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Abstract The use of nonlinear dynamic models in economics and finance has
expanded rapidly in the last two decades. Numerical simulation is crucial in the investi-
gation of nonlinear systems.E&FChaos is an easy-to-use and freely available software
package for simulation of nonlinear dynamic models to investigate stability of steady
states and the presence of periodic orbits and chaos by standard numerical simulation
techniques such as time series, phase plots, bifurcation diagrams, Lyapunov exponent
plots, basin boundary plots and graphical analysis. The package contains many well-
known nonlinear models, including applications in economics and finance, and is easy
to use for non-specialists. New models and extensions or variations are easy to imple-
ment within the software package without the use of a compiler or other software.
The software is demonstrated by investigating the dynamical behavior of some simple
examples of the familiar cobweb model, including an extension with heterogeneous
agents and asynchronous updating of strategies. Simulations with the E&F Chaos
software quickly provide information about local and global dynamics and easily lead
to challenging questions for further mathematical analysis.
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1 Introduction

In the last two decades the theory of nonlinear dynamical systems has flourished, and
a wide range of mathematical tools for the analysis of nonlinear differential equa-
tions as well as nonlinear maps have become available, see e.g. textbook treatments
such as Guckenheimer and Holmes (1983), Grandmont (1988), Arrowsmith and Place
(1995),Mira et al. (1996), andMedio andLines (2001). Nonlinear dynamics tools have
been widely applied in economics and finance, among others, through the work of
Grandmont (1985), Boldrin and Woodford (1990), Brock et al. (1991), Hommes
(1991), Medio (1992), Day (1994) and Rosser (2000). More recently, the bounded
rationality and interacting agents approach in economics and finance provides a natural
framework to modeling markets as nonlinear, adaptive systems, see e.g. the surveys of
Hommes (2006) and LeBaron (2006). Since nonlinear dynamical systems are difficult
to solve analytically, numerical analysis and simulations play a key role in the analysis
of nonlinear systems and its applications.
The purpose of this paper is to discuss the main features of theE&FChaos software

package with a menu-driven interface for simulation of nonlinear dynamical systems.
“E&F” stands for Economics and Finance, because the package contains a list of
benchmark applications in economics and finance. Many researchers and specialists
in the field have developed their own software for advanced numerical analysis of non-
linear systems. But specialized software is not always easy to use. E&F Chaos is easy
to use since it has been developed for use by non-specialists, students and researchers
in economics and finance who would like a quick start in applying standard simu-
lation tools for nonlinear dynamic models. The software program and source code
are freely available at http://www.feb.uva.nl/cendef and the numerical accuracy and
quality of graphics allow direct generation of publication quality output for teaching
and research. A convenient feature of the package is that new models can easily be
included as a text file, without the need of a compiler or additional software. Once a
new model has been included, basic tools such as time series, phase plots, bifurca-
tion diagrams and largest Lyapunov exponents plots become immediately available.
Simulation with E&F Chaos easily leads to challenging mathematical and economic
questions for further analysis.
The paper is organized as follows. Section 2 gives some background informa-

tion about the development of the E&F Chaos program and briefly discusses some
related software packages. The most important features of E&F Chaos are illus-
trated through simulation of economic examples in Sects. 3 and 4. Although the
software does include a number of nonlinear differential equation models, we restrict
our attention here to nonlinear difference equations, since most nonlinear applica-
tions in economics are in discrete time. Section 3 considers an example of a one-
dimensional (1-D) model, the cobweb model with adaptive expectations, whereas
Sect. 4 considers an example of a higher dimensional (4-D) model, the cobweb

123



E&F Chaos: A Software Package for Nonlinear Economic Dynamics 223

model with heterogeneous expectations. This section considers an extension of the
cobweb model with heterogeneous expectation rules of Brock and Hommes (1997),
to allow for asynchronous updating of strategies. The E&F Chaos software is used to
investigate how asynchronous updating affects the dynamical behavior. Both Sects. 3
and 4 are subdivided into subsections illustrating the key features, in particular the
options from the Plot menu, of the software. The paper ends with a short concluding
section.

2 About E&F Chaos and Related Software

The earliest version of the E&F Chaos software dates back to the early nineties,
when a DOS version programmed in Turbo Pascal was used in teaching of courses in
dynamical systems and nonlinear economic dynamics, both at the advanced bache-
lor and themasters level, at the economics department of theUniversity ofAmsterdam.
At the end of the nineties, a major revision of the software took place and a
Windows version with a graphical user interface was developed. Both the user inter-
face and the core routines for all calculations were programmed in Delphi 4.0.1 This
version has been around essentially unmodified since 1998, and was used in teaching
the aforementioned courses as well as NAKE Ph.D courses on nonlinear economic
dynamics attended by Ph.D students from all Dutch faculties of economics. Orig-
inally all (economic) models were hard-coded in Delphi Pascal. The advantage of
using a low-level programming language was the speed of the resulting executable
code, which could easily exceed that of more flexible interpreted languages (Basic,
Mathematica) by a factor of 10–100. This was important for computationally inten-
sive algorithms, such as creating bifurcation diagrams or determining basin bound-
aries of attractors. However, a clear disadvantage was that for every new model the
source code had to be extended after which the program needed to be re-compiled.
In practice this meant that it was not straightforward for students to analyze a new
model independently. They either needed to wait for implementation of the particu-
lar model by the developers, or develop and compile parts of new code themselves.
As a result, the old version was rather inflexible, and the number of ‘hard-wired’
models appearing in the program’s menu started to grow, apparently beyond any
bounds.
In this paper we give an overview of the functionality and implementation of the

latest version of the E&F Chaos package as of June 2007. With the advent of tech-
niques such as just-in-time compilation, scripting languages became available with
the flexibility of low-level code such as Pascal or C, while their speed is comparable
to that of compiled code. This allows one to specify the model code in such a scripting
language, and skip the cumbersome compilation step, practically without any loss of
speed. Since each model can then be specified in a text file that can be interpreted ‘on
the fly’ one may simply work with a model by loading it, so that the long menus can
be dispensed of easily. We have chosen for the open source scripting language LUA as

1 We are indebted to Remco Peters, who, together with Roy van der Weide, programmed the initial Delphi
code.
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it allows high flexibility as well as speed. A second recent addition is the replacement
of bitmap graphics by high-quality Encapsulated Postscript (EPS) figures. To this end
we use the gnuplot program (see Racine 2006). To prevent the user from having to
download and install gnuplot separately, and to avoid possible incompatibilities with
future versions of gnuplot, we have chosen to distribute the necessary gnuplot files
with E&F Chaos.

