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1. Introduction 

Is more detailed past information important for the performance of financial markets? In particular, does access to past 

trading information affect the allocative efficiency of the market? Will more information lead to higher or lower market 

volatility? These questions are receiving growing attention in the literature, especially as access to information gets easier 

and algorithmic trading spreads. In the experimental literature, one of the earliest contributions on the importance of in- 

formation in trading is by Smith (1980) . In the context of the double action, he compares the environment with incomplete

information, when each trader knows only its marginal value or cost, and complete information, when all traders know 

values and costs of all traders. He finds that convergence to the competitive equilibrium price occurs slower under complete 

information. Arifovic and Ledyard (2007) study the effect of the availability of past information for allocative efficiency in 

double auctions organized as a call market. In this paper, we address these questions for the markets that have an order

book, such as the continuous double auction (CDA). For this purpose and to disentangle several confounding effects that the 
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use of the order book brings to the behavior of traders, we propose a new trading mechanism and run an experiment that

matches this mechanism with treatments corresponding to different access to past information. Further, we complement 

the experimental results with an evolutionary learning model and show that the model is able to capture the experimental 

outcomes, particularly during the initial, learning stage of the market. 

The double auction, a centralized market with many buyers and sellers, comes in many flavors; see, e.g., 

Friedman (2018) and Easley and Ledyard (2018) . Two of the most well known implementations are the call market (CM)

and the continuous double auction (CDA). The key difference between these two mechanisms is that in the call market, 

orders are submitted and cleared simultaneously, while in the CDA market orders are submitted asynchronously and are 

cleared at different times during the trading session. In the call market, after all orders are submitted, the market is cleared

at a single equilibrium price. Buyers with bids at or above that price and sellers with offers below or at that price trade. In

the CDA, the order book keeps all unsatisfied orders (bids and offers). When a new order arrives, if possible it is matched

with the closest order at the opposite side of the book, or, otherwise, it is stored in the book. There are specific prices for

every transaction. 2 

In this paper, we are interested in a hybrid double auction, called the “Continuous Double Auction with Synchronous 

Decisions” (CDA-SD). In the CDA-SD, the orders are formulated simultaneously, as in the call market, but they are cleared 

asynchronously, as in the CDA. 3 We focus on this market mechanism for two reasons. First, due to legal aspects as well as

considerations of efficiency, many participants in financial markets delegate trading to brokers. This leads to a separation 

between investors’ decisions (to formulate the order, i.e., the highest price to buy or the lowest price to sell) and the activity

of brokers (who have access to the market and execute trades). We focus on investors who naturally make their decisions at

some specified time, such as at the beginning of a day, and from whose perspective the trading mechanism (which is CDA,

as in most of the markets) is not as important. Thus, we think of the CDA-SD – that combines synchronous decisions with

realistic trading protocol – as the mechanism useful to study the behavior of investors. 

Second, we address the question of the impact of past information availability for market efficiency by building on the 

earlier contribution of Arifovic and Ledyard (2007) , AL henceforth. 4 The CDA-SD mechanism allows us to disentangle the 

effect of access to information about the trading history from the effect of an influence of the contemporaneous state of the

order book on the trading strategies. We focus on the former effect, keeping our analysis closer to the AL. 5 

AL found that more information is harmful for call markets: in their experiment, allocative efficiency is smaller in the 

treatment where participants could see all offers submitted in the previous session, in comparison with the treatment where 

such detailed information is not available. AL complement their experiments with simulations of the computational model 

where artificial agents use the Individual Evolutionary Learning (IEL) algorithm. 6 Our previous work, Anufriev et al. (2013) , 

AALP henceforth, theoretically addresses the efficiency of CDA under two different information feedbacks. Assuming that the 

artificial agents use the same IEL as in AL, AALP focus on the bidding strategies that the algorithm selects in the stationary

state. 7 AALP find that the past available information affects the set of these selected strategies, though this difference does 

not translate into different allocative efficiency. Some other market characteristics are affected, however. For instance, price 

volatility decreases when the amount of past information increases. 

The experiment designed in this paper not only tests these conjectures but also allows us to go beyond the analysis

based on the stationary state. Indeed, the initial, learning phase is as important as the stationary dynamics, because in the
2 As a bid arrives, it is matched with the lowest offer from the book among those that are below or equal to the bid. If there are several offers in the 

book satisfying this criteria, the bid is matched with the offer that arrived the earliest (i.e., according to the time/price priority). As an offer arrives, it 

is matched with the highest bid in the book among those that are above or equal to the offer. Again, time/price priority is applied. In both cases, the 

transaction price is the price of the order that was in the book, i.e., arrived earlier. During the trading session, brokers see the dynamically changing 

book but agents do not. As explained later, in this paper, agents cannot condition their behavior on the book’s current state, but may condition it on the 

historical data from the book. 
3 In this way, we abstract from optimal timing considerations in order placement. Optimal order timing in the CDA is investigated by van de Leur and 

Anufriev (2018) who that the optimal arrival has a skewed hump-shaped distribution which depends on the environment and the market size. 
4 The quest for the sources of market efficiency attracts a lot of attention in the economic literature. The results of experiments with human subjects 

starting with Smith (1962) show quick convergence towards competitive equilibrium, resulting in high allocative efficiency of the continuous double auction 

(CDA). Market efficiency is determined by both market rules and traders’ behaviors, and disentangling one from another is challenging ( Bottazzi et al., 2005 ). 

Gode and Sunder (1993, 1997) show that the “Zero-Intelligent” (ZI) agents submitting orders randomly are able to achieve high level of efficiency. However, 

the results strongly depend on the behavioral assumption that the ZI are trading within the budget constraints, see Gjerstad and Shachat (2007) and 

LiCalzi and Pellizzari (2008) . 
5 Even when traders are observing the order book closely, their orders arrive to the market with delays, resulting in some randomness in the outcome 

of trading. Furthermore, many financial exchanges deliberately introduce “speed-bumps”, i.e., (random) delays in the execution of orders to avoid market 

instabilities, see Table 2 in He et al. (2020) , who model uncertainty in order execution timing. Thus, whereas the sort of decisions that our subjects made 

in our CDA-SD experiments differ from the decisions in the standard CDA experiments, our construction is, in this respect, closer to the real markets. 
6 This learning model is an appropriate modeling tool for repeated complex environments, see Arifovic and Ledyard (2004, 2011) . For recent examples 

of IEL applications, see Arifovic and Ledyard (2018) , van de Leur and Anufriev (2018) and Arifovic et al. (2019) . The agents in IEL are boundedly rational, as 

they learn without taking into account that other agents are learning as well. IEL can be thought of as a simplified version of genetic algorithm learning, 

introduced in the economic literature in Arifovic (1994) and used recently in Anufriev et al. (2019) . The word “individual” in IEL stresses that the agents 

are not involved in social learning, as in the models based on imitation behavior like in Dawid (1999) ; see Vriend (20 0 0) for an example stressing the 

difference between the two types of learning. 
7 The AALP prove, for selected demand/supply schedules, that certain bidding strategy profiles are evolutionary stable under the IEL. They run simulations 

for other, more complicated, demand/supply schedules, but study these simulations after 100 transitory periods, where initial learning takes place. 
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real markets the environment (sets of valuations/cost of traders) may often change from period to period, and even ex- 

perienced traders may find themselves in a situation that is similar to the initial few periods of our experiment. We find

that in the experiments there is a significant effect of information on allocative efficiency in the first periods with more

information leading to lower efficiency . This is the same effect as AL found for call markets. However, learning in our exper-

iment is quicker, when there is more past information available, so that eventually allocative efficiency in both information 

treatments becomes comparable, as in the stationary state studied in AALP. By looking at several other measures, including 

the price volatility, we also find that the exact configuration of the demand/supply schedules affects the outcome at least as

much as the information structure. Finally, we ask whether the IEL model, as introduced in AALP, can capture both short and

long-term features of the dynamics. The availability of experimental data allows us to find a simple but intuitive improve- 

ment in the IEL algorithm that captures the data relatively well in both experimental treatments. This is an example of how

experiments are crucial in complementing theoretical analysis, especially when that analysis is based on a computational 

model with bounded rationality assumptions. 8 

The rest of the paper is organized as follows. Section 2 introduces the information differences that we study, discusses 

related literature, and formulates the experimental hypotheses on the basis of the previous theoretical study of the AALP, 

Anufriev et al. (2013) . Section 3 explains the experimental design and provides the details of the experiment that we run in

two locations. Section 4 presents the experimental results. In Section 5 we revisit the Individual Evolutionary Learning model 

with the experimental data and demonstrate that a slight variation in the model can fit the data well. Section 6 concludes.

The Appendix contains the experiment instructions, screenshots, and some estimation results. 

2. Role of information and IEL 

In this section, we introduce two different information settings used in the literature. We also introduce the Individual 

Evolutionary Learning (IEL) model that Anufriev et al. (2013) (AALP) studied theoretically. 

