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1 Introduction

A standard way of explaining business fluctuations in the modern macroeconomy

is through the aggregate shocks, i.e., shocks that affect in a similar way many

economic sectors. Microeconomic sectoral specific shocks would not be able to

generate empirically plausible aggregate fluctuations. Such shocks, the argument

goes, being independent of each other would produce fluctuations whose standard

deviation scales with factor of 1/
√
n, when n denotes the number of sectors. Then

when economy is considered at more and more disaggregated level, i.e., when n

gets larger, the fluctuations would disappear quickly. This argument, spelled out

explicitly in Lucas (1977), may also explain why the focus of most of the theoretical

literature is on the model with a representative producer. These models exclude

explicit interactions between different sectors or firms.

In reality the sectors are interconnected in different ways and these intercon-

nections may imply that even independent shocks may cause large fluctuations.

Importantly, the structure of connections between sectors matter for the conse-

quences of shocks propagation. One of the most natural sort of connections in the

production economy is due to input-output linkages. Drawing sectors as nodes

and significant flows of intermediate goods from one sector to another as links

we can obtain the input-output network as in Fig. 2. In this paper we will an-

alyze the structure of the input-output network for Australia and will show the

consequences of the network structure for the aggregate fluctuations.

Our work is inspired by and based upon the recent paper of Acemoglu et al.

(2012). There it is shown that the law of large numbers underlying Lucas’ argu-

ment may not necessarily hold in the large economy. The key idea is that if in

the input-output network some sectors occupy the disproportionally large share of

inter-sectoral dependencies, sectoral shocks may not disappear even at higher level

of disaggregation. In particular, Acemoglu et al. (2012) show that if an out-degree

distribution of the input-output network exhibits power law, then the rate of de-

cline of volatility is substantially lower than
√
n. The empirical analysis suggests

that the out-degree distribution of the input-output network for the US data does

exhibit the power law.

The aim of this paper is to analyze the input-output network of Australian

economy, i.e., consider this economy with a specific focus on the detailed structural

interactions between different sectors. We are interested in the following set of

questions. Is the structure of Australian economy stable over time? Does the

input-output network of Australia remind those networks where the idiosyncratic

shocks disappear quickly, so that the network approach cannot explain much of

the aggregate fluctuations? Or, instead, the structure is such that the shocks to

different sectors, even if independent, can generate sizable volatility at the macro
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level? In this case, what are the specific sectors of Australian economy that affect

others disproportionally and so can be dubbed as ‘systemically important’? Is the

effect of direct input-output links of these sectors capture most of their possible

systemic influence, or instead further sectors in the network contribute to the

importance of these sectors?

All these questions are important in order to evaluate the prospects of the Aus-

tralian economic system, whereas the network approach is well suited to address

these questions. The logic behind using network approach is clear and intuitive.

An economy can be viewed as a network, where possible nodes are firms, banks

or industries that are linked with each other. These links are different kinds of

connections such as trade flows, loans, etc. The structure of any particular net-

work provides us with crucial information about the system. There was a surge of

interest in using network approach to study the issues of systemic risk and shock

propagation in economics and finance, see, e.g., Elliott et al. (2014), Acemoglu

et al. (2015b), and Glasserman and Young (2015) and the textbook treatments in

Vega-Redondo (2007), Jackson (2008) and Goyal (2012). The attention of regula-

tors has also been turned to the importance of networks.1 A pioneering work of

Acemoglu et al. (2012) brought an attention of researchers to the networks with

input-output linkages between firms or sectors, see Carvalho (2014) for a review.

Acemoglu et al. (2015a) empirically test the implication of the network model

discussed in this paper. They confirmed that the demand-side shocks propagated

mostly to upstream industries, but not to downstream industries, whereas the

technological shocks gives exactly an opposite pattern.

As we explain in this paper, the network approach is closely related and can

add to the Input-Output analysis which still remains to be a popular methodology

in applied macro-economic analysis. Both approaches use the input-output tables

to characterize the technological links between different industries. For example,

Rayner and Bishop (2013) used the Input-Output analysis to estimate the mining

boom effect on the Australian economy. For this purpose they aggregated data

from input-output tables to get three divisions: resource extraction, resource-

related activity, non-resource activity. They estimated the growth in gross value

added (GVA) in these divisions during the mining boom and showed how GVA of

resource extraction is distributed among related industries. The results provided

a decomposition of the effects on an employment from the resource extraction and

the resource-related activity.