2.1 Comparison with Existing Software

Many packages are available for the simulation and analysis of dynamical systems.
Since it is beyond the scope of this paper to review all of them, we refer the inter-
ested reader to the dynamical systems web portal at http://www.dynamicalsystems.
org/sw/sw/, where users can choose their preferred package that best matches their
computational needs. One can distinguish many different types of simulation soft-
ware. Several dynamical systems software packages are implemented as toolboxes
for multi-purpose high-level programming environments such as Matlab, Octave,
S-Plus or R. These environments are suitable for simulating a single or a few time
series and generating high-level graphical output, for instance of phase plots of the
attractors. For more computationally intensive graphs, such as bifurcation diagrams
or basin boundaries, a lower level compiler-based programming environment such as
Pascal or C is more suitable. There are also several software packages available for
more advanced numerical analysis, such as computing stable and unstable manifolds
and computing bifurcation curves (so-called continuation software). Examples are
Dynamics 2 (Nusse and Yorke), DSTool (Guckenheimer, a.o.), Auto2000 (Doedel
et al. 2001) and Content (Kuznetsov). Some of the numerical procedures used in these
software packages are based on advanced mathematical results concerning numeri-
cal detection of manifolds (e.g. Nusse and Yorke 1998) and bifurcation curves (e.g.
Kuznetsov 1995).
The E&FChaos program is a stand-aloneWindows software package for the initial

numerical exploration of dynamical systems formulated by students or researchers.
In terms of functionality and implementation, E&F Chaos is perhaps most closely
related to the iDMC package developed by the universities of Udine and Ca’Foscari
of Venice as part of a teaching unit, which also includes a textbook containing many
examples and exercises (Medio and Lines 2001). Both iDMC andE&FChaos simulate
dynamical systems using the LUA language, inwhich the user specifies themodel. The
graphical user interface of iDMC is implemented in Java, which has the advantage of
being platform independent (a Windows as well as a Linux version are available), but
the user has to install the Java Runtime Environment as well.2 E&F Chaos and iDMC
share many functional features, but differ in the way the user specifies the details and
the way in which the results are presented.

E&FChaos provides the user with default choices for the parameters to be specified
for each of the methods, endorsing the philosophy to provide a quick initial analysis
of the dynamics of a specified model. To include a new model for simulations, the

2 E&F Chaos can be run under the Wine translation layer on Linux systems.
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user only has to specify the dynamics in the flexible LUA language, as a text file.
If desired, auxilary variables for which output (e.g. a time series) is required can be
defined and included in the specification. Prior analytic calculations, such as com-
putation of a Jacobian matrix, are not necessary. For example, in order to compute
the largest Lyapunov exponent E&F Chaos evaluates the Jacobian numerically from
the specified map, rather than from an analytic expression of the Jacobian matrix;
see Subsect. 4.5 for more details. To allow further processing of the data generated,
E&F Chaos allows the data represented in any graph to be written to file in plain
text format. E&F Chaos provides graphical output in a range of formats, including
bitmap, Windows Metafile and Enhanced Metafile. It is possible to generate publica-
tion quality output of graphs aswell, inwhich case gnuplotwill be called to generate an
Encapsulated Postscript (.EPS) file. To keep the style and details such as axes labels
of these high-quality graphs flexible, there is an option to save the gnuplot file as
well as a data file in plain text format, which can be edited and processed by gnuplot
later if desired. All figures in the current paper have been directly generated by E&F
Chaos.3

3 One-Dimensional Example

To illustrate simulation of a 1-D system, we consider a simple economic example, the
cobweb model with adaptive expectations. The classical cobweb model is a partial
equilibrium model describing price fluctuations of a non-storable consumption good.
There is a one period lag in production, so producers have to form price expectations
one period ahead. Demand, supply and market clearing are given by

D(pt ) = a − dpt , a ∈ R, d ≥ 0 (1)

Sλ(p
e
t ) = arctan(λpet ), λ > 0, (2)

D(pt ) = Sλ(p
e
t ). (3)

Demand D is a linearly decreasing function in the market price pt , with slope −b.
Following Chiarella (1988) and Hommes (1994), we consider a nonlinear, increasing,
S-shaped supply curve Sλ, where the parameter λ tunes the nonlinearity of the supply
curve.4
To close the model we have to specify how producers form price expectations. The

simplest case, studied in the thirties e.g. by Ezekiel (1938), assumes that producers

3 Encapsulated Postscript (EPS) files can be viewed and processed by many software packages, such
as Ghostview (http://pages.cs.wisc.edu/ghost/), GNU gv (http://www.gnu.org/software/gv/), and can be
imported by document typesetting software such as LaTeX.
4 We use the same specification as in Hommes (1994), with the inflection point of the supply curve chosen
as the origin. Negative values thus mean negative deviations from this inflection point.
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have naive expectations, that is, their prediction equals the last observed price pet =
pt−1. In his seminal paper Muth (1961) used the framework of the cobweb model
to introduce rational expectations, with the price forecast pe = p∗, where p∗ is the
price corresponding to the intersection point of demand and supply. Here we consider
the case of adaptive expectations, proposed by Nerlove (1958). In contrast to Nerlove
(1958), we have a non-linear, instead of a linear, supply curve. Adaptive expectations
are given by

pet = (1− w)pet−1 + wpt−1, 0 ≤ w ≤ 1, (4)

wherew is the expectations weight factor. The expected price is a weighted average of
yesterday’s expected and realized prices, or equivalently, the expected price is adapted
by a factor w in the direction of the most recent realization. A simple computation,
using (1–3) and (4), shows that the dynamics of expected prices becomes

pet = (1− w)pet−1 + w
a − arctan(λpet−1)

b
= fw,a,b,λ(p

e
t−1). (5)

Dynamics of (expected) prices in the cobweb model with adaptive expectations is
thus given by a 1-D system xt = fw,a,b,λ(xt−1) with four model parameters. We next
discuss how this model can be simulated in E&F Chaos.