2.1. Two information feedback scenarios 

Financial markets have witnessed an increasing access of the traders to past detailed information, see, for instance, 

Boehmer et al. (2005) and Easley et al. (2016) . Arifovic and Ledyard (2007) pose the question: will the allocative efficiency

of markets increase if agents use richer past information? AL do this in the context of a call market, focus on learning under

repeated trading, and disentangle the two information scenarios. In the closed book scenario, agents have no access to the 

individual level data from the past market session; they only know the past market clearing price. In contrast, in the open

book scenario, the information about past individual orders is available to traders. The latter scenario provides traders with 

strictly more information than the former. It turns out, perhaps surprisingly, that access to more information results in a 

lower market efficiency. AL find this by conducting experiments with human subjects and via simulations of the Individual 

Evolutionary Learning (IEL) model with artificial traders. 

The difference between the two information scenarios above, when extended to the CDA markets, is in the access to 

the orders from the previous session. To separate any strategic effects that information from the current order book may 

produce when decisions are made during the trading session, we introduce the CDA with Synchronous Decisions (CDA-SD) 

mechanism. This is the market with an order book matching the orders that arrive asynchronously, but where the traders 

formulate their orders simultaneously. Thus, in the CDA-SD, the orders are decided before the trading session and arrive 

at random times during the session. The session is organized as the standard CDA with the order book. This construction

allows us to keep the distinction between the same two information scenarios that AL studied, which we call Aggregate-level 

(market) feedback ( AF ) and Individual-level (orders) feedback ( IF ). In the Aggregate Feedback case, all traders have access

only to the average transaction price of the past session. In the Individual Feedback case, all traders have a detailed access

to the order book of the previous session. The AF corresponds to the closed book scenario in AL and the IF corresponds to

the open book scenario in AL. 9 

Several related studies vary information availability and compare market performance. Apart from allocative efficiency, 

this literature focuses on the market characteristics related to “information efficiency”. Information efficiency refers to the 

market’s ability to aggregate individual information (for example, individual valuations and cost) into the price. When mar- 

kets are informationally efficient, there are no systematic deviations of the price from its equilibrium values. Low price 

volatility (for repeated trade in a fixed environment) is another measure reflecting information efficiency. An empirical study 

of Boehmer et al. (2005) found behavioral and market changes that followed the New York Stock Exchange decision to open

past order books to traders to increase transparency. In particular, this decision resulted in lowering the price volatility and 

increasing market liquidity, that is in higher information efficiency. The theoretical study of Baruch (2005) , where the call

market mechanism is assumed, compares the case of “open book” information environment that occurred as the result of 

an NYSE decision (our IF case) with the “closed book” information environment that existed before (our AF case). The study 
8 Computational agent-based models have gained popularity in Economics and Finance, for recent advances see Hommes and LeBaron (2018) , 

Chen et al. (2018) and Dieci and He (2018) . 
9 We do not use the open/closed book terminology that AL and AALP used to avoid a confusion with the cases when agents may access the current 

session order book. 
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finds that larger transparency favors traders that demand liquidity (e.g., those who submit market orders) at the expense of 

the traders who provide liquidity (e.g., specialists and limit order traders). 

Theoretical studies of the CDA typically rely on simulations and abstract from many factors that are in place in real

markets (order size, market orders, possibility of cancellations, and so on), and focus on the impact of information only. 

Ladley and Pellizzari (2014) investigate trading strategies in a market organized as a CDA with order book and find that the

amount of information about the book (beyond the best quotes) has little effect on the performance. Fano et al. (2013) com-

pare call markets with CDAs. The strategies of traders evolve over time following a genetic algorithm that favours strategies 

of better performing agents. It turns out that, in the call market, traders become price-takers, offering their valuation or cost, 

and in the CDA, they become price-makers, bidding the equilibrium market price. Anufriev et al. (2013) use IEL and compare

the AF and IF information environment under the CDA market. They find that traders behave more like price-takers in the

AF environment and tend to be more like price-makers in the IF environment, as more information becomes available. 

All of the studies discussed above are focused on outcomes after some learning stage, that is on some “equilibrium”

outcome. In this paper, instead, we are interested in the experimental evidence of immediate learning of human subjects 

under the two feedback environments. We will use the equilibrium predictions of the IEL algorithm from AALP to formulate 

hypotheses and organize the results. However, we will extend their IEL algorithm in Section 5 to better match our short-run

experimental data. 

2.2. The IEL model 

The Individual Evolutionary Learning (IEL) model ( Arifovic and Ledyard, 20 03; 20 07 ) is an appropriate computational

test-bed to study the market design questions discussed above. Indeed, in a complex environment with a large strategy 

space, it is fairly impossible to get analytic solutions to equilibrium models, and it is also unlikely that traders will behave

fully rationally from the outset. The IEL model defines a computational algorithm that simulates the process of learning. 

Arifovic and Ledyard (2004) show that this algorithm performs better than other learning rules, and the outcomes of the 

IEL model are very similar to experimental outcomes in many situations where subjects have continuous or large strategy 

spaces. 

Given the three building blocks – (i) a specific environment, consisting of traders’ endowments and valuations and costs, 

(ii) a trading protocol, defining the outcome of the trading session given the strategies of traders, and (iii) information

feedback, i.e., what information is available to traders between consecutive trading sessions – the IEL algorithm defines a 

multi-dimensional stochastic process. The state variables of this process are the individual bidding strategies that agents 

use and the aggregate market variables, such as prices. IEL can be used to produce theoretical predictions. For example, the

two information feedback cases, AF and IF , as defined above, create a contrasting set of IEL-simulations and corresponding 

statistics for allocative efficiency, average price, price volatility, and so on. 

IEL, in its simplest form, has only two parameters, the size of the strategy space, J, that reflects the cognitive capacity of

traders, and the probability of experimentation, ρ , that models the rate at which new strategies are experimented with at 

each stage. IEL also depends on the specification of “hypothetical” utility; that is, the utility that traders would have received 

from playing a strategy in the past. Traders are boundedly rational and compute hypothetical utility without taking into 

account the learning processes of others. Hypothetical utilities depend, generally, on the environment, the trading protocol, 

and the information feedback. 

2.3. IEL for the CDA-SD markets 

The IEL model that AALP study can be used on the CDA-SD markets to confront the AF and IF settings. We present their

results in order to formulate our experimental hypotheses. 

The trading sessions are in discrete time, with periods indexed by t . Several buyers and sellers, whose valuations and

cost are exogenously given and fixed over all periods, trade repeatedly. Each trader can buy or sell at most one unit of a

good every period. Traders know their own valuations and costs, but not the valuations and costs of others, neither do they

know the distributions. Utilities are linear; that is, they are valuation minus transaction price for buyers and transaction 

price minus cost for sellers. Agents who do not trade, get utility 0. Let V b and C s denote the valuation of buyer b and cost

of seller s , respectively. The set of valuations and costs define an environment. 

Trade on the CDA-SD market is organized as follows. At the beginning of each period, each trader submits one order (bid

for a buyer, offer for a seller). These orders arrive at the market organized as the CDA in random order. The CDA defines

a (possibly empty) set of trades and corresponding transaction prices, according to the standard rules (as described in the 

Introduction). 

After the period ends, all traders receive the same between-period feedback. Two feedback scenarios are considered. 

The richer IF scenario provides each trader with a detailed information about the order book from the previous period. 

Specifically, each trader can see all individual bids and offers, as well as how the order book evolved. The AF scenario

provides each trader with the average transaction price only. 

Under the IEL algorithm, every artificial agent is endowed with an individual pool of strategies, evolving in time. The 

pools are denoted as B b,t and A s,t for buyer b and for seller s , respectively, and are composed of J real numbers belonging to
4 
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the admissible intervals, which are [0 , V b ] for buyer b and [ C s , 100] for seller s . 10 When simulations start, at period t = 1 , the

initial pools are formed by J uniform draws from the corresponding admissible interval, independently for all agents. In this 

period, each agent takes one of the strategies from the pool with equal probability and submits it. The trading mechanism

matches orders and defines prices. After the period, each trader receives an information according to the feedback. Before 

the next period starts, the IEL model plays a role in (i) updating each agent’s pool and (ii) selecting a new order from that

pool. The same process then is repeated and so on. 

At the beginning of every period, the pools of all traders are updated independently, in two consecutive stages. At the ex-

perimentation stage, every element of the pool is either removed with probability ρ , or remains with probability 1 − ρ . If an

element is removed, it is replaced by an element drawn from some distribution truncated to the admissible interval of the

trader. 11 After this procedure is repeated independently for each of the J positions in the previous period pool, an interme- 

diate pool is formed. At the replication stage , the final pool is obtained, element-by-element, repeating the following process 

J times. Two randomly chosen strategies from the intermediate pool are compared with each other (with replications), with 

the best of them occupying a place in a new pool. The comparison between strategies is made according to a performance

measure, called hypothetical utility, denoted as U 

I or U 

A since this utility depends on the information feedback. After the 

new pools are formed, the strategy is selected for each trader randomly from their pool, with probabilities proportional to 

the hypothetical utilities. For instance, the probability that buyer b selects bid b i in period t under IF is given by 

πb,t (b i ) = 

U 

I 
b,t 

(b i ) ∑ J 

k =1 
U 

I 
b,t 

(b k ) 
, 

where U 

I 
b,t 

(b k ) is the hypothetical utility of buyer b at time t from bidding b k . 

