), for the
conditional distribution of X and Z, given Y ¼ yi.

If we denote local density estimators of a dW -variate random vector W at W i by

bf W ðW iÞ ¼
ð2eÞ�dW

n� 1

X
j;jai

IW
ij ,

the test statistic simplifies to

TnðeÞ ¼
ðn� 1Þ

nðn� 2Þ

X
i

ðbf X ;Y ;ZðX i;Y i;ZiÞ
bf Y ðY iÞ �

bf X ;Y ðX i;Y iÞ
bf Y ;ZðY i;ZiÞÞ.

For an appropriate sequence en of bandwidth values these estimators are consistent
and the test statistic consist of a weighted average of local contributionsbf X ;Y ;Zðx; y; zÞbf Y ðyÞ �

bf X ;Y ðx; yÞbf Y ;Zðy; zÞ which tend to zero in probability under
the null hypothesis.

In A.1, using the approach proposed by Powell and Stoker (1996), we show that
for dX ¼ dY ¼ dZ ¼ 1 the test is consistent if we let the bandwidth depend on the
sample size as

en ¼ Cn�b (10)

for any positive constant C and b 2 ð1
4
; 1
3
Þ. In that case the test statistic is

asymptotically normally distributed in the absence of dependence between the
vectors W i. Under suitable mixing conditions (Denker and Keller, 1983) this can be
extended to a time series context provided that covariances between the local density
estimators are taken into account, giving:

Theorem 1. For a sequence of bandwidths en given by (10) with C40 and b 2 ð1
4
; 1
3
Þ the

test statistic Tn satisfiesffiffiffi
n
p ðTnðenÞ � qÞ

Sn

�!
d

Nð0; 1Þ.
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In A.1 the asymptotic normality of Tn is shown under a decreasing bandwidth,
while A.3 considers the autocorrelation robust estimation of the asymptotic variance
s2 by S2

n.

4.1. Bandwidth choice

In the typical case where the local bias tends to zero at the rate e2 as in Condition 1
in A.1, the bandwidth choice which is optimal in that it asymptotically gives the
estimator Tn with the smallest mean squared error (MSE) is given by

e�n ¼ C�n�2=7

with

C� ¼
18 � 3q2

4ðE½sðW Þ�Þ2

� �1=7

(11)

as derived in Appendix A.2.
To gain some insights into the order of magnitude of C� it is helpful to calculate its

value for some processes. Here we consider the ARCH process given in (3). The
optimal C-value derived in the appendix is analytically hard to track since it involves
the marginal distribution of the process. However, we can derive an approximate
optimal value of C analytically by ignoring the deviation from normality of Y (an
assumption which is reasonable for small a). Taking Y�Nð0; 1Þ and X ;Z independent
and Nð0; 1þ aY 2Þ conditional on Y, we find

q2 ¼
e2=aerfcð

ffiffiffiffiffiffiffiffi
2=a

p
Þ

1152p2
ffiffiffi
a
p , (12)

where erfcðsÞ ¼ 1� erfðsÞ and

E½sðW Þ� ¼

ffiffiffiffiffiffiffiffiffiffi
6a=p

p
ð3þ aÞ þ ðaða� 6Þ � 9Þe3=ð2aÞerfcð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð2aÞ

p
Þ

768
ffiffiffi
2
p

a3=2p3=2
. (13)

To investigate the behaviour of the bandwidth for small a, one may use the fact
that

q2 ¼
1

1152
ffiffiffi
2
p

p3=2
þ oðaÞ and E½sðW Þ� ¼ a2 1

288
ffiffiffi
3
p

p2
þ oðaÞ

� �
.

This suggests that as a tends to zero the (asymptotically) optimal bandwidth diverges
at the rate a�4=7. This is consistent with the fact that larger bandwidths are optimal
for a smaller correlation between the conditional concentrations of X and Z given Y.