3.1 Getting Started with E&F Chaos

After installing the software packageE&FChaos two directories are created: ‘gnuplot’
(containing all gnuplot files) and ‘Models’ (containing all model files). The models
are collected in three subdirectories, ‘Continuous’ and ‘Discrete’ (containing some
benchmark examples of nonlinear differential and difference equations, respectively),
and ‘My Models’, containing newly created models by the user. When running the
software, the E&F Chaoswindow appears, with an easy-to-use Windows menu struc-
ture. To simulate the model of this section, the user can use the File/LoadModel menu,
open the subdirectory ‘My Models’ and select the file ‘Cobweb Adaptive Expecta-
tions’ to run simulations. All menu/submenu items are also available as panel buttons
at the top of the E&F Chaos window.

3.2 Time Series

The most important menu in the E&F Chaos software is the Plot menu, where all
graphical plot submenus are collected, which will be illustrated throughout this paper.
Chiarella (1988) and Hommes (1991, 1994) have shown that the cobweb model with a
linear demand curve and a nonlinear, butmonotonic, supply curve can generate chaotic
fluctuations. Using the Time Series submenu, an example of a chaotic price series is
illustrated in Fig. 1. Each graphical window, such as the ‘Time Series’ window, has a
submenu ‘Edit’, which enables the user to change parameter values, the initial state,
the plot variable (only the expected price ‘x’ in this example), the number of points
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Fig. 1 Chaotic time series (left panel) for expectations weight factorw = 0.5, with other parameter values
λ = 4.4, a = 1 and b = 0.25 and initial state x0 = 0.3. A graphical analysis (right panel) shows that the
map fw,a,b,λ is non-monotonic with two critical points, with a maximum and a minimum, and that initial
state x0 = 0.3 does not converge to a low periodic orbit

plotted, the number of points not plotted (so that a transient phase can be skipped) and
the time step (so that e.g. each 10th period can be plotted). The Time Series menu has
the additional option ‘Connect Points’ (if on, then points are connected by a line) and
‘Plot Squares’ (if on, then each point is represented by a square). Scaling can be done
either automatically (default) or manually.

3.3 Graphical Analysis

One-dimensional (1-D) systems xt = f (xt−1) are relatively easy to analyze, since the
graph of the corresponding 1-D generating map f essentially determines the dynami-
cal behavior. The Graphical Analysis submenu (only available for 1-D systems) gives
the possibility for detailed investigations of the graph of the map f and higher order
iterates f k , k ≥ 2 (i.e. applying the map f k times). Figure1 (right panel) shows that
the graph of the map fw,a,b,λ in (5) is a non-monotonic map, with two critical points
where the graph has a (local) maximum and a (local) minimum, respectively. In the
Settings submenu, the user can specify the range of the interval (i.e. minimum and
maximum), the number of iterates and an initial state. By clicking ‘Next Iteration(s)’
the next steps in the graphical analysis (i.e. a horizontal line segment connecting the
last point to the diagonal y = x , and a vertical line segment connecting this point to
the graph of the map) appear. By repeatedly clicking ‘Next Iteration(s)’ a ‘cobweb
diagram’ as in Fig. 1 (right panel) appears, illustrating the dynamical behavior. Since
the graphical analysis in this example does not converge, it suggests that the dynam-
ical behavior is chaotic. After clicking ‘Clear Form’, the graphical analysis can be
repeated. Using the Edit submenu, the user can specify the number of time steps as
an integer k (so that one click to ‘Next Iteration(s)’ yields k steps in the graphical
analysis). In Subsect. 3.6 we will return to the ‘Graphical Analysis’ to investigate
bifurcations in this model.
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3.4 Bifurcation Diagram

A powerful tool for investigating how the dynamical behavior of a nonlinear model
depends on a single parameter is a bifurcation diagram. A bifurcation is a quali-
tative change in the dynamics as a model parameter changes. For instance, a fixed
point becomes unstable if one or more eigenvalues of the linearized dynamics around
the fixed point cross the unit circle. The three possible scenarios in which that may
happen are (see e.g. Kuznetsov 1995 for a mathematical treatment of bifurcation
theory):
• an eigenvalue λ = +1: typically this corresponds to a saddle node or tangent
bifurcation from 0 to 2 steady states. Other possibilities are a pitchfork bifurcation
(from 1 to 3 steady states) or a transcritical bifurcation (exchange of stability of 2
steady states);

• an eigenvalue λ = −1: period doubling or flip bifurcation, with creation of a
2-cycle;

• a complex pair of eigenvalues with ‖λ‖ = 1: Hopf or Neimark–Sacker bifurcation.
This possibility only arises for two or higher dimensional systems.