AALP specified the hypothetical utilities as follows. For the AF setting (“closed” book in AL), where only the average price 

of all transactions from the previous period, p̄ t−1 , is reported back to each trader, the hypothetical utilities are 

U 

A 
b,t (b i ) = 

{
V b − p̄ t−1 if b i ≥ p̄ t−1 , 

0 otherwise , 
(1) 

for buyer b. Analogously, the hypothetical utility of seller s is 

U 

A 
s,t (a i ) = 

{
p̄ t−1 − C s if a i ≤ p̄ t−1 , 

0 otherwise . 
(2) 

For the IF setting (“open” book in AL), where traders can see the whole book of the previous session, the agents substitute

their orders to the last session book and find their corresponding utility. The hypothetical utility of buyer b from bid b i is 

U 

I 
b,t (b i ) = 

{
V b − p ∗

b,t−1 
(b i ) if bid b i would lead to a trade at p ∗

b,t−1 
(b i ) , 

0 otherwise . 

Analogously, seller s computes the hypothetical utility of offer a j as 

U 

I 
s,t (a i ) = 

{
p ∗s,t−1 (a i ) − C s if offer a j would lead to a trade at p ∗s,t−1 (a i ) , 

0 otherwise . 

In other words, the hypothetical utility is what a trader would get last period with the order, if all other traders submitted

the same orders they did and the sequence of the orders in the book would be the same. 12 

2.4. AALP results and experimental hypotheses 

AALP study the stationary state of the IEL algorithm after a long transitory period. They found that, in the long-run, the

strategies employed by the artificial traders depend on the information feedback. 13 In the IF case, traders learn to become

“price-makers”, as they tend to submit similar orders belonging to the range of the equilibrium prices. This leads to relatively

stable prices, with low volatility and high information efficiency. The occasional experimentation of IEL, leads however to 

the possible loss of allocative efficiency due to missing transactions. The strategies and dynamics are different under the AF 
10 The size of the pool is kept constant, but note that it is possible (and in fact common) that the pool has repeated strategies. In all our environments, 

the valuations and costs are between 0 and 100. We impose individual rationality constraints, not permitting traders to submit offers that could result in 

a negative profit. 
11 Simulations in AALP use the uniform distribution. However, we found that our experimental data are matched better when the experimentation occurs 

from the truncated normal distribution, with the mean given by the element that is replaced. In other words, local experimentation describes the data 

better. 
12 The assumption of the same sequence is a reasonable behavioral assumption. Alternatively, traders could “simulate” all possible sequences of orders’ 

arrival and evaluate expected hypothetical utility. However, the number of computations for this is very large. 
13 More precisely, the major differences are in the strategies of the infra-marginal traders, i.e., traders who should trade in the demand/supply imposed 

equilibrium model. The other, extra-marginal traders submit random admissible strategies but trade very rarely. We define the infra- and extra-marginal 

traders in Section 3 . 

5 
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Table 1 

Treatments of the experiment and the number of observations. 

Treatments UNSW Caltech Total 

AF-1 aggregate feedback; schedule S1 4 5 9 

AF-2 aggregate feedback; schedule S2 4 5 9 

IF-1 individual feedback; schedule S1 4 5 9 

IF-2 individual feedback; schedule S2 4 5 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

case, where traders submit the orders outside of the equilibrium price range, close to their valuations and cost (to make sure

that they transact), and behave thus similar to the “price-takers”. As they do so, the price gets volatile, sometimes leaving

the equilibrium price range, and lowering informational efficiency. The loss of allocative efficiency occurs due to possible 

trading of the extra-marginal traders (who should not trade in the equilibrium). In both cases, the allocative efficiency is in

the range of 88% − 95% for most of the IEL parameters. 

One important caveat to these results is that the AALP describe only some but not necessarily all stationary states. 

Moreover, the results hold precisely only for the specific schedules taken from Gode and Sunder (1997) . Simulations for

more sophisticated environments, similar to those that we use in the experiment reported in this paper, suggest that the 

result about low information efficiency in the AF setting can be extended, but the impact of the feedback on allocative

efficiency is somewhat uncertain due to a strong interaction with the environment. 14 

This discussion leads to the following two hypotheses that our experiment will test. 

Hypothesis 1. Full allocative efficiency of 100% is not achieved under the CDA-SD both in the AF (‘closed’ book) and in the

IF (‘open’ book) information feedback scenario. The ranking of the allocative efficiency for the two information feedback 

scenarios depends on the schedule. 

Hypothesis 2. Price volatility is significantly higher in the AF (‘closed’ book) than in the IF (‘open’ book) information feed-

back scenario. The average transaction price stays in the equilibrium price range in the IF , but may leave it in the AF . 

Both parts of Hypothesis 2 suggest that the AF will have lower information efficiency than the IF . 

3. Experiment 

The identical experiment sessions were run in two locations. 8 sessions were conducted in October 2010 at the Busi- 

ness Experimental Research Laboratory (BizLab) at the UNSW, Sydney; and 10 sessions were conducted in October 2012 

and February 2013 at Caltech’s Laboratory for Experimental Economics and Political Science (EEPS). The experiments were 

computerized using the zTree software ( Fischbacher, 2007 ). In both locations, the subjects were mostly undergraduate and 

some postgraduate students majoring in different areas. The participants were recruited from the large pools through the 

ORSEE system ( Greiner, 2015 ). 

There were 10 participants in each session. The session incorporated two blocks, with 20 trading rounds each. Blocks 

corresponded to two different environments, i.e., sets of valuations and cost. The valuation and cost of every participant 

were kept the same during all trading rounds of each block. In each round, 5 buyers and 5 sellers traded according to the

CDA-SD protocol. Each buyer demanded one unit of a commodity whose valuation was privately known, and each seller 

could sell one unit of that commodity whose cost was privately known. Every participant was able to submit an order

with up to two decimal digits. These individual (limit) orders, bids and offers, were collected before the trading period, and

then the order book was simulated with random arrival of these orders. The calculation of the payoff per trading round is

standard for trading experiments: the buyer’s payoff is given by valuation minus transaction price, if the buyer traded, and 

0, otherwise. The seller’s payoff is given by the transaction price minus cost, if the seller traded, and 0, otherwise. 15 The

procedure and incentives were explained to the participants before the experiment. 

We ran two treatments of the experiment that differed in the feedback that participants received between trading rounds. 

Those corresponded to the Aggregate-level (market) feedback ( AF ) and Individual-level (orders) feedback ( IF ) scenarios ex- 

plained in Section 2.1 . Before every trading round, the participants could see information from the previous round and 

analyze it for 20 seconds. Then the information window was supplemented on the screen with a decision window and 

subjects had additional 60 seconds to submit the offer. In the treatments with the AF scenario, participants only knew the

previous average price of all transactions, their previous period earning (from which they could infer whether they traded, 

and if yes, then their transaction price) and their cumulative earnings. In the treatments with the IF scenario, in addition

to this information, participants were faced with the whole order book of the previous period, i.e., with all 10 submitted

bids and asks (without identities of traders) in the order of their arrival. If no transaction was recorded during the previous
14 For most of the IEL parameters in the AALP, the allocative efficiency is slightly higher in the AF case, for our S1 schedule in Section 3 . Instead, it is 

substantially higher in the IF case, for the schedule that is very similar to our S2 schedule in Section 3 . 
15 To prevent negative payoffs, the bids could not exceed the buyer’s valuations and the offers could not exceed the seller’s cost. 
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Fig. 1. Information and decision windows shown in the treatment with individual level information feedback, IF . The decision part contained the counter. 

When the offer was overdue, the overdue message appeared. 

Fig. 2. Demand/Supply diagrams for the market configurations considered in the paper. Left: S1 -market. Right: S2 -market. 