The optimal bandwidth for (G)ARCH filtered data depends on the correlation of
the conditional concentrations of X and Z given Y after filtering, which may depend
strongly on the underlying data generating process. However, the consistency of the
test does not require filtering prior to testing, and it is possible to obtain a rough
indication of the optimal bandwidth for raw returns. Since the covariance between
conditional concentrations for bivariate financial time series are mainly due to
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ARCH/GARCH effects, Eqs. (12) and (13) can be used together with an estimate of
the ARCH coefficient a to obtain a rough indication of the optimal constant C� for
applications to unfiltered financial returns data. To provide a feel for the order of
magnitude: for a ¼ 0:4 one finds C� ’ 8. Note that this value is asymptotically
optimal and may lead to unrealistically large bandwidths for small n. In applications
we therefore truncate the bandwidth by taking

en ¼ maxðCn�2=7; 1:5Þ. (14)

4.2. Simulations

We use numerical simulations to investigate the behaviour of the proposed Tn test
with the shrinking bandwidth given by (14). As the underlying process for the
simulations we choose the process (3) considered before, a bivariate conditional
heteroskedastic process with lag one dependence. The interest in this process is
stipulated by its relevance to econometrics and financial time series. The null
hypothesis that fX tg is not Granger causing fY tg is satisfied.

Table 1 reports the Tn test rejection rates (both size and power) for increasing
series length n with n-dependent bandwidths en given by (10), for a nominal size of
0:05. The size computations were based on the ARCH process (3) with coefficients
c ¼ 1, a ¼ 0:4. For b we used the theoretically optimal rate of 2

7
, and we chose

C ¼ 8:62 which empirically turned out to give fast convergence of the size to the
nominal value 0:05. This C-value is close to the approximate optimal asymptotic
value C� ’ 8 for a ¼ 0:4 reported above.

To compute the power we took the same process and reversed the roles of fX tg

and fY tg, so that the relation tested became: fY tg is not Granger causing fX tg. For
the power calculations the coefficient a was reduced to 0:1 to make the simulations
more informative (for higher a the power was one in nearly all cases). The power of
the test increases with n, in accordance with the consistency of the test under the
decreasing bandwidth procedure.

To provide some guidance for choosing critical p-values in practice for small
sample sizes, Fig. 2 shows some size – size plots for small n ranging over nominal
sizes between 0 and 0:15. Finally, we present some simulations for lags lX ¼ lY larger
than one, since these are used often for the HJ test. In the applications presented in
the next section we compare both tests for larger values of lX and lY as well, and to
Table 1

Observed rejection rates (size and power) of the Tn test for bivariate ARCH process (3) as a function of the

time series length n and decreasing bandwidth e according to (14) (nominal size 0:05)

n 100 200 500 1 000 2 000 5 000 10 000 20 000 60 000

e 1.50 1.50 1.50 1.20 1.00 0.76 0.62 0.51 0.37

Size 0.022 0.033 0.052 0.052 0.051 0.050 0.050 0.052 0.053

Power 0.073 0.155 0.411 0.661 0.900 0.998 1.000 1.000 1.000

Number of realizations: 10 000 for no60 000, and 3 000 for n ¼ 60 000.
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Fig. 2. Size – size plot of Tn test for process (3) with shrinking bandwidth for time series lengths n ¼ 100

(solid line), 200 (dashed line), 500 (long-dashed line). The number of realizations is 10 000. The dotted line

along the diagonal represents the ideal situation where the actual size and the nominal size coincide.
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motivate this we should check if the empirical size of our new test does not exceed the
nominal size for larger lags.

Table 2 gives the empirical rejection rates for the bivariate ARCH process (3),
again with c ¼ 1 and a ¼ 0:4, under the null hypothesis (that is, testing fX tg Granger
causes fY tg) for lag lengths lX ¼ lY ranging from 1 to 5. The results indicate that the
rejection rate decreases with lX ¼ lY , and hence that the Tn test is progressively
conservative for increasing lag lengths, so that the risk of rejecting under the null
becomes small.
5. Applications

We consider an application to daily volume and returns data for the Standard and
Poor’s 500 index in the period between January 1950 and December 1990. We have
deliberately chosen this period to roughly correspond to the period for which
Hiemstra and Jones (1994) found strong evidence for volume Granger-causing
returns (1947–1990) for the Dow Jones index. To keep our results comparable with
those of Hiemstra and Jones, we closely followed their procedure. That is, we
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Table 2

Observed rejection rates (empirical size) of Tn test for bivariate ARCH process (3) as a function of number

of lags lX ¼ lY for time series length n ¼ 1 000 and n ¼ 10 000 with optimal bandwidth e ¼ 1:2 and

e ¼ 0:62, respectively (nominal size 0.05, number of realizations 10 000)

lX ¼ lY n ¼ 1 000 n ¼ 10 000

1 0.0517 0.0502

2 0.0391 0.0316

3 0.0318 0.0197

4 0.0243 0.0112

5 0.0187 0.0099
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adjusted for day-of-the-week and month-of-the-year effects on returns and
percentage volume changes, using a two-step procedure in which we first adjust
for effects in the mean, and subsequently in the variance. Calendar adjusted,
standardized returns and percentage volume change data were used to estimate a
linear bivariate VAR model, the residuals of which are considered in the application
below.