A bifurcation diagram shows the long run dynamical behavior as a function of a model
parameter. After selecting the Bifurcation Diagram menu, the user can specify (or use
the default values) the parameter, its minimum and maximum value, the plot variable,
the number of points to be plotted and the transient time (i.e. the number of points
skipped before plotting is started). To provide different ways of dealing with the pos-
sibility of multiple attractors, there are several options for the initial conditions for
different parameter values as the bifurcation diagram is computed. There are three
options: (i; default option) initialize on the same, fixed initial condition for each new
parameter value, (ii) initialize on the last point plotted for the previous, slightly smaller
parameter value, (iii) compute the diagram from ‘right to left’, i.e. from high to low
values, with initial states as in (i) or (ii). Options (ii) and (iii) are intended to keep
the orbit on the ‘same’ attractor as the parameter slowly changes, thus following the
attractor as long as it exists.
Figure2 shows a bifurcation diagram of the cobweb model with adaptive expec-

tations with respect to the expectations weight factor w, illustrating the long run
dynamics (100 iterations) after omitting a transient phase of 100 iterations. For small
values of w, 0≤ w ≤ 0.27, prices converge to a stable steady state, while for high
values ofw, 0.77 < w ≤ 1 (close to naive expectations) prices converge to a stable 2-
cycle with large amplitude. For intermediatew-values however, say for 0.4< w < 0.7,
chaotic price oscillations of moderate amplitude arise. In particular, the chaotic price
fluctuations for w = 0.5 have been illustrated already in Fig. 1.

3.5 Parameter Basins

An even more powerful tool in the numerical analysis of nonlinear dynamics are the
Parameter Basin plots, sometimes also called 2-D bifurcation diagrams. A parameter
basin plot assigns different colors in a 2-D parameter space to stable cycles of different
periods. The parameter basins are computed as follows. For the selected parameters
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Fig. 2 Bifurcation diagram
w.r.t. the expectations weight
factor w, 0.2 ≤ w ≤ 0.9, with
the other parameters fixed at
a = 1, b = 0.25 and λ = 4.4.
The diagram shows the long run
behavior (100 iterations) after a
transient of 100 iterations
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from a 2-D grid a trajectory for the selected initial state is chosen. After a transient
period K , a starting point on the trajectory is fixed. By iterating the map from this
starting point convergence to a cycle of a specified period is verified. Convergence
to a period P cycle is assumed to have occurred when the Euclidean norm between
the starting point and the point reached after P iterations is less than some specified
convergence distance, epsilon.
Using the Parameter Basins menu in E&F Chaos, the user can specify the number

of periodic cycles to look for, the distance of convergence (epsilon), the two parame-
ters, the number of transient iterations, themaximum distance (this is the distance after
which the point is classified as “divergence”, in order to prevent overflows), the periods
of the cycles to be detected, theminimum andmaximum of the two parameter intervals
and the resolution for both intervals. Finally, the user can specify the colors correspond-
ing to each of the different stable cycles, the color for the non-convergence parameters
(i.e. parameters for which points did not converge within distance epsilon) and the
color for divergence parameters (i.e. parameters for which the trajectory diverges to
infinity). For an initial run of the parameter basins, low values of the resolution (e.g.
200) and the transient time (e.g. 100) are recommended, because computation time
rapidly increases with higher resolution. The default resolution is set to the maxi-
mum screen resolution. After clicking the ‘Run’ button, the computations start and a
progress bar showing the fraction of computed points appears. The user can interrupt
the computations by clicking the ‘Stop’ button.
Figure3 presents a parameter basin with respect to the parameters (λ,w), and

assigns different colors to stable steady states and stable cycles of periods 2, 4, 8
(the first four cycles in a period doubling bifurcation route to chaos) and periods
3, 5 and 7 (low order stable cycles of odd period). It is well known that, for 1-
D continuous maps, a cycle with odd period implies chaotic dynamical behavior.5

5 An odd cycle implies so-called topological chaos. In such a system however, chaos may still be a transient
phenomena as a typical time series may still converge to a stable cycle. As a special case, the famous “Period
3 implies chaos” result of Li and Yorke (1975) holds; see e.g. Devaney (1989) for a detailed mathematical
treatment.
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Fig. 3 Parameter Basins of stable steady state (light blue) and stable cycles of periods 2 (dark blue), 4
(purple), 8 (green), 3 (yellow), 5 (orange) and 7 (red), for 0 ≤ λ ≤ 10 and 0.1≤w ≤ 0.8 with other
parameters fixed at a = 1 and b = 0.25 and initial state x0 = 0.3. Transient iterations 500, resolution
450× 450 and convergence distance epsilon 0.001. Computation time 165s (Pentium 3GHz)

Notice that the 1-D bifurcation diagram with respect to the parameter w, as illus-
trated in Fig. 2, corresponds to a vertical line in the parameter basin plot, with fixed
λ = 4.4, in Fig. 3. The reader should compare the bifurcation scenario’s in both
figures.

3.6 Explaining Bifurcations Through Graphical Analysis

The boundaries between different colors in the parameter basins in Fig. 3 repre-
sent bifurcation curves in the 2-D (λ,w)-parameter space. For 1-D systems, bifur-
cations of cycles can be easily investigated by the Graphical Analysis menu. For
example, Fig. 3 suggest that fixing λ = 6 and increasing w leads to a period dou-
bling bifurcation when the dynamics changes from a stable steady state (the light
blue region) to a stable 2-cycle (the dark blue region). The graphical analysis in
Fig. 4 confirms this conjecture. At the bifurcation value w ≈ 0.21 (top left), the
graph of the second iterate f 2 is tangent to the diagonal at the steady state, and the
steady state is their only intersection point. Beyond the bifurcation value, as illus-
trated for w = 0.25 (top right), the graph of f 2 has three intersection points with
the diagonal, namely the steady state and two additional points forming a (stable)
2-cycle. The parameter basins plot in Fig. 3 suggests that more bifurcations occur
when w is further increased. The reader may check e.g. that a second period dou-
bling bifurcation occurs for w ≈ 0.28, by looking at the graphs of the fourth iterate
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Fig. 4 Graphical analysis of bifurcations occurringwhenw increases, with other parameters fixed at λ = 6,
a = 1 and b = 0.25. A period doubling bifurcation from a stable steady state to a stable 2-cycle occurs
for w ≈ 0.21, when the graph of f 2 is tangent to the diagonal (top left). For w = 0.25 the graph of f 2