Computable General Equilibrium (Dixon and Parmenter, 1996) is another area

of macro which makes extensive use of the Input-Output tables. This literature

1See, e.g., the speech of the Executive Director of the Financial Stability department of the
Bank of England, Haldane (2009), or more recently the speech of the head of financial stability
department of the RBA, Ellis (2015).
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specifies an economy at a higher level of disaggregation than a typical macroeco-

nomic model, but at the cost of losing analytical tractability. Also, it does not

use the insights from network theory to analyse the structure and systemically

important entities.

In this paper we use the most recent input-output tables for years 2012–2013

provided the Australian Bureau of Statistics (ABS). We also looks back in history

and compare the most recent data with 7 other input-output tables up to 2001-

2002. Similar to the US data, we find that the distribution of the out-degree

for the Australian data exhibits heavy tails consistent with power low. We find

that the most influential first order suppliers are professional services, wholesale

trade, finance, construction services and road transport. However, the maximum

weighted out-degree is much smaller in Australia comparing to the US data. This

implies that shocks to the Australian “hub” industries will have a smaller aggregate

effect.2

The remainder of the paper is organized as follows. Section 2 describes the

theoretical framework and revokes several useful results from the literature. Sec-

tion 3 illustrates the network effects using simple examples. The data we use

for our empirical analysis are described in Section 4. The empirical results are

presented in Section 5. Section 6 concludes. Appendices contain the additional

details.

2 Theoretical Framework

As a baseline theoretical model in our analysis we will use the IO (input/output)

model similar to those analyzed in Acemoglu et al. (2012) and Acemoglu et al.

(2015a). This is, in fact, the single period version of the model presented in Long

and Plosser (1983).

Assume that the economy consists of n sectors linked via the network of inter-

mediate inputs, with sectors production described by the Cobb-Douglas produc-

tion function with constant returns to scale. The total production of industry j

(with j = 1, . . . , n) is given by

yj = ezj`
αj

j

n∏
i=1

x
aij
ij , (1)

where the factors of production used in industry j are labor, `j, and the inter-

mediate input from industry i, xij. Technological coefficients αj > 0 and aij ≥ 0

2One needs to be careful with comparison as different classifications are used in the US and
the Australian input-output tables. The most recent release in Australia includes 114 industries,
while in the US there are 417 industries at four-digit SIC (as of 2002).
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describe the elasticity of labor and of intermediate inputs, respectively. The pro-

duction side shock for industry j is denoted by ezj . The vector of the log of the

shocks is denoted as z = (z1 z2 . . . zn)T , and we will assume that its mean is the

vector of zeros, 0. We also introduce n× n matrix A with elements aij.

We assume the constant returns to scale in the technology function of each

sector j, that is, we assume that for every j

αj +
n∑
i=1

aij = 1 . (2)

With this assumption, every squared matrix A with non-negative elements and

where all column-sums are less than 1 fully describes the technological process. For

this reason, we call this matrix production matrix. Section 3 provides examples of

the production matrices. Note that for the sake of simplicity this model assumes

that the industries do not use capital as a separate input; rather they use the

output of other industries.

The output of industry j, yj, can be used either in the final consumption, or as

an intermediate product for other industry, or being purchased by the government.

Let cj denote the final consumption of the goods produced by industry j, and

gj denote the government purchases from output yj. Then the market clearing

condition for the output of industry j becomes

yj = cj +
n∑
i=1

xji + gj .

We populate this economy by a representative agent who gets utility from fi-

nal consumption of goods and has a disutility of total labor `. The total labor is

divided between industries and the labor market clears when ` =
∑n

i=1 `i. Govern-

ment spendings do not affect the consumer. Government runs a balanced budget

by imposing taxes on the representative consumer equal to the total amount of

spending, which can be evaluated at prices pi in industry i as T =
∑n

i=1 pigi.

As in Acemoglu et al. (2012) we focus on the competitive equilibrium of this

economy. We characterize the competitive equilibrium in Appendix A. In partic-

ular we show there that the entry aij of the (i, j) cell of technological matrix A is

equal, in the competitive equilibrium, to the relative cost of input from industry

i in the total cost incurred by industry j. This has two important implications.

First, this fact implies that the entries of matrix A are exactly the same as en-

tries of the Direct Requirement table that is computed by the ABS and released

as one of the Input-Output tables. Second, it relates the equilibrium analysis in

the multi-sectoral macro-model to the network approach. Indeed, any production
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matrix A induces the directed, weighted network, where nodes represent various

industries and edges represent the flows of intermediate inputs. The weight on

the edge from industry i to industry j then corresponds to amount of cents that

industry j pays to industry i to produce $1 of the output. This input-output net-

work for the Australian Economy at quite high level of aggregation is illustrated in

Fig. 2. See also Section 3 for the simple examples and Section 5 for the discussion

of the Australian input-output network.