We applied the HJ and Tn test to the VAR residuals, before as well as after
EGARCH(1,1) filtering the VAR residuals of the returns data.

Table 3 shows the resulting T-values for the HJ and Tn test in both directions, for
lX ¼ lY ¼ 1; . . . ; 8 and for two different values of e: 1:5, the value used by Hiemstra
and Jones (1994) for the Dow Jones data, and 0:6, which is roughly the optimal value
(e� ’ 0:57) we found from Eqs. (11)–(13) for the ARCH coefficient a, estimated from
the data as 0:27.

The results obtained with both tests strongly indicate evidence for returns affecting
future volume changes, for nearly all lags and both bandwidths. Only for large
values of the lags lX ¼ lY the evidence is somewhat weaker. Although both tests
point in the same direction, when comparing the overall results for equal bandwidths
and lags lX ¼ lY the T-values are somewhat smaller for the Tn test than for the HJ
test. As argued in the previous sections, the HJ test may be inconsistent due to a bias
which cannot be removed simply by choosing a smaller bandwidth. To investigate
the possible effects of this bias one should contrast the HJ test with our new test with
an appropriately scaled bandwidth, which we have shown to be consistent
asymptotically. That is, at least for the unfiltered data, one should actually compare
the HJ test for e ¼ 1:5 with the Tn test for the adaptive bandwidth 0:6. In that case
the table shows even larger differences between the T-values of the HJ test and
the Tn test.

For the other causal direction – volume changes affecting future returns – the
different results obtained for the HJ test with e ¼ 1:5 and the Tn test with e ¼ 0:6
for the filtered data is large enough to make a difference for obtaining significance at
the 5% and 1% nominal level for several lags. Overall, the evidence for volume
changes affecting future returns, although still present after filtering for lag
lX ¼ lY ¼ 2 and arguably 3, is much weaker for Tn with e ¼ 0:6 than for the HJ
test with e ¼ 1:5.
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Table 3

T-ratios for the S&P500 returns and volume data. Results are shown for the HJ test and Tn for bandwidth

values of 1:5, the value used by Hiemstra and Jones (1994) and 0:6, corresponding to the optimal

bandwidth for Tn (based on an estimated ARCH parameter 0:27)