has three intersection points with the diagonal, one steady states and two points of a (stable) 2-cycle (top
right). A tangent bifurcation of a pair of 3-cycles occurs for w ≈ 0.37, where the graph of f 3 is tangent to
the diagonal (bottom left). For w = 0.385 the graph of f 3 has seven intersection points with the diagonal,
the steady state and six additional points forming one stable and one unstable 3-cycle (bottom right)

f 4. A different type of bifurcation occurs when entering the yellow region, corre-
sponding to a stable 3-cycle. The 3-cycle is created by a tangent bifurcation for
w ≈ 0.37, as illustrated in Fig. 4 (bottom left), where the graph of f 3 becomes
tangent to the diagonal simultaneously at the three points of a newly created 3-
cycle. More precisely, a pair of two 3-cycles is created in the tangent bifurcation,
one stable and one unstable, as illustrated for w = 0.385 in Fig. 4 (bottom right).
The reader may also check that increasing w further, another tangent bifurcation
in which both 3-cycles disappear occurs for w ≈ 0, 67. In fact, changing w (or
some other parameter) many bifurcations, period doubling and/or tangent bifurca-
tions, occur for higher order iterates f k of the map f . The user can easily investigate
these with E&F Chaos by setting the value of ‘Iterated Map’ in the Settings submenu
to k.
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4 A Higher Dimensional Example

In this section we consider a higher dimensional example of a nonlinear system,
to illustrate more features of the E&F Chaos software. The model is an extension
of the agent-based cobweb model with heterogeneous expectations (rational versus
naive expectations) introduced by Brock and Hommes (1997), modified to allow for
asynchronous updating of strategies. This extension allows us to illustrate how easy
it is to include a new or extended model in E&F Chaos. As in the previous section,
demand is linear and given by

D(pt ) = a − bpt . (6)

The supply is also assumed to be linear, derived from expected profit maximization
from a quadratic cost function c(q) = q2/(2s), and therefore given by

S(peht ) = speht , (7)

where peht is the expectedmarket price by agents of type h. Agents can choose between
two different types of expectation rules, a costly sophisticated rule and a cheap free
rule. The type 1 rule is rational expectations, which can be obtained at information
gathering costs C > 0, while the type 2 rule is naive expectations, which is available
at no cost. The forecasting rules thus are

pe1t = pt , pe2t = pt−1. (8)

With rational and naive producers, the market clearing condition is given by

a − bpt = n1t spt + n2t spt−1, (9)

where n1t and n2t represent the fractions of type 1 and type 2 agents. The unique
market clearing price pt is then given by

pt = a − n2t spt−1
b + sn1t

. (10)

The fractions are determined by the past performance of the two forecasting strate-
gies. The payoff πht of strategy h at time t is given by the realized profit of that
strategy at time t minus the costs incurred. Using producers’ quadratic cost function
c(q) = q2/(2s) and taking the constant information gathering costsC > 0 for rational
expectations into account, one finds

π1t = b

2
p2t − C, π2t = b

2
pt−1(2pt − pt−1). (11)
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The fitness measure Uht of strategy h is a geometrically downweighted average of
past profits, i.e.

Uht = wUh,t−1 + (1− w)πht , (12)

where w ∈ [0, 1) is a memory parameter. The extreme case w = 0 represents agents
basing their evaluation only on the profits observed in the previous period. Brock and
Hommes (1997) considered thismodelwith synchronous updating of strategies, that is,
in each period all agents update their strategies.Herewe consider themore general case
of asynchronous updating. Per time unit only a fraction 1 − δ of agents, distributed
randomly among agents of both types and independently across time, is assumed
to reconsider their strategy on the basis of the most recent information available.
The remaining fraction δ continues to use their previous strategy. The corresponding
dynamics of the fractions is given by a modified version of the discrete choice, logit
probabilities:

nht = (1− δ)eβUh,t−1/Zt−1 + δnh,t−1, (13)

where Zt−1 = ∑
h e

βUh,t−1 is a normalization factor so that the fractions add up to 1.
For δ = 0, we are back in the case of synchronous updating. In evolutionary game
theory there has been a discussion whether asynchronous updating may lead to more
stability (cf. Nowak and May 1992; Huberman and Glance 1993; Nowak et al. 1992).
Financial market models with asynchronous updating have been considered by Diks
and van der Weide (2005) and Hommes et al. (2005).
The dynamics of the cobweb model with rational versus naive agents and asyn-

chronous updating of strategies is thus given by Eqs. 10–13, defining a nonlinear
four-dimensional (with state variables pt−1, n1,t−1, U1,t−1 and U2,t−1) discrete time
dynamical system. A typical research question for such a generalization of an existing
model is how the extra parameters affect the dynamics. Our aim is to illustrate how the
E&F Chaos program can help to obtain a quick overview of the (long-run) behavior
of the dynamics in different regions of the parameter space.

4.1 Building a New Model in E&F Chaos

Including a new model or modifying an existing model in the E&F Chaos software is
easy. All the user has to do is to specify the model in LUA code (or modify an exist-
ing model) in a plain text file, either with the built-in editor or with her own favorite
editor.6 To view an example, the user can use the File/Load Model submenu, open
the subdirectory ‘My Models’ and select the file ‘BH-cobweb-async’, the cobweb
model with asynchronous updating as presented in the previous subsection. Using the
File/Edit Model submenu, a window containing the model equations appears:

6 For more information about the LUA language, see the LUA website www.lua.org.
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p=2, n1=0.5, n2=0.5, u1=0, u2=0
beta=5, a=4, b=0.5, s=1.35, C=1, w=0,
delta=0
pchange
d
-- BH-cobweb-async

-- lagged variables
plag = p
n1lag = n1
u1lag = u1
u2lag = u2

-- price
p = (a-n2*s*plag)/(b+n1*s)

-- fitness
u1 = w*u1lag + (1-w)*((b/2)*p*p-C)
u2 = w*u2lag + (1-w)*(b/2)*plag*(2*p-plag)