 

 

 

 

 

 

round, participants in both treatments were informed about this, and the participants in the IF treatment could see the 

evolution of the order book. 16 

Fig. 1 shows the screen from the IF treatments with combined information and decision windows. The decision window 

(identical in both AF and IF treatments) is in the lower part of the screen, below the table. It shows the role of the partici-

pant, the valuation (or cost), contains the window to type the offer, and displays the time counter. The information window

for the IF treatment contains, in the upper part, the table with four columns showing (from left to right) the step when

the order of the participant arrived, whether it resulted in a transaction, the average price of all transactions, and the last

period and cumulative earnings. Then, in the middle part, it shows how the order book evolved in the previous session. The

information screen in the AF treatment had only the last two columns of the upper table and no middle part. The examples

of the screens from all treatments can be found in Appendix B . 
16 There were only 3 periods with no transactions. This is less than 0 . 5% of the total number of 720 trading periods ( 9 × 4 = 36 trading blocks with 20 

periods each). 
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Fig. 3. Allocative efficiency in the experiment: evolution over 20 periods (left) and split for each treatment into the initial periods, 1-5, and subsequent 

periods, 6-20 (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

In the experiment, we used two different market schedules, both with 5 buyers and sellers, see Fig. 2 . Running an

experiment with different schedules is necessary to check robustness of the differences between the information scenarios. 

We picked two schedules that differ in the equilibrium quantity and price ranges and have been used in the previous

studies. 17 Schedule S1 (the left panel) has 4 trades in equilibrium with the range of equilibrium prices [55,66). In schedule

S2 (the right panel), the equilibrium quantity is 3 and equilibrium price range is [45,50]. Thus, S1 allows more trades and

has a larger range of equilibrium prices, leading to potentially higher efficiency than S2 . 18 The traders that would trade

in equilibrium are called infra-marginal and those who would not trade in equilibrium are called extra-marginal. The total 

surplus of trade (regardless of the mechanism) is maximized when the infra-marginal buyers (IMB) trade with infra-marginal 

sellers (IMS). There are 4 IMB and 4 IMS in S1 with the largest surplus equal to 203. There are 3 IMB and 3 IMS in S2 with

the largest surplus equal to 135. The allocative efficiency is defined as the fraction of this surplus extracted during the trading

session. 

After reading the instructions (see Appendix A ) and completing a test designed to check the subjects’ understanding of 

the instructions, the first block of the experiment started. At the beginning of this block each participant was randomly 

assigned to be a buyer or a seller; every buyer saw their valuation and every seller saw their cost. After 20 trading rounds,

a new block began. Every buyer changed their role to become a seller, every seller changed their role to become a buyer,

and the valuations and costs were assigned according to a new schedule. 19 Then the next 20 trading rounds started. When

those were over, subjects filled in a questionnaire and collected earnings equal to a show-up fee of 5 dollars and all their

accumulated payoff over 40 trading rounds. 

The experiment has a 2 × 2 design, as we varied information feedback and the schedule. 20 In total we have 4 treatments

(2 information feedback scenarios and 2 different schedules), see Table 1 . Taking into account sessions in both locations, we

have 9 observations for each treatment. 

4. Experimental results 

We present the results in the same order as the two hypotheses formulated in Section 2.4 . We start with the allocative

efficiency in Section 4.1 and then discuss the measures of informational efficiency in Section 4.2 . Our findings are supported

by a regression analysis, the details of which can be found in Appendix C . 

Before presenting the results, we provide an overview of how we analyzed the data. We illustrate the time evolution 

of average allocative efficiency in Fig. 3 (left) for the two information treatments (averaging the results from all sessions 

for both schedules). Allocation efficiency initially goes up quickly but exhibits variability in time over the whole course of 

the experiment. Variability is observed for other characteristics we are interested in, as well, and is present in almost any
17 For schedule S1 , the valuations/costs are V 1 = 100 , V 2 = 93 , V 3 = 92 , V 4 = 81 , V 5 = 50 , C 1 = 30 , C 2 = C 3 = 39 , C 4 = 55 and C 5 = 66 . This is schedule 1 in 

Arifovic and Ledyard (2007) and it was referred as ‘AL’ in simulations in Anufriev et al. (2013) . For schedule S2 , the valuations/costs are V 1 = 90 , V 2 = 70 , 

 3 = 50 , V 4 = 30 , V 5 = 10 , C 1 = 5 , C 2 = 25 , C 3 = 45 , C 4 = 65 and C 5 = 85 . This schedule is very similar to schedule 2 in Arifovic and Ledyard (2007) and the 

symmetric ‘S5’ market in Anufriev et al. (2013) . 
18 We verified it by running a simple simulation where agents from a schedule are matched randomly and the total surplus is computed. For S1 we 

achieve an average efficiency of 46% in comparison to an efficiency of 10% for S2 . 
19 The subjects knew about the change of the role between blocks. To balance expected payoffs for the participants, we re-assigned the buyers with 

higher valuations in the first block to become the sellers with higher cost in the second block, and the same for the sellers from the first block who 

became buyers. The subjects did not know this. 
20 In each session we used both schedules, running them in different orders. We found no significant impact of the order in which the schedule appeared. 

We also found no evidence that the experience of participants with one schedule would affect their behavior with another schedule, which is not surprising 

given that participants changed their roles between blocks. 
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Table 2 

Means (with standard errors in parentheses) of different characteristics for experimental data. All characteristics are averaged over all trading periods, 

except for the price volatility that is averaged over sessions. The last two columns report the t -test statistics and p -values for differences in the means 

between treatments for the data pooled across the two schedules. When computing the t-statistics, we subtract from the upper mean the lower mean. 

Schedule 1 Schedule 2 Pooled t -stat p -values 

Allocative efficiency 

periods 1–5 AF 0.745 (0.021) 0.729 (0.036) 0.737 (0.202) 2.219 0.013 

IF 0.666 (0.030) 0.654 (0.050) 0.660 (0.028) 

periods 6–20 AF 0.822 (0.014) 0.794 (0.028) 0.808 (0.016) −0.007 0.497 

IF 0.830 (0.021) 0.786 (0.023) 0.808 (0.016) 

Number of “missed” transactions 

periods 1–5 AF 0.911 (0.111) 1.089 (0.111) 1.000 (0.080) −2.505 0.006 

IF 1.1778 (0.091) 1.333 (0.089) 1.256 (0.064) 

periods 6–20 AF 0.489 (0.062) 0.785 (0.097) 0.637 (0.067) −0.447 0.328 

IF 0.563 (0.082) 0.793 (0.081) 0.678 (0.062) 

Indicator of whether the average price is outside of the equilibrium range 

periods 1–5 AF 0.356 (0.104) 0.889 (0.048) 0.622 (0.085) 0.096 0.462 

IF 0.467 (0.111) 0.756 (0.093) 0.611 (0.078) 

periods 6–20 AF 0.422 (0.101) 0.748 (0.065) 0.585 (0.070) 0.667 0.252 

IF 0.370 (0.117) 0.659 (0.086) 0.515 (0.079) 

Distance from the average price to the equilibrium range 

periods 1–5 AF 1.357 (0.446) 8.037 (1.408) 4.697 (1.081) 0.410 0.341 

IF 2.305 (0.795) 5.985 (1.133) 4.145 (0.806) 

periods 6–20 AF 1.534 (0.580) 3.074 (0.778) 2.304 (0.506) −0.676 0.249 

IF 1.284 (0.634) 4.475 (0.975) 2.880 (0.684) 

Price volatility 

periods 1–5 AF 4.278 (0.876) 6.664 (1.054) 5.471 (0.725) 0.718 0.236 

IF 4.767 (0.902) 4.703 (1.192) 4.735 (0.725) 

periods 6–20 AF 3.273 (0.606) 3.976 (0.651) 3.625 (0.440) −1.001 0.158 

IF 3.043 (0.750) 5.850 (0.992) 4.446 (0.693) 

 

 

 

 

 

 

 

 

 

 

session of the experiment. Therefore, we start by averaging the characteristic of interest (such as allocative efficiency) in 

each session over a specified time period and focus on the corresponding mean. 21 We distinguish, in particular, the initial

periods (periods 1–5) and the subsequent periods (periods 6–20). Distinguishing the initial five periods from the rest of the 

treatment allows us to focus on the learning phase of the experiment. We can also separately look at the later periods that

may correspond to a stationary state. Recall that the hypotheses in Section 2.4 are based on the theoretical IEL results from

AALP. Those results, in turn, reflected one of the stationary states of the model. 

After the data of a specific characteristic, such as allocative efficiency, are averaged over time for each session, the 

session-specific statistics are averaged over all sessions of a given treatment. As the results are independent between dif- 

ferent sessions, we compute the mean values and the standard errors of such averaging. We use those means and standard

errors to perform the statistical tests. Specifically, for the same characteristic we make the pair-wise comparisons between 

treatments, compute the t-statistics for the difference in mean test, and report in the text whether the difference is signifi-

cant at the 5% level. 22 Table 2 reports the p-values and other data behind the figures and results. 

To be more precise in our findings, we run regressions of the following type for various characteristics, using the trading

periods as the observation units: 23 

Allocative Efficiency = β0 + β1 DInfo + β2 DInit + β3 ( DInfo × DInit ) + β4 DLoc + β5 DSch + β6 DExp + error. (3) 

In this regression the dummy variables are set as follows: DInfo is 1 for AF and 0 for IF ; DInit is 1 for periods 1–5 and 0 for

periods 6–20; DLoc is 1 for Caltech and 0 for UNSW; DSch is 1 for schedule S1 and 0 for S2 ; DExp is 1 for the first block

and 0 for the second block of the experiment. Appendix C collects the corresponding estimates for different characteristics. 