lX ¼ lY Returns) volume Volume) returns

e ¼ 1:5 e ¼ 0:6 e ¼ 1:5 e ¼ 0:6

HJ T2 HJ T2 HJ T2 HJ T2

Before filtering

1 9.476�� 9.415�� 10.298�� 8.850�� 5.351�� 5.106�� 5.736�� 4.893��

2 10.989�� 11.076�� 10.616�� 8.182�� 6.671�� 6.447�� 6.818�� 5.396��

3 10.909�� 10.662�� 9.112�� 6.425�� 6.026�� 5.683�� 5.717�� 3.948��

4 10.758�� 9.823�� 7.934�� 5.121�� 6.029�� 5.552�� 4.692�� 2.887��

5 10.118�� 8.856�� 5.821�� 3.540�� 5.695�� 5.191�� 2.837�� 1.234

6 9.428�� 7.903�� 4.391�� 2.603�� 5.935�� 5.338�� 3.314�� 1.604

7 8.959�� 7.4215�� 3.102�� 2.085� 5.194�� 4.706�� 1.327 0.248

8 8.494�� 6.577�� 1.649� 0.701 4.484�� 4.085�� 0.418 0.567

After EGARCH filtering

1 7.461�� 7.429�� 7.946�� 6.781�� 1.532 1.481 1.628 1.529

2 8.444�� 8.600�� 8.012�� 6.493�� 3.022�� 3.091�� 3.251�� 2.825��

3 7.537�� 7.788�� 6.381�� 5.109�� 1.894� 1.982� 2.534�� 2.023�

4 7.257�� 7.198�� 5.169�� 3.900�� 2.141� 2.225� 1.964� 0.989

5 6.125�� 6.107�� 2.686�� 2.023� 2.095� 2.142� 1.160 0.853

6 5.582�� 5.445�� 2.136� 1.477 2.969�� 2.965�� 1.411 1.129

7 5.028�� 4.873�� 1.192 0.532 2.278� 2.285� 1.414 0.943

8 4.495�� 4.249�� 0.779 0.253 1.754� 1.725� 0.398 0.860

The asterisks indicate significance at the 5% (*) and 1% (**) levels.
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In summary, our findings on the basis of the Standard and Poor’s data indicate
that the strong evidence for volume Granger-causing returns obtained with the HJ
test may be partly due to the bias we identified in the HJ test statistic. If the test is
performed with the consistent Tn statistic with a near-optimal bandwidth, for which
theory and simulations indicate that the actual size is close to nominal, the evidence
for volume Granger-causing returns tends to become weaker. Finally, since the
T-values can be seen to decrease for smaller e in most cases, the results also suggest
that, when in doubt, it is better to use a smaller bandwidth. Intuitively this is related
to the fact that it reduces the bias and increases the variance of the test statistic
relative to the bias, so that the risk of over-rejection becomes smaller.
6. Concluding remarks

Motivated by the fact that the HJ test can over-reject, as demonstrated in
simulations, our aim was to construct a new test for Granger non-causality. By
studying the HJ test analytically we found it to be biased even if the bandwidth tends
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to zero. Based on the analytic results, which indicated that the bias is caused by
covariances in conditional concentrations, we proposed a new test statistic Tn that
automatically takes the variation in concentrations into account.

By symmetrizing the new test statistic, we expressed it as a U-statistic for which we
developed asymptotic theory under bandwidth values that tend to zero with the
sample size at appropriate rates. The theory allowed us to derive the optimal rate as
well as the asymptotically optimal multiplicative factor for the bandwidth. For
ARCH type processes the optimal bandwidth can be expressed in terms of the
ARCH coefficient, which is useful for getting an indication of the order of magnitude
of the bandwidth to be used in practice for financial returns data. Simulations for the
new test confirmed that the size converges to the nominal size fast as the sample size
increases. Additional simulations indicated that the test becomes conservative for
larger lags taken into account by the test.

In an application to relative volume changes and returns for historic Standard and
Poor’s index data we found that some of the strong evidence for relative volume
changes Granger-causing returns obtained with the HJ test may be related to its bias,
since use of the new test, which is shown to be consistent, strongly weakens the
evidence against the null hypothesis. This result suggests that some of the rejections
of the Granger non-causality hypothesis reported in the literature may be spurious.
Appendix A

A.1. Asymptotic distribution of Tn

The test statistic Tn can be written in terms of a U-statistic by symmetrization with
respect to the three different indices. This gives

TnðeÞ ¼
1

nðn� 1Þðn� 2Þ

X
iajakai

KðW i;W j ;W kÞ

with W i ¼ ðX
lX

i ;Y
lY

i ;ZiÞ, i ¼ 1; . . . ; n, and

KðW i;W j ;W kÞ ¼
ð2eÞ�dX�2dY�dZ

6

ðIXYZ
ik IY

ij � IXY
ik IYZ

ij Þ þ ðI
XYZ
ij IY

ik � IXY
ij IYZ

ik Þþ

ðIXYZ
jk IY

ji � IXY
jk IYZ

ji Þ þ ðI
XYZ
ji IY

jk � IXY
ji IYZ

jk Þþ

ðIXYZ
ki IY

kj � IXY
ki IYZ

kj Þ þ ðI
XYZ
kj IY

ki � IXY
kj IYZ

ki Þ

0BB@
1CCA.

For a given bandwidth e the test statistic Tn is a third order U-statistic. To develop
asymptotic distribution theory under a shrinking bandwidth en we closely follow the
methodology proposed by Powell and Stoker (1996). Although their main goal was
to derive MSE (mean squared error) optimal bandwidths for point estimators, it
turns out that similar considerations can be used to derive rates for the bandwidth
that provide consistency and asymptotic normality of Tn. We first treat the
analytically simplest case of a random sample fW ig

n
i¼1, and deal with dependence

later.
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Because Tn is a U-statistic, its finite sample variance is given by (see e.g. Serfling,
1980)