-- fractions
q1 = math.exp(beta*u1)
q2 = math.exp(beta*u2)
z = q1+q2
n1 = delta*n1lag + (1-delta)*q1/z
n2 = 1-n1

-- price change
pchange=p-plag

Strictly speaking the first four lines are not LUA code. They comprise a four line
header to inform the E&F Chaos program about the various model parameters, state
variable and the type of model. The first line provides the state variables (p, n1, n2, u1
and u2) and their default initial states. The second line specifies the model parameters
(the intensity of choice β, the constant a and slope b of the demand curve, the slope
s of the supply curve, the information gathering costs C , the memory w in the fit-
ness measure and the parameter δ measuring asynchronous updating) as well as their
default values. Any additional variables (pchange, the price change) of which output
is desired are provided on the third line, while the fourth and final header line contains
a letter to specify whether we are dealing with a continuous time (‘c’) or discrete time
(‘d’) system. As an alternative to providing either ‘c’ or ‘d’ on the fourth line of the
header, at the bottom of the Edit Model window, the user can specify the ‘Type’ (i.e.
either ‘c’ for a continuous time model or ‘d’ for discrete time). The remaining code
is used to describe the dynamical system by specifying the new values of the state
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Fig. 5 Multiple times series. Time series for slightly different initial conditions (left panel) x0 = 2.2 (solid
line) and x0 = 2.21 (dotted line), illustrating the sensitive dependence on initial conditions. Simultaneous
time series of prices and fraction of rational agents (right panel). The fraction of rational agents increases
when price deviations from steady state become large. Parameters are: β = 5, a = 4, b = 0.5, s = 1.35,
C = 1, w = 0 and δ = 0

variables in terms of the lagged values of the state variables and the parameter values.
Since this code is written in the LUA language, one can use standard prespecified
functions in LUA, such as the exponential function (math.exp()) used here. The
user can include some comments, i.e. text following−−, to make the code more easy
to read. A convenient feature for applied users, such as economists, is that there is
no need to reduce the model equations to its simplest mathematical representation
of a (4-D) difference equation Xt+1 = F(Xt ). The user is free to use other repre-
sentations, e.g. following the same economic principles as in the presentation of the
model in the previous section, i.e. using the pricing equation (10), the fitness measure
(11–12) and the fractions (13). Of course, a shorter, more efficient representation may
lead to a reduction of computation time, but for relatively simple models this is not
critical.

4.2 Multiple Time Series

A convenient feature of the E&F Chaos software is that it can simultaneously plot dif-
ferent time series in a single graphics window, as illustrated in Fig. 5. One can use this
feature, for example, to investigate and illustrate whether the model exhibits sensitive
dependence on initial conditions, a key feature of a chaotic system. Figure5 (left panel)
shows simultaneous plots of price sequences with slightly different initial conditions.
Since the two time series separate already after about 10 periods, the system exhibits
sensitive dependence. Simultaneous time series are also useful in understanding the
(economic) mechanism causing cycles and fluctuations. As an example, Fig. 5 (right
panel) shows simultaneous plots of the price series and the fraction of rational agents.
The fraction of rational agents quickly increases, each time price deviations from the
steady state become too large. A large fraction of rational agents pushes the price back
close to the steady state, causing agents to abandon the costly rational forecast and
switch back to the cheap naive rule.
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Fig. 6 Phase plot (left panel) with a strange attractor in the (p, n1) plane. The same attractor shown in a
delay plot (pt , pt+1) (right panel). Parameters are: β = 15, a = 10, b = 0.5, s = 1.35, C = 1, w = 0 and
δ = 0.8

4.3 Phase Plots and Delay Plots

For higher dimensional systems, Phase Plots and Delay Plots provide helpful tools
to investigate the (long run) dynamical behavior and plot attractors of the system.
Intuitively, an attractor of a dynamical system is the subset of state space points to
which the dynamics are confined in the long run. The attractor thus contains infor-
mation about the long run dynamical behavior of the system. Examples are a stable
steady state (single point attractor), a stable periodic orbit (finite number of points),
a quasi-periodic attractor (“invariant circle”) and a strange (chaotic) attractor (fractal
structure). Examples of a phase plot and a delay plot of a strange attractor are shown
in Fig. 6. By holding the mouse button and drawing a rectangle, the user can zoom
into the detailed fractal structure of the attractor.

4.4 Iterating Objects: The Unstable Manifold of the Steady State

The attractors in Fig. 6 correspond to the case of asynchronous updating (δ = 0.8) and
no memory in the fitness measure (w = 0). In this case, mathematically the system
can be reduced to a 2-D system. In the case of synchronous updating of strategies
(δ = 0), Brock and Hommes (1997) have shown that, for large values of the intensity
of choice β the system is close to a homoclinic tangency between the stable and
unstable manifolds of the steady state. The strange attractor in Fig. 6 suggests that
a near homoclinic tangency may also explain the complicated dynamics in the case
of asynchronous updating of strategies. A mathematical analysis is beyond the scope
of this paper (for a mathematical treatment of homoclinic bifurcations see e.g. Palis
and Takens 1993), but we can use the Iterating Objects submenu to approximate the
unstable manifold of the steady state. The user can iterate circles as well as polygons
over the attractor. Iterating small circles can e.g. illustrate the sensitive dependence
and how quickly nearby points spread over a strange attractor. The option of Iterating
a polygon and setting the number of vertices to two enables the user to iterate vectors.
This option can then be used to iterate a small unstable eigenvector originating at the
steady state thus approximating the unstable manifold of the steady state, as illustrated

123



E&F Chaos: A Software Package for Nonlinear Economic Dynamics 237

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 2 3 4 5 6 7 8 9  10

n1

p

Fig. 7 Approximation of the unstable manifold of the steady state; 1, 000 point of the strange attractor
are also shown. The approximation of the unstable manifold has been obtained by 19 iterations of 1, 000
initial states on a small vector with endpoints (p∗, 0) and (p∗ +0.001, 0). Parameters are: β = 15, a = 10,
b = 0.5, s = 1.35, C = 1, w = 0, δ = 0.8 and p∗ = a/(b + s) ≈ 5.4054

in Fig. 7. The user can e.g. specify the endpoints and the number of initial states (the
resolution) on the initial vector. The reader may easily check that the stable manifold
of the steady state is a vertical line p = p∗. Figure 7 shows that for large values of
the intensity of choice, the system is indeed close to a homoclinic tangency since the
unstable manifold gets close to the stable manifold. In the next section we investigate
numerically whether, in the case of asynchronous updating, chaos arises.