The network representing actual economy will be quite complicated to analyze

(though all information is captured by A). From the network perspective, however,

we may expect that what matters for the shock effect for a given node j are its

in- and out-degrees, which are the sums of all the weights on the in-going and

out-going edges, respectively. In our case, the in-degree of each node can be

determined from (2), and is given by dinj = 1 − αj, whereas the out-degree (or

simply degree) of the node is

dj = doutj =
n∑
i=1

aji . (3)

This number gives the relative weight that the other industries play as the cus-

tomers for the given industry.

For production functions (1) and with standard Cobb-Douglas utility function,

there is a unique competitive equilibrium in the model. In this equilibrium the

endogenous variables, i.e., prices pj, wages wj, inputs `j, xij and outputs yj are

random variables whose realizations depend on the realization of the vector of

technological shocks, z = (z1 z2 . . . zn)T and of the vector of government spend-

ings g = (g1 g2 . . . gn)T . It turns out that the equilibrium wages are the same

and we denote it as w.

2.1 Empirical Implications

There are two questions which we empirically analyze in this paper. The first

question concerns the effect of a given shock to the equilibrium values of various

endogenous variables of the model, including GDP. The second question concerns

the effect of the distribution of the random variable z on the volatility of GDP.

Let us start by focusing on the gross domestic product or the gross value added.

Since the only primary factor used in the production is labor available in amount

`, and since the equilibrium wage is homogeneous across the industries, w, the

GDP is equal to w`. Alternatively it can be computed as the sum of value-added
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to the primary factor across all industries. Therefore,

GDP = w` =
∑
i=1

αipiyi .

In Appendix B we generalize the result of Acemoglu et al. (2012) and show that

under a proper price normalization, it is

log GDP = vTz , (4)

where vector z = (z1 z2 . . . zn)T is the vector of technological shocks and vT is

the transposed on an influence vector. The influence vector is defined as

v =
1

n
(I−A)−1 1, (5)

Thus the log of GDP is a linear combination of the technological shocks hitting

different sectors. Matrix (I − A)−1 that appears in (5) is the Leontief inverse

matrix and it permits the following representation (see Appendix A)

(I−A)−1 = I + A + A2 + . . . , (6)

which allows splitting the effect of shocks on those that are direct and those that

are transmitted through the network.

To illustrate, assume that the shock z has only one non-zero component, the

first one, z1 > 0. The effect of this positive technological shock for the first

industry to the GDP is captured by the first component of the influence vector,

v1. This can be written using (6) as follows

v1 =
z1

n

(
1 +

n∑
i=1

a1i +
n∑
i=1

n∑
j=1

a1iaij + . . .

)
.

In this representation, the first term, z1/n, is the direct impact of the shock

to the GDP. The second term is, obviously, proportional to d1, the out-degree

of the first industry in the network. It captures the first round of the shock

propagation through the input-output network. The third term is proportional to

q1, a so-called second-order degree of sector 1, which we define below in Eq. (8).

It captures the second round of the shock propagation. The remaining infinite

number of terms describe the shock propagations for the next rounds. We observe

that the technological shock to an industry i propagates downstream in the sense

that the GDP is affected by an amount in which the customer industries depend

on industry 1 (the first round), then by an amount in which the customers of those
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industries depend on them (the second round), and so on.

In Appendix B we also investigate the effect of the shocks on various endoge-

nous variables. We show, in particular, that in the absence of government spend-

ings, the reaction of the production vector y = (y1 y2 . . . yn)T to the technological

shocks can be described by Eq. (23) as

d ln y =
(
I−AT

)−1
dz =

(
I + AT + (AT )2 + . . .

)
dz.

By examining the first order network effect, we can see that the log-production of

an industry j depends on the shocks of only those industries i for which aij > 0.

This confirms the statement that the productivity shocks propagate downstream,

i.e., from industry i to industry j. We also show that the effect shocks on log

of consumption coincides with their effect on the log of production, but that the

effect on log prices is exactly an opposite, i.e.,

d ln p = −d ln c = −d ln y = −
(
I−AT

)−1
dz.

We now move to the second question raised above and discuss an effect of the

shock distribution on the aggregate volatility. By the aggregate volatility we will

understand the standard deviation of the log GDP. To focus on the effect of effect

of network on volatility, we will assume that the shocks to different sectors are

independent. Then from (4) we obtain

σGDP :=
√

Var GDP =

√√√√ n∑
i=1

σ2
i v

2
i , (7)

where σi is the standard deviation of shock zi hitting industry i. The structure of

the network thus affects the aggregate volatility through the influence vector v.