VarðTnÞ ¼
9

n
z1 þ

18

n2
z2 þ

6

n3
z3 þ o

z1
n
þ

z2
n2
þ

z3
n3

� �
,

where

z1 ¼ CovðKðW 1;W 2;W 3Þ;KðW 1;W
0
2;W

0
3ÞÞ ¼ VarðK1ðW 1ÞÞ,

z2 ¼ CovðKðW 1;W 2;W 3Þ;KðW 1;W 2;W
0
3Þ ¼ VarðK2ðW 1;W 2ÞÞ,

z3 ¼ VarðKðW 1;W 2;W 3ÞÞ,

with W 1;W 2;W 3;W
0
2 and W 0

3 all independent and identically distributed according
to W . The functions K1ðw1Þ and K2ðw1;w2Þ are given by K1ðw1Þ ¼ E½Kðw1;W 2;W 3Þ�

and K2ðw1;w2Þ ¼ E½Kðw1;w2;W 3Þ�.
Following Powell and Stoker (1996), define rðw; eÞ ¼ K1ðw; eÞ and r0ðwÞ ¼

lime!0rðw; eÞ. It can be verified that

r0ðwÞ ¼
2

3
f X ;Y ;Zðx; y; zÞ f Y ðyÞ þ

1

3
f 2

Y ðyÞHX ;ZðyÞ �
1

3
f X ;Y ðx; yÞ f Y ;Zðy; zÞ

�
1

3
f Y ;Zðy; zÞ f Y ðyÞ

Z
f X ;Y ðx

0; yÞ f X ;Y ;Zðx
0; y; zÞdx0

�
1

3
f X ;Y ðx; yÞ f Y ðyÞ

Z
f Y ;Zðy; z

0Þ f X ;Y ;Zðx; y; z
0Þdz0.

For example, the fourth term on the right-hand side follows from

ð2eÞ�dX�2dY�dZEW k
½IXY

jk IYZ
ji �

¼

Z
f X ;Y ðxk; ykÞdxj ;yj

ðxk; ykÞI
YZ
ij dxk dykð2eÞ

�dY�dZ þ oð1Þ

¼ f X ;Y ðxj ; yjÞI
YZ
ij ð2eÞ

�dY�dZ þ oð1Þ,

where dv0 ðvÞ stands for the Kronecker delta function, which can be thought of as the
limiting pdf of a random variable with all mass at the point v0, and

ð2eÞ�dY�dZEW j
½ f X ;Y ðxj ; yjÞI

YZ
ij �

¼

Z
f X ;Y ðxj ; yjÞdyj ;zj

ðyi; ziÞ f X ;Y ;Zðxj ; yj ; zjÞdxj dyj dzj þ oð1Þ

¼

Z
f X ;Y ðxj ; yiÞ f X ;Y ;Zðxj ; yi; ziÞdxj þ oð1Þ.

Adapting from Powell and Stoker (1996), we assume the following three
conditions:

Condition 1 (Rate of convergence of pointwise bias of rðwi; eÞ). The functions rðwi; eÞ
satisfy

rðwi; eÞ � r0ðwiÞ ¼ sðwiÞea þ s�ðwi; eÞ,

for some a40, and the remainder term s�ð�Þ satisfies Eks�ðW i; hÞk
2 ¼ oðh2a

Þ.
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For our kernel the bias in each of the contributions to the kernel converges to zero
at rate a ¼ 2. Therefore Condition 1 holds with a ¼ 2. In fact, it might be possible to
replace the local bias Condition 1 by a global version, involving E½rðW i; eÞ � r0ðW iÞ�,
which may tend to zero faster than the local bias. However, for our purposes the
local assumption with a ¼ 2 suffices.

Condition 2 (Series expansion for second moment of K2ðW 1;W 2Þ). The function

K2ðw1;w2Þ satisfies

E½ðK2ðW 1;W 2ÞÞ
2
� ¼ q2e

�g þ q�2ðeÞ

for some g40, where the remainder term q�2 satisfies ðq�2ðeÞÞ
2
¼ oðe�gÞ.

This is a weaker version of Powell and Stoker’s (1996) Assumption 2, which
required a series expansion locally. For our purposes the weaker assumption suffices,
since Tn is a global functional of the distribution of W .

Condition 3 (Series expansion for second moment of KðW 1;W 2;W 3Þ). The function

Kðw1;w2;w3Þ satisfies

E½ðKðW 1;W 2;W 3ÞÞ
2
� ¼ q3e

�d þ q�3ðeÞ

for some d40, where the remainder term q�3 satisfies ðq�3ðeÞÞ
2
¼ oðe�dÞ.