4.5 Largest Lyapunov Exponent

A powerful numerical tool to investigate whether the dynamical behavior is chaotic
is a plot of the largest Lyapunov exponent, as a function of one of the model para-
meters. The largest Lyapunov exponent is the average growth rate of an infinitesimal
state perturbation along a typical trajectory (orbit). E&F Chaos calculates the largest
Lyapunov exponent along the lines of the algorithm introduced by Wolf et al. (1985).
Let ‖ · ‖ denote the Euclidean norm. The distance in state space between two initially
close state vectors x0 and x0 + δ, for small ‖δ‖ evolves as

Fn(x0 + δ) − Fn(x0) ≈ DFn(x0)δ = DF(xn) · DF(xn−1) . . . DF(x1)δ,

where DF(x) denotes the Jacobi matrix of F evaluated at state x. For typical initial
states x0 the length of the perturbation grows exponentially as

‖DFn(x0)δ‖ ∼ eλn‖δ‖,

motivating a definition of largest Lyapunov exponent as
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λ = lim
n→∞

1
n
log

‖DFn(x0)δ‖
‖δ‖ .

4.5.1 Algorithm for Lyapunov exponent

Generally speaking, λ can be estimated numerically either by specifying the Jacobi
matrix analytically, evaluating it at any point along a generated orbit, or by using a finite
differencing method along the orbit. Wolf et al. (1985) opt for the first method in case
the dynamics are known, while they use the second approach in case the dynamics
is reconstructed from an observed time series. We use a finite difference approach
also in the case of known dynamics, thus avoiding an error prone specification of
the Jacobi matrix by the user. The price payed is a slight loss of accuracy due to the
finite difference approximation and numerical noise, but for most practical purposes
the differences are sufficiently small, especially when the number of iterations is large
(e.g. about 10,000).
The main idea behind the finite differencing algorithm for the largest Lapunov

exponent is to follow the evolution of a small initial disturbance of the state around a
reference trajectory (assumed to be typical orbit generated by the dynamics). To pre-
vent the distance between the disturbed and the reference trajectory from becoming
too large, this distance is regularly (in our implementation every time step) rescaled
to a small number ε while keeping the direction of the disturbance unaffected. In
pseudocode:

Set r = 0
Take an initial vector x0 and a perturbed vector x + δ0 with ‖δ0‖ = ε.
For t = 1, . . . , n
{

iterate both states: xt = F(xt−1) and xt + δ′
t−1 := F(xt−1 + δt−1)

Sum up the growth rate along the orbit: r = r + log ‖δ′
t−1‖
‖ε‖

Rescale the perturbation δ′
t−1 to length ε through xt + δt := xt + ‖ε‖

‖δ′
t−1‖δ′

t−1.
}
Estimate λ as te average growth rate r/n.

The perpetual rescaling of the perturbation is used to keep the distance between
the reference and the perturbed trajectory small. In this way the evolution of a tan-
gent vector along the trajectory is approximated, allowing the difference between
the two trajectories to evolve towards the most unstable direction of the dynamics,
which is the direction associated with the largest Lyapunov exponent. The initial dis-
turbance is chosen to be a positive change of size ε of the first element of the state
variable.
Figure8 shows a bifurcation diagram and a Lyapunov exponent plot with respect to

the intensity of choice parameter β, in the case of asynchronous updating of strategies
(δ = 0.8). The bifurcation diagram (top panel) shows a primary period doubling
bifurcation (froma stable steady state to a stable 2-cycle), a secondaryHopf bifurcation
of the 2-cycle (the reader may check this by a phase plot of the attractor for e.g. β = 3,
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Fig. 8 Bifurcation diagram (top panel) and largest Lyapunov exponent (LE) plot (bottom panel) in the case
of asynchrounous updating of strategies. The bifurcation diagram shows the long run dynamical behavior,
100 iterations after a transient of 100 iterations, as a function of the parameter β. The LE plot is based on
5000 iterations after a transient of 300 iterations and takes 35s (Pentium 3GHz). Other parameters are:
a = 6, b = 0.5, s = 1.35, C = 1, w = 0 and δ = 0.8

showing the invariant circles created in theHopf bifurcation), followed by a bifurcation
route to more complicated dynamical behavior. The Lyapunov exponent plot (bottom
panel) becomes positive for large values of β, providing numerical evidence that the
dynamics becomes chaotic for large values of the intensity of choice. These simulations
thus show that the rational route to randomness, that is, the bifucation route to chaos,
found by Brock and Hommes (1997) in the cobweb model with synchronous updating
of strategies also arises in the case of asynchronous updating of strategies.
Using the Largest Lyapunov Exponent submenu, the user can specify the parameter,

the range of the parameter, the size of the perturbation vector (default at 0.001), the
number of iterations and the transient time for computation of theLyapunov exponents.
The output is given as a graph of the estimated largest Lyapunov exponent as a function
of this parameter range. If required the resolution in the parameter space canbe adjusted
by the user.
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Fig. 9 Basin plots of two co-existing stable 4-cycles, for β = 2.74 (left) and β = 3 (right), with other
parameters fixed at a = 0, b = 0.5, s = 1.35, C = 1, w = 0 and δ = 0. The horizontal axis shows the
deviation x from the steady state price and the vertical axis the fraction n1 of rational agents. Different
colors correspond to initial states converging to different stable 4-cycles. For each initial state a transient
time of 1000 has been used, the resolution is 450×450 and convergence distance ε = 0.001. On a Pentium
3GHz processor, these figures took 13min and 30s of computation time each