Running an experiment in two different locations (UNSW and Caltech) is useful to make sure that the differences in 

treatments are not affected by the participant pool. However, we often find a significant effect of location, with average

efficiencies being higher in the Caltech sessions than in the UNSW sessions, when compared for the same treatments. 24 On
21 To limit the effect of possible outliers, we have done the same analysis based on the medians (not on the means) of data over time. The results are 

similar and are available upon the request. 
22 The appropriate t -statistics is the difference of two means divided by the squared root of the sum of the squares of the two standard errors. The 

p -values are reported for the one-sided tests and are based on 18 independent observations (as we pool the data over locations and schedules). 
23 The other characteristics (defined later) are: the number of “missed” transactions, an indicator of whether the average price is outside of the equilibrium 

range, and price volatility. 
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Fig. 4. Comparison of the allocative efficiency across information treatments for the two schedules separately (left) and comparison of the number of 

transactions across information treatments for the two schedules (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the other hand, we found that the effect of information feedback ( AF vs. IF ) is in the same direction for both locations. 25 

Thus, we pool data along location when we present them visually and make the pairwise tests for the mean. 

4.1. Allocative efficiency 

We begin with an illustration in Fig. 3 (right) of one of the key results of the experiment. This figure compares the

allocative efficiency across two information treatments, AF and IF , for the first five and remaining 15 periods of the experi-

ment. We make three observations from this figure. First, in the initial periods, allocative efficiency is larger for the AF than

for the IF treatment. Thus, similar to the call markets analyzed in AL, an increase in an amount of information available to

the traders results in a lower allocative efficiency. Second, in the remaining periods of the experiment, allocative efficien- 

cies under the two information treatments are very close to each other. Thus under the CDA, the negative effect of more

information is only temporary. The ‘Allocative efficiency’ part of Table 2 confirms that the difference between treatments is 

significant in the initial periods but not in the remaining periods. Finally, we notice that allocative efficiency reaches 80% .

On the one hand, this is lower than that achieved in the IEL simulations in the AALP, where average efficiency is above 88%

in both schedules, for most of the parameters. On the other hand, 80% is much larger than the efficiencies we would get

under the random allocation process (that adjusts for the difficulty of the schedule) described in footnote 18. 26 

In Fig. 3 , the data are pooled across schedules. To justify that this is appropriate, we show the allocative efficiency

disaggregated across schedules in Fig. 4 (left). (The data behind this figure are also in the ‘Allocative efficiency’ part of

Table 2 ). We can see that the effect of the information treatments is the same for both schedules for the first five periods

of the experiment and for the remaining periods. 27 

To find the reason for low allocative efficiency, we investigate in Fig. 4 (right) the average number of transactions. For

schedule S1 , the equilibrium number of transactions is 4. We can see that, with time, the number of transactions increased,

but it is never close to the equilibrium 4 transactions. For schedule S2 , the equilibrium number of transactions is 3. Again,

the actual average number increases in time but it is smaller than 3. The ‘Missed transactions’ part of Table 2 reports the

statistics for the difference between the equilibrium and experimental number of transactions. Testing across treatments, 

we find that the difference is significant but only for the initial periods, consistently with the allocative efficiency results. 

From Fig. 4 (right) and Table 2 , we can see that the gap between the equilibrium and experimental number of transactions

is larger for the S2 . Apparently, this contributes to a smaller allocative efficiency for schedule S2 . 

The regression analysis in Appendix C confirms and expands these findings. We find that the allocative efficiency is 

significantly lower in the initial periods and significantly lower for schedule S2 . Both these effects are also significant in the
24 We find the same effect using the coefficient estimate on the DLoc dummy in the regressions reported in Appendix C . At the 5% level of significance, 

the location effect is significant for the allocative efficiency (that is higher in the Caltech sessions), and the out-of-equilibrium index and volatility (both 

are lower in the Caltech sessions). 
25 Our findings are similar to those in Snowberg and Yariv (2021) who compare performances of different subject pools in a number of elicitation tasks. 

They find that the Caltech students’ behavior is closer to rational and that the direction of comparative statics between treatments is consistent across 

locations. 
26 The allocative efficiency in periods 6–20 of the experiment, in both treatments and for both schedules, is larger than the allocative efficiency for 97% of 

simulations for the random allocation. This can be compared with similarly computed numbers of 93% and 97% in the AF treatment, and 85% and 82% in 

the IF treatment, for schedules 1 and 2, correspondingly. This suggests that, once learning is done after first five periods, in both treatments the efficiency 

is pretty high. It was also high in the first 5 periods for the AF treatment, which is significantly better than for the IF treatment. 
27 For periods 1–5, the difference in the allocative efficiency between the AF-S1 and IF-S1 is significant with p -value 0.023; this difference between the 

AF-S2 and IF-S2 is marginally significant with p -value 0.120. For periods 6–20 the differences are not significant in both cases with p -values 0.622 and 

0.414, respectively. 
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Fig. 5. Comparison of the distance to the range of equilibrium prices ( left ) and price volatility ( right ) across information treatments for the two schedules 

separately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

regression for the missed number of transactions. Interestingly, the effect of the schedule on the allocative efficiency is in 

the same direction as expected from simulations with random agents (cf. footnote 17 ). 

We summarize the above discussion in the next result supporting Hypothesis 1 . 

Result 1. Over all sessions, allocative efficiency is about 77 − 80% . Allocative efficiency increases over time, indicating learn-

ing. Allocative efficiency depends on the schedule and is significantly higher under the AF than under the IF but only for

the initial stage of 5 periods, after which there is no significant difference between the two information treatments. 

4.2. Information efficiency 

Measures of “information efficiency” reflect how market is able to aggregate individual information into the price. In our 

repeated setting, where no new fundamental information is revealed between periods, information efficiency is largely about 

the ability of the mechanism to keep the price within the equilibrium range. Still, information efficiency is interesting to 

study, in light of the empirical evidence discussed in Section 2.1 . Information efficiency is strongly affected by the individual

bidding strategies, and it is also related, but not identical to allocative efficiency. 28 

We analyze two measures of information efficiency: an indicator of whether the average transaction price during the 

session falls outside of the equilibrium range (in which case it is set to 1 for the session, and otherwise it is 0), and, the

distance of the average transaction price to the equilibrium range (which is 0 when the average transaction price belongs to

the equilibrium price range). Note that the latter measure is more refined than the former. The results are very similar and

we illustrate them only for this latter, more refined measure in the left panel of Fig. 5 . What stands out from this figure is

a very strong effect of the schedule for this measure. The distance is especially high for schedule S2 , and especially for the

initial five periods. This is also confirmed in the regression analysis in Appendix C . The effect of the information treatment

is mixed, and because of the interaction between these two effects, we find no significant difference between the AF and IF

treatments, when we pool observations over the schedules in Table 2 . 

We also look at the variability of the average price over time, i.e., price volatility. We measure that, in a given session,

during the corresponding time interval. The right panel of Fig. 5 compares the volatility across treatments, see also Table 2 .

The directions of the effects of schedule, information, and time periods are the same for the price volatility as for the

distance to the equilibrium range. The effect of schedule seems to dominate the other effects with no significant effect of

information treatment. 

Taken together, our results indicate very low information efficiency in the experiment. For example, the indicator in 

Table 2 shows that the average price of transactions is very often outside of the equilibrium range. For schedule S2 , this

occurs for almost 89% of the initial periods for AF-S2 , dropping to 75% for the remaining periods, and for 76% of the initial

periods for IF-S2 , dropping to 66% for the remaining periods. The index is lower for schedule S1 , where the equilibrium

price range is larger, but it is still around 40% of the cases over the experiment. 

By and large, the experiments do not support Hypothesis 2 , suggesting that the IEL generates much less volatile simula-

tions in the stationary state than those that we observe in the experiment. We summarize all of this in the next result. 

Result 2. Information efficiency, as measured by the fraction of periods when the average transaction price is outside the 

equilibrium range, the distance to the range, or price volatility is small in the experiment and is especially small for schedule

S2 . There is no significant difference in price volatility across information treatments. 
28 Indeed, when an extra marginal trader transacts and lowers allocative efficiency, the average price of transactions in the trading session may fall within 

the equilibrium range with no impact on information efficiency. On the other hand, infra marginal traders can transact at prices outside of the range, 

lowering information but not allocative efficiency. 
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5. IEL and experimental data 

To verify that the IEL algorithm is able to replicate the key data patterns observed in the experiment, we simulated the

CDA-SD environment using the IEL specification of AALP, described in Section 2.3 , for each of the four treatments, AF-S1,

AF-S2, IF-S1 and IF-S2 . We conducted 10,0 0 0 simulations with different random seeds. In contrast to AALP who looked at

the stationary IEL dynamics over long time and after 100 transitory periods, in the simulations presented below, we closely 

follow the experimental setting and focus on the first 20 periods of the IEL simulations, without any burn-in periods. More

specifically, we separately consider periods 1–5 and periods 6–20. We do this to reflect learning in the experiment, evaluate 

an ability of the IEL to replicate this learning phase, and see the effect of the IEL estimated parameters when it is fitted to

the short-term data. 