For our kernel Condition 3 is satisfied with d ¼ dX þ 2dY þ dZ, since none of the
contributions to the kernel have a variance increasing faster in e than at the rate
edXþ2dYþdZ . Finding an appropriate value for g in Condition 2 is somewhat more
involved. We examine the rate at which each of the contributions to the kernel
function depend on e. For example, for the term ð2eÞ�dX�2dY�dZ IXYZ

ik IY
ij we find

EW k
½ð2eÞ�dX�2dY�dZ IXYZ

ik IY
ij � ¼ ð2eÞ

�dY f X ;Y ;ZðX i;Y i;ZiÞI
Y
ij þ oð1Þ from which one

obtains

E½ðð2eÞ�dY EW k
½IXYZ

ik IY
ij �Þ

2
� ¼ ð2eÞ�2dYE½ f 2

X ;Y ;ZðX i;Y i;ZiÞI
Y
ij þ oðedY Þ�

¼ ð2eÞ�dY E½ f 2
X ;Y ;ZðX i;Y i;ZiÞ f Y ðY iÞ� þ oðe�dY Þ.

Proceeding in this way for each of the terms in the kernel, one finds that the dominant

contributions are given by the terms ð2eÞ�dX�2dY�dZ IXYZ
ij IY

ik and ð2eÞ�dX�2dY�dZ IXYZ
ji IY

jk .

For the first of these one finds EW k
½ð2eÞ�dX�2dY�dZ IXYZ

ij IY
ik � ¼ ð2eÞ

�dX�dY�dZ IXYZ
ij

f Y ðY iÞ þ oð1Þ, giving

E½ðð2eÞ�dX�dY�dZEW k
½IXYZ

ij IY
ik�Þ

2
�

¼ ð2eÞ�2dX�2dY�2dZE½IXYZ
ij f 2

Y ðY iÞ� þ oðe�dX�dY�dZ Þ

¼ ð2eÞ�dX�dY�dZE½ f X ;Y ;ZðX i;Y i;ZiÞ f
2
Y ðY iÞ� þ oðe�dX�dY�dZ Þ.

All other terms increase with vanishing e slower, which demonstrates that Condition

2 holds with g ¼ dX þ dY þ dZ and a constant q2 given by q2 ¼
4
36� 2�dX�dY�dZ

E½ f X ;Y ;ZðX i;Y i;ZiÞ f
2
Y ðY iÞ�. The factor 4 enters due to the fact that there are
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two terms, EW k
½ð2eÞ�dX�2dY�dZ IXYZ

ij IY
ik� and EW k

½ð2eÞ�dX�2dY�dZ IXYZ
ij IY

jk�, which are

asymptotically perfectly correlated if e tends to zero sufficiently slowly with the
sample size.

It follows from Condition 1 that

Var½rðW i; eÞ� ¼ Var½r0ðW iÞ� þ C0ea þ oðeaÞ,

where C0 ¼ 2Cov½r0ðW iÞ; sðW iÞ�. We can thus express the mean squared error
of Tn as

MSE½Tn� ¼ ðE½sðW iÞ�Þ
2e2a þ

9

n
C0ea þ

9

n
Var½r0ðW iÞ� þ

18

n2
q2e
�g þ

6

n3
q3e
�d.

(15)

Tn is asymptotically Nð0;s2=nÞ distributed with s2 ¼ 9Var½r0ðW iÞ�, provided that
each of the e-dependent terms in the MSE of Tn are oðn�1Þ. If we let e�n�b, this
implies the following four conditions hold:

�2abo� 1; �abo0; gbo1; dbo2.

The first two of these imply b41=2a ¼ 1
4
and b40, respectively, while the last

two imply bo1=g ¼ 1=ðdX þ dY þ dZÞ and bo2=d ¼ 2=ðdX þ 2dY þ dZÞ. Because
1=ðdX þ dY þ dZÞo2=ðdX þ 2dY þ dZÞ, the conditions can be summarized as:
1
4
obo1=ðdX þ dY þ dZÞ. Therefore, for the case dX ¼ dY ¼ dZ ¼ 1, and a sequence
of bandwidths en�n�b for some b 2 ð1

4
; 1
3
Þ, the test statistic is asymptotically normal:ffiffiffi

n
p TnðenÞ � q

s
�!
d

Nð0; 1Þ

with s2 ¼ 9Var½r0ðW iÞ�.
Note that it might also be possible to derive appropriate values for the rate b for

dX þ dY þ dZ43, but only provided that the overall bias E½sðW iÞ� tends to zero
faster than e2.
A.2. Optimal bandwidth

The MSE optimal bandwidth balances the dominating squared bias and variance
terms (the first and fourth terms on the right-hand side of Eq. (15)), the other
bandwidth dependent terms being of smaller order. The optimal bandwidth which
asymptotically minimizes the sum of these terms is given by

e� ¼
18 � 3q2

4ðE½sðW Þ�Þ2

� �1=7

n�2=7. (16)