Consider now the sequence of economies corresponding to different levels of

disaggregation. For a given level of disaggregation the number of sectors is n, and

structure of economy is as described above with the production matrix An inducing

the input-output network. How will volatility scale when n increases? One can

easily show that if all the sectors have the same influences, the aggregate volatility

would converge to zero with n→∞ at the rate
√
n. This is the standard argument

to justify that the sectoral-specific or firm-specific shocks are not sufficient to

generate sizeable volatility. However, Acemoglu et al. (2012) showed that the rate

of convergence may be significantly lower if the network is asymmetric in terms of

influences. We describe now their results that motivated our analysis of Australian

input-output network.

Definition (5) together with representation (6) imply that the first-order effects
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of the asymmetry in influences can be captured by asymmetries in the degrees.

Consider, therefore, the distribution of the out-degrees (3) of the nodes in the net-

work, {d1, d2, . . . , dn} and its counter-cumulative function P (k) := 1
n

∑n
i=1 1{di>k}.

Note that when n changes, the counter-cumulative function changes as well. We

use notation Pn(·) to stress this dependence. The following result is Corollary 1

in Acemoglu et al. (2012).

Proposition 1. Assume that for the sequence of economies corresponding to the

different levels of aggregation, the counter-cumulative function satisfies the power

law property with tail parameter β ∈ (1, 2). This means that there exist a sequence

of numbers cn with a property 0 < limn→∞ inf cn ≤ limn→∞ sup cn < 1 and function

L(·) with a property that limt→∞ L(t)tδ =∞ and limt→∞ L(t)t−δ = 0 for all δ > 0,

such that, for all n ∈ N and all k < maxi{di}, it is

Pn(k) = ck−βL(k) .

Then the aggregate volatility vanishes at rate not faster than n−(β−1)/β. More

precisely, for any δ > 0 it is

lim
n→∞

inf

√
Var GDP

n−(β−1)/β−δ > 0 .

The tail parameter β thus represents a lower bound for the rate at which the

aggregate volatility disappears. The smaller this parameter is, i.e., the fatter the

tails of the degree distribution, the slower the convergence should be.

Returning again to Eqs. (5) and (6), we observe that the second-order term,

related to matrix A2, is also important for the shock distributions and hence

volatility. Therefore, we define the second-order degree of sector j as follows

qj =
n∑
i=1

ajidi =
n∑
i=1

n∑
k=1

ajiaik . (8)

where the second equality is due to (3). The next result is Corollary 2 in Acemoglu

et al. (2012).

Proposition 2. Assume that for the sequence of economies corresponding to the

different levels of aggregation, the counter-cumulative function of the second-degree

distribution satisfies the power law property with tail parameter ζ ∈ (1, 2). Then

the aggregate volatility vanishes not faster than at rate n−(ζ−1)/ζ.

If the second-order degree distribution has power law in the tail, then, similarly

to the tail parameter β of the (first-order) degree distribution, the tail parameter

ζ of the second-order degree distribution will provide a lower bound for the rate
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at which the aggregate volatility disappears. It is generally not possible to say

which of these two degree distributions have a fatter tail (note that the out-degrees

might well be larger than 1). Therefore, min{β, ζ} is the tighter bound. One can

continue in a similar way with analysis of higher order degrees of the sectors.

Finally note that the results regarding volatility and shock propagation pre-

sented before hold independently of any specific structure of the economy. When

an equilibrium configuration is described by a reduced form system such as

ỹ = c̃ + Ãỹ + z̃ ,

where ỹ is the vector of endogenous variables, vector c̃ and matrix Ã have pa-

rameters and exogenous variables and z̃ is the vector of shocks, then the results

about shock propagation and volatility of some aggregate quantity as ỹ ·1 in equi-

librium hold. Moreover, one can even obtain this reduced form by reconstructing

the matrix of interactions Ã from the observed changes in ỹ, see Anufriev and

Panchenko (2015). The key advantage of working with the input-output data is

that the direction of links can be clearly identified. Without this information only

dependence between the different sectors can be deduced.

3 Examples of Input-Output Networks

For better understanding of the shock propagation within our framework let us

consider several examples of simple economies consisting of only three industries.

As discussed above, we can represent an economy as a network of input-output

flows, or, equivalently, as the production matrix. Despite the simplest case with

n = 3, we can have many different cases of network, see Fig. 1.

In the first row we show two opposite examples from the point of view of

connectivity of the network. The left panel has a network where all three sectors

are isolated. Note that this corresponds to the diagonal production matrix. The

right panel shows the example, where all possible connections are present and the

production matrix is given by

Afull
3 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

In this example we have aij > 0, and also (to satisfy the constant return to scale)

αj = 1− a1j − a2j − a3j > 0 for all j = 1, 2, 3.