4.6 Basin of Attraction

When there are multiple, co-existing attractors, the long run dynamical behavior
depends on the initial state. The basin of attraction of an attractor is the set of initial
conditions converging to that attractor. Using the Basin of Attraction menu, different
colors are assigned to initial states converging to different attractors. Figure9 shows
an example with two co-existing stable 4-cycles. Red points converge to one stable
4-cycle, while yellow points converge to the other (symmetrically opposite) stable
4-cycle. Figure9 illustrates that the basin boundary, i.e. the boundary between the red
and yellow basins of attraction, may have a fractal structure.
In the basin of attraction window, the user can specify the number of attractors (i.e.

stable cycles), the distance ε of convergence, the (two) variables for the initial state,
the maximum number of transient iterations and the maximum distance of divergence
(if exceeded, the point is colored as diverging to infinity). Furthermore, the user needs
to specify the period P of each stable cycle and the coordinates of one point on
each stable cycle. The latter can be entered either manually or automatically (by
clicking on the specified cell the coordinates after a specified number of iterations
is pasted automatically). Finally, the range of initial states and the resolution can be
specified.
The program starts iterating from a point within the specified range of initial con-

ditions, and iterates it for the specified transient period. Convergence to the specified
periodic cycle with period P is assumed to have occurred when the distance from a
point within the next P iterations is close enough (within distance ε, specified by the
user) to the specified point on this cycle. Divergence (to infinity) is assumed to occur
when the distance exceeds a certain pre-specified value of the parameter, referred to as
the “Maximumdistance”. The distance is computed on the basis of the Euclidean norm
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using either the two-dimensional space for which the basins are plotted or all dimen-
sions of the model (if the “All dim.” box is checked). ‘Non Convergence’ is reported,
when the point has not reached one of the stable cycles within the specified distance
after the specified transient. The parameter “Resolution” determines howmany points
from the range of initial values are used in the algorithm. The default value is set to
the maximum screen resolution, but initial explorations with lower resolution (e.g.
100) is recommended, because high resolution basin plots are computationally inten-
sive.

5 Simulations with Noise

There are a few remaining features ofE&FChaoswewould like tomention.TheBasics
menu contains two submenus, Spreadsheet and Statistics. The Spreadsheet option is
very helpful in saving numerical values of all variables.As all other graphicalwindows,
the Spreadsheet window has an Edit/Parameters submenuwhere parameters and initial
states can bemodified. The user can also specify the first point and the number of points
to be computed. Using the File/Save as submenu, the data can be saved as a text file.
The Basics/Statistics menu allows the user to compute some basic statistics of a time
series, such as the mean, median, maximum, minimum, standard deviation, variance,
and the skewness and kurtosis coefficients.
An important question, particularly relevant for economics, is how noise affects the

dynamics of a nonlinear system. The user can include simulated noise in the model
directly in the LUA code using the LUA random number generator math.random,
which is an interface to the well-documented ANSI C random number generator
rand(). However, for the convenience of the user, E&F Chaos also has a built-
in noise option using the Delphi Pascal noise generator, intended for obtaining a
quick impression of the effect of additive noise with various distributions on the state
variables. Upon clicking the Extra/Noise submenu, the Noise window appears, where
the user can select the distribution of the noise (uniform, normal or double exponential),
the standard deviation of the noise and the variable to which the noise should be added.
The default option is then that in each time step a noise term is added to the selected
variable after each iteration. The user has two additional options, to add a noise term
only each k-th period or to select a probability p with which the noise is added in
each period. In this way, the user can easily investigate how noise affects the nonlinear
dynamics.
As an example, Fig. 10 shows the same bifurcation diagram as in Fig. 2, subject to

dynamic noise. In each time step, a normally distributed random variable εt , with zero
mean and standard deviation 0.1 has been added to the RHS of the dynamics of the
expected price in Eq. 5. The figure shows that the detailed structure of the bifurcation
diagramdisappears.However, in the presence of noise price fluctuations exhibit similar
features as in the noise free case. For small values of the parameter w, 0 ≤ w ≤ 0.3,
price fluctuations are close to the steady state, for large values of w, w > 0.8, prices
exhibit up and down oscillations (a noisy 2-cycle), while for intermediate values of
w, 0.3 < w < 0.7 price fluctuations are complicated. An observant reader may still
detect a noisy 4-cycle in the bifurcation diagram in Fig. 10, for 0.7< w < 0.75.
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Fig. 10 Bifurcation diagram as
in Fig. 2, buffeted with noise εt ,
normally distributed with SD
0.1. The diagram shows the long
run behavior (100 iterations)
after a transient of 100 iterations
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6 Summary

In this paper we have described the E&F Chaos software package for simulating and
analyzing nonlinear economic dynamical systems. The current version is an upgraded
version of an earlier program, the main added features being the ability for the user to
easily specify newmodels in the LUA language without the need of a compiler, as well
as the ability to generate publication quality graphical output. The paper illustrates how
the different features of the program can be used when the E&F Chaos is employed
for carrying out its primary task, which is to aid students and researchers in the initial
stages with a quick numerical analysis of the dynamical features of newly specified
nonlinear models. To this end we have considered two case studies, comprising of
both a one-dimensional and a higher-dimensional economic dynamic model, and have
described in detail how theE&FChaos program could be utilized for quickly obtaining
an overview of the dynamical properties of these models, and how E&F Chaos can
help formulate more advanced research questions for further analysis. In addition,
we briefly discussed the program’s built-in feature to investigate how noise affects
the nonlinear dynamics. We hope that this software package will contribute to more
applications of nonlinear dynamics in economics and finance, and make it easier for
non-specialists to discover the intriguing features of nonlinear dynamics.
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