To guide the choice of the multiplicative factor C in e ¼ Cn�2=7, it is illustrative to
examine the optimal choice C� ¼ 18 � 3q2=4ðE½sðW Þ�Þ

2
� �1=7

in specific cases. Above
an expression for q2 was found already in terms of the joint density of W . A similar
expression for E½sðW iÞ� can be found by using local Taylor expansions of the density
of w, locally near wk. As each of the six terms in Tn have the same expectation,
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to determine the bias we consider the first of these only:

ð2eÞ�dX�2dY�dZ ðIXYZ
ik IY

ij � IXY
ik IYZ

ij Þ.

Taking averages over j and k for a fixed vector wi leads to an expression involving
plug-in estimators of local densities

ð2eÞ�dX�2dY�dZ

ðn� 1Þðn� 2Þ

X
jai

X
kai; j

ðIXYZ
ik IY

ij � IXY
ik IYZ

ij Þ

¼ bf X ;Y ;Zðxi; yi; ziÞ
bf Y ðyiÞ �

bf X ;Y ðxi; yiÞ
bf Y ;Zðyi; ziÞ.

An expression for the local bias can be obtained by examining the bias of each of the
estimated densities in this expression.

For a general density f V ðvÞ of a random vector V ¼ ðV1; . . . ;V mÞ, of which a
sample fV ig

n
i¼1 is available, the bias of bf ð~vÞ ¼ ð2eÞm1

n

Pn
i¼1IðkV i � ~vkpeÞ locally at ~v

can be found from a Taylor expansion of the density of f V ðvÞ around ~v:

f ðvÞ � f ð~vÞ ¼
Xm

i¼1

aið~vÞðv
i � ~viÞ þ

1

2

Xm

i¼1

Xm

j¼1

bijð~vÞðv
i � ~viÞðv j � ~v jÞ þOðkv� ~vk3Þ,

with aið~vÞ ¼ q=qvijv¼~v f ðvÞ and bijð~vÞ ¼ q2=qviqv jjv¼~v f ðvÞ. The local bias of bf ð~vÞ is
given by

E½bf ð~vÞ� � f ð~vÞ

¼
1

2
ð2eÞ�m

Xm

i¼1

Xm

j¼1

Z ~v1þe

~v1�e
� � �

Z ~vmþe

~vm�e
bijð~vÞðv

i � ~viÞðv j � ~v jÞdv1 . . . dvm þ oðe2Þ

¼
1

2
ð2eÞ�1

Xm

i¼1

Z ~viþe

~vi�e
biið~vÞðv

i � ~viÞ
2dvi þ oðe2Þ

¼ ð2eÞ�1
1

3
e3
Xm

i¼1

biið~vÞ þ oðe2Þ

¼
1

6
e2r2f ð~vÞ þ oðe2Þ.

Up to leading order in e, the bias of products of estimated densities follows

from identities such as E½bf V
bf W � ¼ E½ð f V þ ð

bf V � f V ÞÞð f W þ ð
bf W � f W ÞÞ� ¼

f V f Wþ f VE½
bf W � f W � þ f WE½bf V � f V � þ oðe2Þ. In this way the local bias ofbf X ;Y ;Zðxi; yi; ziÞ
bf Y ðyiÞ �

bf X ;Y ðxi; yiÞ
bf Y ;Zðyi; ziÞ can be written as

rðwi; eÞ � r0ðwiÞ ¼
1
6
e2½ f Y ðyiÞr

2 f X ;Y ;Zðxi; yi; ziÞ � f X ;Y ðxi; yiÞr
2 f Y ;Zðyi; ziÞ

þ f X ;Y ;Zðxi; yi; ziÞr
2 f Y ðyiÞ � f Y ;Zðyi; ziÞr

2 f X ;Y ðxi; yiÞ� þ oðe2Þ,

which shows that Condition 1 holds for a ¼ 2 and sðwÞ equal to one-sixth of
the term between square brackets. Suppressing the subscripts for convenience, one
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may write

sðwÞ ¼ 1
6

f ðyÞ½r2
x f ðx; y; zÞ þ r2

y f ðx; y; zÞ þ r2
z f ðx; y; zÞ�

� 1
6

f ðx; yÞ½r2
y f ðy; zÞ þ r2

z f ðy; zÞ�

� 1
6

f ðy; zÞ½r2
x f ðx; yÞ þ r2

y f ðx; yÞ�

þ 1
6

f ðx; y; zÞr2
y f ðyÞ,

where r2
x ¼

PdX

j¼1
q2

qx2
j

and r2
y and r2

z are defined analogously. Upon taking expecta-

tions with respect to W one obtains the coefficient of the leading bias term E½sðW Þ�,
which enters expression (16) for the optimal bandwidth.