The second row contains two possible examples when every industry is a sup-

plier or buyer from at most one other industry. The left panel shows network with
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Figure 1: Various Examples of Networks with Three Industries.
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‘vertical’ structure, where industry 1 is a supplier for industry 2, and industry 2

is a supplier for industry 3. The right panel shows the ‘ring’ structure, where, in

addition, industry 3 supplies to industry 1. Note that these simple examples can

be easily generalized for the case with n industries. For the case with n industries

we can define the vertical structure of production, if the production matrix is given

by

Avertical
n =



a11 a12 0 . . . 0 0

0 a22 a23 . . . 0 0

0 0 a22 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . an−1,n−1 an−1,n

0 0 0 . . . 0 an,n


.

This matrix has two nonzero diagonals, the main and the one above the main.

The ring structure of production is defined with a similar production matrix, but

where in addition the element an1 is non-zero. Note that both special networks

may have zeros as some or all diagonal elements.

The two examples in the third row have one industry (industry 1) which is a

common supplier to the two other industries. The left network corresponds to the

matrix

A∇3 =

a11 a12 a13

0 a22 0

0 0 a33

 ,

whereas for the right network, the production matrix has an additional nonzero

element a23. Some diagonal elements may be zeros, but generally speaking the

upper-diagonal matrix represent the case where the flow generally moves down

from some sectors that are pure suppliers to all other industries.

Finally, the examples presented in the fourth row have one industry (industry

1) which is a common buyer from the remaining industries. The left network

corresponds to the matrix

A∆
3 =

a11 0 0

a21 a22 0

a31 0 a33

 .

For the right network, this production matrix has an additional nonzero element

a32. In any case, we are dealing with the lower-diagonal matrix in these cases.
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4 Data

We first describe the empirical counter-part of the theoretical analysis in Section 2.

Consider an economy with n industries, indexed as i = 1, 2, . . . , n. Let uij denote

the dollar amount of industry i’s products used in the production activity of

industry j. The Input-Output Table consists of a square matrix U = {uij}ni,j=1 of

these intermediate use supplemented by two vectors. On the right from U there

is a column vector f whose entries fi correspond to the final demand for products

produced by industry i, i.e., final consumption by private sector and government,

capital formation and export. Below U there is a row vector w whose entries wj

describe the monetary equivalent of all other input used in production activity by

industry j. It includes the wages, interest on capital, adjustment for taxes and

subsidies and import. By construction for every industry i we have that

n∑
j=1

uij + fi = qi ,

where qi is the total output of industry i. Introducing a column vector q with

components qi, we rewrite the last equality as U · 1 + f = q, where 1 as before

denotes the vector of ones. We can now define the direct requirement matrix A

with elements aij = uij/qj and since U · 1 = A · q, the last equality becomes

A · q + f = q.

Then (I−A)−1 is the Leontief inverse.3

The input-output Tables were obtained from the Australian Bureau of Statis-

tics (ABS). From every release since 2001− 2002 we took the ”Use Table - Input

by Industry and Final Use Category and Supply by Product Group”. This ta-

ble shows intermediate use by using industries (IOIG) and final use by final use

categories of products (IOPG) at basic prices with indirect allocation of imports.

The ABS uses the so-called input-output industry group (IOIG) classification

and input-output product classification (IOPC). There are some minor variations

in classifications from release to release. For our major source of data, i.e., release

of 2012− 2013 there are 114 industries in IOIG classification.4

3Among four main basic tables produced and published by the Australian Bureau of Statistics,
the Use table (Table 2) has a similar structure with matrix U except that it has product groups
in the rows. The flow table 5, which is derived from the Use and Supply basic tables, has exactly
the same structure as matrix U. Import in this case is allocated directly to the industry that
uses it. Tables 6 and 7 are the direct requirement matrix A and the Leontief inverse matrix
(I−A)−1.

4Note that US data is available at a higher level of disaggregation which may affect our
comparison later.
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Figure 2: Aggregate level network.

Figure 2 shows an aggregate view of the Australian input-output network. It

is apparent from the figure that Industrials take a central position in this network.

5 Network statistics and results

Weighted in-degree shows a share of intermediary inputs from all sectors in the pro-

duction of a given sector. Using nonparametric estimation we obtained weighted

in-degree distributions for all considered periods which is shown in Fig. 3. The

average weighted in-degree in 2012/2013 was 0.57. This statistics was stable over

other periods and varied between 0.56 to 0.58. Acemoglu et al. (2012) based on

the US data finds that the average weighted in-degree across considered years and

industries was 0.55.