We optimized the key parameters of the IEL, that is, the size of the pool, J, the experimentation probability, ρ , and the

assumption about the distribution that is used at the experimentation stage. Specifically, we minimize the Mahalanobis dis- 

tance between the experimental data and simulations, defining this distance jointly for all five statistics listed in Table 2 and

for all treatments and for both blocks of periods. 29 In terms of distribution used at the experimentation stage, we found that

the local experimentation under which an element from the last pool is replaced by a random variable drawn from the nor-

mal distribution, whose mean is equal to the removed element, truncated at the admissible interval of the trader, fits data

better than the uniform distribution. Therefore, we also optimized the standard deviation σ of this normal distribution rep- 

resenting local experimentation. A grid-search over a wide range of parameter values led to the following optimized values: 

J = 10 , ρ = 0 . 1 and σ = 5 . 

When performing the search for parameters, we discovered that the allocation efficiency is mainly driven by the com- 

bination of J and ρ . Using a larger experimentation pool and lower experimentation probability results in much higher 

allocative efficiencies than observed in the experimental data. The information efficiency measures such as price volatility 

are, instead, more sensitive to the distribution used at the experimentation stage of the IEL. Specifying experimentation 

from the uniform distribution on all range of admissible values, that was used in AALP, resulted in much lower information

efficiency, and higher price volatility, than we observed in the experimental data. 

Table 3 reports the means of the AF-IEL and IF-IEL simulations including a new modified AF-IEL algorithm, AF-IEL mod ,

which we explain later in this section. The three columns with “Means” (for schedule 1, schedule 2, and pooled data over the

schedules) can be directly compared with the corresponding statistics for the experimental data reported in Table 2 . In the

last three columns of Table 3 we report the p-values of the two-sided t -test for the null hypothesis that the IEL-based means

are the same as the experiment-based means. A sufficiently high p -value indicates a good match with the experimental data.

Comparing Table 3 with Table 2 , we observe that the optimized IEL matches the experimental data relatively well in terms

of the allocative efficiency but less so for the information efficiency measures, even if they are in reasonable ranges. 

We also notice that the AF-IEL algorithm strongly overpasses the allocative efficiency in periods 6–20 for both schedules. 

That may happen for the following reason. IEL, as described in Section 2.3 , was initially designed in AL for the agents

participating in a call market. In the call market, bids and offers are cleared simultaneously and everyone who trades does

so at the same price. In the AF treatments, where the feedback is limited to the past price, it is then reasonable to assume

that a trader’s own impact on the clearing price is negligible and that the best strategy to maximize the probability of

transaction is to submit a bid at or just below the trader’s own valuation or an offer at or just above the trader’s own

cost. In the CDA, however, orders are cleared at different prices, that is, at the bid or offer prices that are in the book

at the time of the match. In contrast to the call market, it often happens that a buyer will pay and a seller will receive

exactly what they bid or offer. This provides traders incentives to reduce a bid or increase an offer to realize a higher profit.

This “hawkish” (and more price-making) bidding behavior may, in turn, reduce the number of transactions and lower the 

allocative efficiency. 

This observation from our experiments suggests that, when adjusting the IEL algorithm to the CDA, and designing the 

hypothetical utility functions for the AF treatments, AALP did not fully reflect the conditioning of traders on their own bids

or offers. Indeed, Eq. (1) for buyers’ hypothetical utility assumes that as long as a bid is above the average past price, the

order will be cleared at the average past price, regardless of the exact bid; and similarly for sellers and their hypothetical

utility (2) for sellers. Under this setting, the IEL produces volatile price and pushes individual strategies towards the valua- 

tions/cost of traders, as was shown in AALP. We did not observe this in the experiment. That suggests that the behavioral

assumption of the hypothetical utility in the IEL algorithm calls for a change. 

5.1. IEL for the aggregate feedback information treatment 

Armed with these observations, we now introduce the AF-IEL mod algorithm, which is the modified IEL algorithm for 

the AF treatment. 
29 The Mahalanobis distance is a generalization of the Euclidean distance for heteroskedastic data. It is defined as 
√ 

(x − μ) ′ S −1 (x − μ) , where x and μ

are column vectors and S is the covariance matrix. Since we conduct 10,0 0 0 simulations, the standard errors of the IEL-based means are negligible relative 

to the standard errors of the experimental means. Therefore, in computing the Mahalanobis distance as well as subsequent t -tests, IEL-based means were 

treated as population parameters, μ. 
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Table 3 

Means of different characteristics for the IEL-simulated data for the best fitted parameters over 10,0 0 0 simulations. The last three columns report the 

p -value of the t -test for the null hypothesis that the means for the IEL simulated data are the same as the means of the experimental data for each 

corresponding schedule and period. Combining all 5 measures and 2 phases (periods 1–5 and 6–20), this null hypothesis cannot be rejected at the 5% 

significance level in 4 out of 10 instances for AF-IEL , 6 out of 10 for AF-IEL mod , and 6 out of 10 for IF-IEL . 

Means p-values (Ho: experim = IEL) 

Sched 1 Sched 2 Pooled Sched 1 Sched 2 Pooled 

Allocative Efficiency 

periods 1–5 AF-IEL 0.750 0.684 0.717 0.825 0.213 0.921 

AF-IEL mod 0.732 0.669 0.700 0.532 0.095 0.856 

IF-IEL 0.712 0.650 0.681 0.124 0.892 0.674 

periods 6–20 AF-IEL 0.907 0.870 0.888 0.000 0.007 0.000 

AF-IEL mod 0.846 0.806 0.826 0.082 0.662 0.254 

IF-IEL 0.806 0.820 0.813 0.262 0.138 0.741 

Number of “missed” transactions 

periods 1–5 AF-IEL 0.884 1.222 1.053 0.810 0.232 0.508 

AF-IEL mod 1.004 1.330 1.167 0.401 0.030 0.037 

IF-IEL 1.080 1.250 1.165 0.280 0.349 0.153 

periods 6–20 AF-IEL 0.109 0.553 0.331 0.000 0.016 0.000 

AF-IEL mod 0.582 1.032 0.807 0.135 0.011 0.011 

IF-IEL 0.722 0.964 0.843 0.053 0.035 0.008 

Indicator of whether the average price is outside of the equilibrium range 

periods 1–5 AF-IEL 0.616 0.778 0.697 0.012 0.020 0.380 

AF-IEL mod 0.566 0.752 0.659 0.044 0.004 0.664 

IF-IEL 0.570 0.778 0.674 0.356 0.814 0.422 

periods 6–20 AF-IEL 0.656 0.855 0.756 0.020 0.100 0.015 

AF-IEL mod 0.475 0.747 0.611 0.602 0.982 0.715 

IF-IEL 0.497 0.772 0.634 0.279 0.191 0.132 

Distance from the average price to the equilibrium range 

periods 1–5 AF-IEL 4.459 9.018 6.738 0.000 0.486 0.059 

AF-IEL mod 3.747 7.958 5.852 0.000 0.955 0.285 

IF-IEL 3.681 8.024 5.853 0.084 0.072 0.034 

periods 6–20 AF-IEL 4.516 8.058 6.287 0.000 0.000 0.000 

AF-IEL mod 2.089 4.985 3.537 0.339 0.014 0.015 

IF-IEL 2.371 5.314 3.842 0.086 0.390 0.160 

Price volatility 

periods 1–5 AF-IEL 9.580 12.357 10.969 0.000 0.000 0.000 

AF-IEL mod 6.970 9.133 8.051 0.002 0.019 0.000 

IF-IEL 8.106 11.399 9.752 0.000 0.000 0.000 

periods 6–20 AF-IEL 10.025 11.631 10.828 0.000 0.000 0.000 

AF-IEL mod 3.616 5.201 4.409 0.571 0.060 0.075 

IF-IEL 4.833 6.905 5.869 0.017 0.288 0.040 

 

 

 

 

We made two modifications. First, we take into account the most recent experience of a trader. Note that in the experi-

ment subjects could see their profits from the last trading session. This allows them to deduce the price of their transaction.

A buyer who traded at a price that was lower than the average price optimistically assumes, when deriving hypothetical, 

that all bids equal to or above their last transaction price will result in a trade. On the other hand, if their transaction price

was higher than the average price or if the buyer did not trade, they expect that successful bids should be equal to or above

the last average price. Thus, buyer b sets the reference price as 

P ref 
b,t = 

{
min 

(
p b,t−1 , p̄ t−1 

)
if buyer b traded at t − 1 at price p b,t−1 

0 otherwise . 