Under the null hypothesis the leading bias term can be simplified by rewriting it in
terms of conditional densities:

sðwÞ ¼ 1
6

f ðyÞ f ðx; zÞr2
y f ðyjx; zÞ � 1

6
f ðx; yÞ f ðzÞr2

y f ðyjzÞ

� 1
6

f ðy; zÞ f ðxÞr2
y f ðyjxÞ þ 1

6
f ðx; y; zÞr2

y f ðyÞ

þ 1
6

f ðyÞ f ðy; zÞr2
x½ f ðxjy; zÞ � f ðxjyÞ�

þ 1
6

f ðx; yÞ f ðyÞr2
z ½f ðzjx; yÞ � f ðzjyÞ�.

The terms within square brackets are zero if the null hypothesis holds. The remaining
terms can be expressed as

sðwÞ ¼ 1
6
r2

y½ f ðyÞ f ðx; y; zÞ � f ðx; yÞ f ðy; zÞ�

� 1
3ry f ðyÞ � ry f ðx; y; zÞ þ 1

3ry f ðx; yÞ � ry f ðy; zÞ,

where ry is the gradient operator, and the dot denotes the usual vector inner pro-
duct. Again the term in square brackets vanishes under the null, and the remaining
terms reduce to

sðwÞ ¼ 1
3

f 2
ðyÞryf ðxjyÞ � ryf ðzjyÞ.

Finally, the following expression for E½sðW Þ� under the null is obtained by taking
expectations of this local expression with respect to the random vector W :

E½sðW Þ� ¼ 1
3
EY ½ f

2
Y ðY ÞryHX ðY Þ � ryHZðY Þ�.
A.3. Dependence

According to Denker and Keller (1983), for weakly dependent data Tn is still
asymptotically Nðq;s2=nÞ distributed, provided that the covariance among the
r0ðW iÞ is taken into account in the asymptotic variance s2:

s2 ¼ 9 Varðr0ðW 1ÞÞ þ 2
X
kX2

Covðr0ðW 1Þ; r0ðW 1þkÞÞ

" #
.



ARTICLE IN PRESS

C. Diks, V. Panchenko / Journal of Economic Dynamics & Control 30 (2006) 1647–16691668
If we estimate r0ðW iÞ as

br0ðW iÞ ¼
ð2eÞ�dX�2dY�dZ

ðn� 1Þðn� 2Þ

X
j;jai

X
k;kai

KðW i;W j ;W kÞ,

an autocorrelation consistent estimator for s2 is given by (Newey and West, 1987)

S2
n ¼

XK

k¼1

Rkok,

where Rk ¼ ð1=ðn� kÞÞ
Pn�k

i¼1 ðbr0ðW iÞ � TnÞðbr0ðW iþkÞ � TnÞ is the sample autoco-
variance function of br0ðW iÞ, and ok a decreasing weight function as in Hiemstra
and Jones (1994). It follows thatffiffiffi

n
p ðTn � qÞ

Sn

�!
d

Nð0; 1Þ,

which proves Theorem 1.
Although Tn is a third order U-statistic, both Tn and the asymptotic variance S2

n

can be determined in Oðn2Þ computational time. For each i, the calculation ofbf W ðW iÞ and the IW
ij is OðnÞ. A second OðnÞ calculation then provides br0ðW iÞ through

br0ðW iÞ ¼
1

3
ðbf X ;Y ;ZðX i;Y i;ZiÞ

bf Y ðY iÞ �
bf X ;Y ðX i;Y iÞ

bf Y ;ZðY i;ZiÞÞ

þ
1

3n

X
j

bf X ;Y ;ZðX j ;Y j ;ZjÞI
Y
ij ð2eÞ

�dY þ IXYZ
ij

bf Y ðY jÞð2eÞ
�dX�dY�dZ

�
�bf X ;Y ðX j ;Y jÞI

YZ
ij ð2eÞ

�dY�dZ � IXY
ij
bf Y ;ZðY j ;ZjÞð2eÞ

�dX�dY

	
,

a result which follows from straightforward calculation from the definition ofbr0ðW iÞ. C-code can be obtained from the authors upon request.
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