Weighted in-degree also provides information on labor and capital shares in

industry’s production. Industries with low weighted in-degree are labor-intensive.

The most labor-intensive industries (with weighted in-degree less than 0.3) in

2012/2013 were iron ore mining, knitted product manufacturing and, predictably,

various services such as finance, ownership of dwellings, education, health care,

residential care, information services and waste collection.

Considering top labor-intensive industries over different years we can notice
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Figure 3: Empirical densities of in-degrees.

that oil and gas extraction sector was also among them in a period 2006 − 2010.

For the first two periods most labor-intensive services were a bit different, namely

legal and business services, radio and television service, sport and gambling. Other

periods are pretty similar to the 2012/13 period in terms of top labor-intensive

services.

As we can observe in Fig. 3, the weighted in-degree distributions of the latest

periods are quite close to each other, whereas distribution of earlier periods are

slightly different.

Another network statistics is weighted out-degree, which shows how important

the industry is in terms of supply of the intermediate product to other industries. It

is obtained as a sum of all inputs shares provided by the industry. Nonparametric

estimates of empirical densities of the first and second order weighted out-degree

in 2012/13 are presented in Fig. 4. The left and right panels suggest that both the

first and second degree distributions are fat-tailed, which implies that a relatively

large number of industries are supplying to a lot of other industries. In comparison

with US data, maximum of weighted out-degree is much smaller, 7.8 against 30.

This indicates that Australian “hubs” industries are not as influential as in the

US and in case of shocks to these industries the effect on other industries would

be smaller.
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Figure 4: Empirical densities of first- and second-order degrees.

Figure 5: The Weighted Out-degree Distribution in 2012/13.

To demonstrate that the tail of the first order weighted out-degree distribution

can be described by the power law, we will draw the empirical counter-cumulative

distribution of the first order weighted out-degree on a log-log scale, see Fig. 5.

These estimates were obtained using Nadaraya-Watson kernel regression with a

bandwidth selected using least squares cross-validation. According to the red

line, which is visualization of linear relationship, the tail does have a power-law

distribution. The industries that are located in the tail of this distribution are the

most influential as the first-order suppliers. Top six among them (with weighted

16



Figure 6: Empirical counter-cumulative distribution function of the second-order
out-degrees.

out-degree greater than 3) are the following: professional services, wholesale trade,

finance, construction services, road transport and sheep, grains, beef, dairy cattle.5

Similarly, Fig. 6 shows the counter-cumulative distribution functions of the

second-order weighted out-degree. The second panel of the figure shows the

second-order weighted out-degree distribution for the other years, which are close

to each other.

Table 1 presents ML estimates of the tail exponents of the first- and second-

order out-degree distribution, β and ζ. Recall from Propositions 1 and 2 that the

tail exponents between 1 and 2 would correspond to the power low distribution and

would imply the sizable aggregate volatility stemming from the network structure.

The lower values of these parameters correspond to the fatter tails and lower speed

of convergence. Interestingly, we observe a decline in the tail exponents over time

indicating that the Australian economy becomes more susceptible to the shocks in

the individual sectors. Note, however, that the estimation results depend on the

method that is used for estimation. The estimates based on the OLS (not shown

here for brevity) are larger and careful further analysis is required to reconcile the

discrepancies. In comparison to the US data, our numbers are somewhat lower.

5In addition to the second-order weighted out-degree, we computed the corresponding eigen-
vector centralities. Eigenvector centrality is a self-referential measure which captures infinite
order interactions between industries. The centrality takes into account influence on all indus-
tries that depend on this industry through others. Our estimates show that the industries with
the highest eigenvector centralities are similar to the industries with highest weighted out-degree.
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Table 1: ML Estimates of β̂ and ζ̂

01/02 04/05 05/06 06/07 07/08 08/09 09/10 12/13

β̂ 1.880 1.652 1.352 1.206 1.218 1.062 1.136 1.150
(0.349) (0.297) (0.182) (0.169) (0.172) (0.131) (0.139) (0.139)

ζ̂ 1.333 1.167 1.161 1.190 1.136 1.506 1.122 1.084
(0.229) (0.184) (0.164) (0.179) (0.169) (0.337) (0.159) (0.158)

6 Conclusion

In this paper we addressed an important question of the role played by the Aus-

tralian input-output structure in the relationship between sectoral shocks and

aggregate volatility. We find that the Australian economy exhibits qualitative

features similar to the US data. The outdegree distribution exhibits heavy tails

which may lead to significant effects of the sectoral shocks to the aggregate fluc-

tuations. There are many open questions remaining. In particular, we would like

to quantify the amount of variation in the output of different sectors explained by

the IO structure relatively to unexplained or “exogenous” variation. It would be

also interesting to investigate whether the exogenous shocks are iid or there are

any dependence patters between them.