Analogously, seller s sets the reference price 

P ref 
s,t = 

{
max ( p s,t−1 , p̄ t−1 ) if seller s traded at t − 1 at price p s,t−1 

0 otherwise , 

as the price below which the transaction is expected to occur. 
13 
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Second, we reflect on the fact that a transaction may occur either at the bid/offer submitted by the trader or at the price

of the counter-party. We, therefore, modify the hypothetical utilities for buyers and sellers as follows 

U 

A 
b,t (b i ) = 

{
w (V b − P ref 

b,t 
) + (1 − w )(V b − b i ) if b i ≥ P ref 

b,t 

0 otherwise 
(4) 

U 

A 
s,t (a i ) = 

{
w (P ref 

s,t − C s ) + (1 − w )(a i − C s ) if a i ≤ P re f 
s,t 

0 otherwise, 
(5) 

where w ∈ [0 , 1] is a weighting parameter that determines the probability of the trade being executed at the submitted

bid/offer vs. at the counter-party price (proxied by the past average price). The rest of the algorithm is identical to the IEL

in Section 2.3 . 

We re-optimized the parameters of this AF-IEL mod algorithm, including the new parameter w . The optimal parameters 

turned out to be as follows: pool size J = 10 , experimentation probability ρ = 0 . 1 , the standard deviation of the truncated

normal (local) experimentation is σ = 5 (same as before) and weight on the own bid/offer w = 0 . 5 . Since the order of arrival

in the experiment is random, it is reasonable to see the optimal value w = 0 . 5 indicating an equal chance of the order being

executed at the submitted bid/offer or the counterparty order. 

Returning back to the IEL-based statistics in Table 3 and comparing these to experimental data in Table 2 , we observe

that the AF-IEL mod algorithm matches the experimental data on the allocative efficiency and most of the other statistics 

better than the initial AF-IEL algorithm. 

6. Summary 

In this paper, we study how information about the previous trading session impacts the allocative and informational 

efficiency of a market organized as a continuous double auction (CDA). In this CDA, buyers and sellers submit orders si-

multaneously, as in a call market, but the market clears as in the standard CDA with orders arriving sequentially. This

corresponds to the retail financial market. Guided by previous contributions in the literature, we formulate two hypotheses 

and conduct an experimental study to verify them. 

In the analysis, we split the data into early periods (1–5) and later periods (6–20). We find that efficiency increases over

time - there is learning by the participants. We also find that in the early periods, more detailed information about the last

period’s prices and transactions actually reduces efficiency. That difference disappears in the later periods when efficiency 

under both information treatments becomes comparable and relatively high. With respect to informational efficiency, we 

find it to be low and not significantly different between both information treatments. 

The experimental data reject the earlier IEL model of AALP (adapted from the AL model for a call market), especially in

the information condition where only aggregate feedback (AF) about the average transaction price of the previous period is 

available. The IEL model predicts allocative efficiencies that are too high and informational efficiencies that are too low. We 

propose an improvement to the way the AF treatment is modeled in IEL to better fit the details of the CDA market and then

show that the modified IEL matches the experimental data relatively well. 

Appendix A. Experimental instructions 

A1. Common part 

Introduction You are about to participate in an economic experiment where your earnings depend on your decisions and 

decisions of others. You will be paid in cash at the end of the experiment. Please read the following instructions carefully.

You may make annotations or write with a pen, if it helps. You may also take notes or make calculations during the experi-

ment. At the end of the instructions you will be asked a number of questions to check your understanding. If you have any

questions while reading the instructions or during the experiment, please raise your hand and the experimenter will come 

to you. 

This is an experiment in trading. You are either a buyer or a seller. All other participants are also buyers or sellers with

the total amount of 5 buyers and 5 sellers. Depending on your role you will be buying or selling an item through an online

trading market, the details of which will be provided below. Trading will occur in rounds . There are 40 rounds in total;

your role (buyer or seller) will change after the first 20 rounds. Total earnings for all rounds will be paid in the end of the

experiment. All monetary values and prices in the experiment are given in the Experimental Currency Units (ECU). They will 

be converted to US dollars (US) at the rate of US 0.03 (or 3 cents) per one ECU. A show-up fee of US 10 will be added to

your earnings at the end of the experiment. All payments will be rounded to US 1. 

Earnings of buyers and sellers 

A buyer may buy one item in each round. Each buyer will be given a valuation for the item. You will not know the

valuations of other participants, which may be different. When you are a buyer, your valuation will remain the same for all
14 



M. Anufriev, J. Arifovic, J. Ledyard et al. Journal of Economic Dynamics & Control 141 (2022) 104387 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 rounds. If you successfully buy one item in that round, you will earn your valuation minus the price of the item. This

price will depend on your decision and decisions of others. As a buyer you will submit a buy order with a bid price , that is,

the maximum price you wish to pay for the item. This cannot exceed your valuation. You will find more details about how

to submit a bid at the end of these instructions. The price that you actually pay for an item (the transaction price) will be

computed by the market. This is described below. If you did not trade in a round, you will receive 0 ECU. 

Buyer ′ s earnings in the round = 

{
valuation − transaction price , if your order transacted 

0 , if your order did not transact 

A seller may sell one item in each round. Each seller will be given a cost for the item. You will not know the costs of

other participants, which may be different. When you are a seller, your cost will remain the same for all 20 rounds. If you

successfully sell one item in that round, you will earn the price of the item minus your cost. As a seller you will submit a

sell order with an ask price , that is, the minimum price you wish to receive for the item. This cannot be below your cost.

The price you actually receive for an item (the transaction price) will be computed by the market. This is described below.

If you did not trade in the round, you will receive 0 ECU. 

Seller 
′ 
s earnings in the round = 

{
transaction price − cost , if your order transacted 

0 , if your order did not transact 

Market matching 

The market will determine whether transactions occur and compute the prices of the transactions. This will be done by 

matching the orders from buyers and sellers, including your own order. You can submit your order only once per round and

you cannot change it during the round. All orders will be collected before the matching process starts. You will not know

the bids and asks of the other participants before the end of the round. 

The occurrence and price of a transaction will depend not only on the submitted orders, but also on a sequence of their

arrival to the market. The sequence of arrival is random in this experiment and you cannot influence it. It changes from

round to round. The sequence is unknown to you and to other participants. It does not depend on the time when you

submit your order. 

The market uses the following rules to match the orders of buyers and sellers as they arrive to the market. If no match is

possible an order (bid or ask price) is stored in an order book . Therefore, the first order to arrive is always stored in the book.

There are two separate sides in the book: buy (for bids) and sell (for asks). A transaction occurs if a newly arrived order

is matched with one of the opposite type orders stored earlier in the book. The transaction price is equal to the price of

the order which was stored in the book and satisfied the match. This order is removed from the book after the transaction

occurs. For example, if a new order with bid P B comes from buyer B, and there is an old order with ask P S in the book

submitted by seller S, such that P B ≥ P S , that is, the bid is higher than the ask price, there is a match. Transaction between

B and S occurs at the price P S . After the transaction, the orders from buyer B and seller S are removed from the book. 

If there are many orders in the book which can satisfy a newly arrived order of the opposite type, the matching happens

with the best priced order available in the book from the perspective of the newly arrived order (the highest bid in the 

book or the lowest ask in the book). The matching process continues until all orders arrive to the market. The orders for

which no match is found will not transact in the current round. All unmatched orders will be removed from the book at

the end of the round. 

Here is a detailed example of one round with 2 buyers, B1 and B2, and 2 sellers, S1 and S2. Notice that all numbers in

this example are for illustration only and differ from the experiment. Suppose that the B1’s valuation is V B 1 = 180 and the

B2’s valuation is V B 2 = 150 , and that the S1’s cost is C S1 = 30 and the S2’s cost is C S2 = 10 . Recall that all buyers and sellers

know only their own valuations or costs. Before the matching starts buyer B1 submits bid P B 1 = 100 and buyer B2 submits

bid P B 2 = 50 . Also seller S1 submits ask P S1 = 35 and seller S2 submits ask P S2 = 60 . After these orders are submitted the

computer randomly chooses the sequence of their arrival as follows: B2, B1, S1, and S2. 

Thus, the B2’s buy order with bid P B 2 = 50 is the first to arrive to the market. Since there is no available sell order, no

transaction is possible and the buy order is stored in the order book (on the buy side). The next order from B1 is also a

buy order with bid P B 1 = 100 . Because again there is no sell order available, bid P B 1 = 100 will be saved in the book (on

the buy side). However, it will receive a higher priority in the book, because P B 1 > P B 2 , that is, buyer B1 is ready to pay a

higher price. Next, the S1’s sell order with ask P S1 = 35 arrives. It can be matched with the existing buy orders. Namely,

it is matched with the highest price order in the buy side of the book, that it, P B 1 = 100 . Seller S1 sells an item to buyer

B1. The transaction price is P T = P B 1 = 100 , which is the price of the order that arrived earlier and was stored in the book.