In this paper we focused only on the input-output network, but of course inter-

actions between sectors happen on many different levels as well. Hence, multilayer

networks may arise. We leave this for further analysis.
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APPENDIX

A Competitive Equilibrium

Similarly to Acemoglu et al. (2012) and Acemoglu et al. (2015a), we assume that

economy consists of a single representative household with Cobb-Douglas prefer-

ences over n final products, ci with i = 1, . . . , n, providing ` units of labor. The

utility function of the household is

U(c1, . . . , cn, `) = γ(`)
n∏
i=1

cβii , (9)

where γ(·) is a decreasing differentiable function expressing disutulity from work,

and βi > 0 (with
∑n

i=1 βi = 1) are the weights of good i in the utility of the

consumer.

Total labor ` is divided between n industries, and `i denote the labor employed

in industry i. Every industry operates according to the Cobb-Douglas production

function (1), i.e.,

yj = ezj`
αj

j

n∏
i=1

x
aij
ij ,

as described in the main text. Recall that yj is the output of industry j, zj denote

the log of the industry-specific technological shock, xij is the amount of good i used

in production process in industry j. Technological parameters αj > 0 and aij ≥ 0

describe the shares of labor and intermediate goods in production of industry j,

respectively. The technology in each industry is assumed to have constant returns

to scale, so that relation (2) holds:

αj +
n∑
i=1

aij = 1 .

Therefore the production matrix A = (aij)
n
i,j=1 is non-negative and has all column-

sums less than 1. It will be convenient to introduce the vector of labor elasticities

α = (α1 α2 . . . αn)T and the vector of all ones, 1. Note that (2) implies that

α = 1−AT1 =
(
I−AT

)
1 . (10)

The goods produced in the industry j can be used for final consumption, inter-

mediate production or government purchases. In order to finance its spendings,

government taxes the consumer by amount T . We impose the condition that the

budget is balanced, i.e.,

T =
n∑
i=1

pigi . (11)
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Competitive Equilibrium: Definition. We consider the competitive equilib-

rium of this economy. The competitive equilibrium is the set of wages and prices

for goods, wi and pi, such that

(1) given these prices, the representative consumer chooses ci and `i to maximize

utility function (9) subject to the budget constraint

n∑
i=1

pici =
n∑
i=1

wi`i − T , (12)

(2) given these prices, the representative firm in each industry j chooses `j and

xij to maximize profit

πj = pjyj −
n∑
i=1

pixij − wj`j , (13)

(3) markets for goods and labor clear, i.e.,

yj = cj +
n∑
i=1

xji + gj and
n∑
i=1

`i = ` . (14)

Competitive Equilibrium: Characterization. To characterize the compet-

itive equilibrium we begin with the household’s problem. Lagrange function for

this problem is as following:

L = γ(`)
n∏
i=1

cβii − λ

(
n∑
i=1

pici −
n∑
i=1

wi`i + T

)
.

Differentiation of this function gives the following set of the first-order conditions:

`i :
γ′(`)U(c, `)

γ(`)
+ λwi = 0

ci :
βiU(c, l)

ci
− λpi = 0

where c denotes the vector of consumption. From the first equation we conclude

that wage is constant, i.e.,

w1 = · · · = wn =: w .

The constant wage is a consequence of the assumption that the marginal disutility

of labour is the same across all the industries. Moreover, expressing λ from both

conditions and equating them, we obtain

−γ
′(`)

γ(`)
· 1

w
=

βi
cipi

.

22



This, in particular, implies that pici/βi is the same for every good i. Substituting

this fact to the budget constraint and simplifying we obtain that

p1c1

β1

= · · · = pncn
βn

= w`− T . (15)

This is just a representation of a known property of Cobb-Douglas preferences that

in the optimal point, the total budget is divided proportionally to the elasticities

of consumption. Using (15), we can rewrite the previous equation as

−γ(`)w

γ′(`)
= w`− T . (16)

This equality implicitly defines the optimal labor as a function of all prices. When

T = 0, i.e., government is not affecting the economy, optimal labor does not

depend on wage and is completely determined by the disutility of labor.