The transacted buy order is removed from the book, so that the book now contains only one buy order with bid P B 2 = 50 .

Finally, the S2’s sell order with ask P S2 = 60 arrives. Because the buy side of the book contains only one buy order with

P B 2 = 50 and P B 2 < P S2 , the match does not occur and the sell order is saved in the order book. Since in this example no

new orders arrive, the book is cleared at the end of the round, and no transaction between buyer B2 and seller S2 occurs. 
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The following table displays graphically this example. The table should be read from left to right, which corresponds to 

the development of this round in time. 

A2. Information part 

Individual feedback treatment 

Screen information and order submission 

In order to help you to decide on your bid or ask in any round, the following information will be provided ( after the first

round): 

1. The sequence of arrival of your order (called step) in previous round 

2. Step in which your order transacted and transaction price if you order transacted 

3. The above table (book) for the previous trading round for all 10 arriving orders (without IDs). 

4. If your order did not transact when it arrived, you will see it in blue color in the book. 

5. Your earnings from the previous round 

6. Your cumulative earnings for all previous rounds. 

For 20 seconds, only this information about the previous round will be on the screen. This is a good time to analyze the

information. You can use pen and paper and take records or make calculations. 

After the first 20 seconds, a decision window will appear. You will have an additional 1 minute for the analysis and

decision. The decision window will show if you are buyer or seller, your valuation/cost and allowed range for your bid or

ask: 

- for bid price min is 0 and max is your valuation; 

- for ask price min is your cost and max is 105. 

You should type your bid or ask price with up to two decimal digits (for example 10.21 or 12.3 or 11). If you make a

mistake, you can use Backspace key or arrows and Del to edit your order. Once you are satisfied, press the “Submit Order”

button. After this your decision cannot be changed in this round. 

Note: the chances of your order to transact and the transaction price of your order may depend on your valuation or

cost; your valuation or costs will remain unchanged for the first 20 rounds; after your buyer/seller role changes at round 21

you will receive a new valuation or cost and this will remain the same for the last 20 rounds. 

Any questions? Now or any time during the experiment raise your hand. 

Scratch space (you may write here): 

Aggregate feedback treatment 

Screen information and order submission 

In order to help you to decide on your bid or ask in any round, the following information will be provided ( after the first

round): 

1. An average price of all transactions occurred in the previous round. For example, if 3 transactions occurred Ave (P T ) =
(P + P + P ) / 3 . 
T 1 T 2 T 3 
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2. Your earnings from the previous round. 

3. Your cumulative earnings for all previous rounds. 

For 20 seconds, only this information about the previous round will be on the screen. This is a good time to analyze the

information. You can use pen and paper and take records or make calculations. 

After the first 20 seconds, a decision window will appear. You will have an additional 1 minute for the analysis and

decision. The decision window will show if you are buyer or seller, your valuation/cost and allowed range for your bid or

ask: 

- for bid price min is 0 and max is your valuation; 

- for ask price min is your cost and max is 105. 

You should type your bid or ask price with up to two decimal digits (for example 10.21 or 12.3 or 11). If you make a

mistake, you can use Backspace key or arrows and Del to edit your order. Once you are satisfied, press the “Submit Order”

button. After this your decision cannot be changed in this round. 

Note: the chances of your order to transact and the transaction price of your order may depend on your valuation or

cost; your valuation or costs will remain unchanged for the first 20 rounds; after your buyer/seller role changes at round 21

you will receive a new valuation or cost and this will remain the same for the last 20 rounds. 

Any questions? Now or any time during the experiment raise your hand. 

Scratch space (you may write here): 
17 
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Appendix B. Screenshots 

Individual feedback treatment 
Fig. 6. Analysis screen (upper part) and analysis and decision screen (lower part) for the Individual feedback ( IF ) sessions. 
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Aggregate feedback treatments 
Fig. 7. Analysis screen (upper part) and analysis and decision screen (lower part) for the Aggregate feedback ( AF ) sessions. 
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Table 4 

Regression of allocative efficiency. 

Allocative efficiency Estimate NW-robust st errors Cluster-robust st errors 

SE t -stat p -value SE t -stat p -value 

(intercept) 0.769 0.019 40.245 0.000 0.020 39.403 0.000 

DInfo 0.000 0.018 −0.009 0.993 0.021 −0.008 0.994 

DInit −0.148 0.031 −4.811 0.000 0.038 −3.851 0.000 

DInfo x DInit 0.077 0.043 1.816 0.069 0.042 1.823 0.068 

DLoc 0.060 0.017 3.592 0.000 0.020 3.072 0.002 

DSch 0.035 0.015 2.360 0.018 0.013 2.657 0.008 

DExp −0.023 0.015 −1.539 0.124 0.013 −1.734 0.083 

Table 5 

Regression of the number of missed transactions. 

Missed transactions Estimate NW-robust st errors Cluster-robust st errors 

SE t -stat p -value SE t -stat p -value 

(intercept) 0.841 0.060 14.053 0.000 0.097 8.649 0.000 

DInfo −0.041 0.063 −0.648 0.517 0.094 −0.434 0.664 

DInit 0.578 0.092 6.270 0.000 0.079 7.315 0.000 

DInfo x DInit −0.215 0.134 −1.603 0.109 0.096 −2.249 0.025 

DLoc −0.073 0.055 −1.336 0.182 0.091 −0.807 0.420 

DSch −0.237 0.052 −4.541 0.000 0.058 −4.108 0.000 

DExp −0.008 0.052 −0.162 0.872 0.058 −0.146 0.884 

Table 6 

Regression of the out-of-equilibrium index. 

Out-of-equilibrium index Estimate NW-robust st errors Cluster-robust st errors 

SE t -stat p -value SE t -stat p -value 

(intercept) 0.773 0.045 17.262 0.000 0.085 9.120 0.000 

DInfo 0.070 0.044 1.588 0.112 0.084 0.840 0.401 

DInit 0.096 0.060 1.597 0.110 0.055 1.767 0.077 

DInfo x DInit −0.059 0.076 −0.783 0.434 0.069 −0.858 0.391 

DLoc −0.167 0.037 −4.525 0.000 0.077 −2.180 0.029 

DSch −0.334 0.041 −8.166 0.000 0.092 −3.641 0.000 

DExp 0.002 0.041 0.048 0.962 0.092 0.021 0.983 

 

 

 

 

Appendix C. Results of regression analysis 

As explained at the beginning of Section 4 , we regress different characteristics (allocative efficiency, measures of infor- 

mation efficiency, price volatility) to the following set of dummy variables: 

• DInfo: set to 1 for AF and to 0 for IF ; 

• DInit: set to 1 for periods 1–5 and to 0 for periods 6–20; 

• DInfo × DInit: measures the mixed effect of information and initial periods; 

• DLoc: set to 1 for Caltech and to 0 for UNSW; 

• DSch: set to 1 for schedule S1 and to 0 for schedule S2 ; 

• DExp: set to 1 for the first block and to 0 for the second block. 

This regression allows us to control the results for differences between the two information treatments, AF and IF , for

the location of the experiment, the schedules, phases, and so on. 

Table 4 reports the results for the regression as presented in Eq. (3) of the main text. The second column contains

parameter estimates, so that we have the following result 

Allocative Efficiency = 0 . 769 + 0 . 0 0 0 DInfo − 0 . 148 DInit + 0 . 077 ( DInfo × DInit ) + 0 . 060 DLoc 

+ 0 . 035 DSch − 0 . 023 DExp + error. 

In the next columns of Table 4 , we report standard errors, t -statistics and p-values. We use two methods (the “cluster-

robust” and “Newey-West-robust”) of computing the standard errors. The bold p-values (and coefficients in the regression 

above) indicate the instances of significant effect at the 5% level. 

We estimate the same regression for other characteristics, see Table 5 for the number of missed transactions (that is 

the number of trades in equilibrium minus the number of trades in the experiment), Table 6 for the indicator of when the

average transaction price is outside of the equilibrium range, and Table 7 for the price volatility. 
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Table 7 

Regression of the volatility. 

Volatility Estimate NW-robust st errors Cluster-robust st errors 

SE t -stat p -value SE t -stat p -value 

(intercept) 6.429 0.853 7.538 0.000 0.936 6.869 0.000 

DInfo −0.821 0.739 −1.111 0.266 0.774 −1.062 0.288 

DInit 0.288 0.927 0.311 0.756 0.810 0.356 0.722 

DInfo x DInit 1.558 1.118 1.394 0.163 0.919 1.695 0.090 

DLoc −2.227 0.599 −3.718 0.000 0.685 −3.251 0.001 

DSch −1.449 0.663 −2.185 0.029 0.693 −2.091 0.037 

DExp −0.042 0.663 −0.063 0.949 0.693 −0.061 0.952 

 

 

 

 

 

 

 

 

 

 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.jedc.2022.104387 .
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