Next we turn to the industry optimization problem. Maximization of profit

in Eq. (13) gives the following first-order conditions, which we rewrite in terms of

elasticities of inputs

xij :
aij
xij
pjyj − pi = 0 ⇒ aij =

pixij
pjyj

`j :
αj
`j
pjyj − w = 0 ⇒ αj =

w`j
pjyj

Since the profit of firms are zero in the competitive equilibrium with constant

return to scale, we have that pjyj =
∑n

i=1 pixij + w`j. This allows us to rewrite

the last two conditions as follows

aij =
pixij∑n

i=1 pixij + w`j
and αj =

w`j∑n
i=1 pixij + w`j

. (17)

Thus, these conditions express a well-known property of the Cobb-Douglas func-

tion with the constant return to scale. Namely, the technological elasticities of

inputs are, in equilibrium, equal to the fractions of the cost of the corresponding

input in the total costs (or, equivalently, in the total sales) of a given industry.

This property, as we explain in the main text, allows us to connect the exogenous

technological coefficients aij with the entries of the Direct Requirement Table used

in the Input-Output analysis.

Connection with Leontief Matrix. The market clearing condition (14) for

industry j together with the the first-order condition for industry with respect to

xij imply that in the competitive equilibrium

pjyj = pjcj +
n∑
i=1

ajipiyi + pjgj . (18)
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This equality can be rewritten in the matrix form as follows
1− a11 −a12 −a13 . . . −a1n

−a21 1− a22 −a23 . . . −a2n

...
...

...
. . .

...

−an1 −an2 −an3 . . . 1− ann



p1y1

p2y2

...

pnyn

 =


p1c1 + p1g1

p2c2 + p2g2

...

pncn + pngn


The matrix in the left-hand side, I−A, has two important properties. First, it is

a column diagonally dominant matrix, because for every column i we have

1− aii −
∑
j 6=i

| − aji| = 1− aii −
∑
j 6=i

aji = αi > 0 ,

and so |1 − aii| >
∑

j 6=i | − aji|. Therefore, this matrix is non-singular and its

inverse (I −A)−1 exists. Second, since the maximum of the column sums is less

than 1, for the corresponding norm we have that ‖A‖1 < 1, and therefore, all the

eigenvalues of A are inside the unit circle. Therefore, the matrix can be written

as the infinite sum as in Eq. 6 of the main text

(I−A)−1 = I + A + A2 + . . . .

Matrix (I−A)−1 is often called the Leontief inverse in the Input-Output analysis.

The previous calculations imply that the vectors of sales of industries can be

computed as follows

s :=


p1y1

p2y2

...

pnyn

 = (I−A)−1


p1c1 + p1g1

p2c2 + p2g2

...

pncn + pngn

 . (19)

This equation holds in equilibrium in our model. It connects the competitive equi-

librium with Cobb-Douglas production function and the Leontief Input-Output

analysis. We showed that the sales in industry j are affected by the total equilib-

rium demand in all the industries via the elements in the jth row of the Leontief

inverse matrix (I−A)−1. Representation (6) illustrates the idea of multiplicator,

as it shows that not only direct but also all indirect network effects of the change

in demand of an industry j should be taken into account.

Summing up equalities (18) for all the industries, we have that

n∑
j=1

pjyj =
n∑
j=1

(pjcj + pjgj) +
n∑
j=1

n∑
i=1

ajipiyi = w`+
n∑
i=1

(1− αi)piyi

where we used the budget constraint (12), the balanced budget condition, the labor
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market clearing, and the constant returns to scale assumption (2). Therefore,

w` =
n∑
i=1

αipiyi = α · s .

Note that w` is the total value added in the economy or GDP. (Since all the

produced goods are either used in other production or consumed, the only factor

that adds to the value is the labor. The product w` is then the monetary equivalent

of the value added. Alternatively, we obtain the same quantity by summing up

the labor fractions of the total sales over all the industries, i.e., as a scalar product

of vectors α and s.)

Gabaix (2011) define the so-called ‘granular residual’ by weighting the shocks

to the individual firms via their relative sales vector (defined as the vectors of

shares of various firms’ sales in the GDP). From (19) we can also obtain this

vector in our framework as
p1y1
w`
p2y2
w`
...

pnyn
w`

 = (I−A)−1


p1c1+p1g1

w`
p2c2+p2g2

w`
...

pncn+pngn
w`

 = (I−A)−1


β1(w`−T )+p1g1

w`
β2(w`−T )+p2g2

w`
...

βn(w`−T )+pngn
w`

 .

While in the general case the expression in the right hand-side is not very illu-

minating, it simplifies when the government is absent. Let us introduce vector of

consumption shares β = (β1 β2 . . . βn). Then in the case without government (or

in the absence of demand shocks) we have

s

α · s
= (I−A)−1β .

If we further assume that the labor elasticities are the same across the industries,

i.e., when α = α1, we obtain the expression for the relative vector of sales

s

1 · s
=


p1y1∑n
i=1 piyi
p2y2∑n
i=1 piyi

...
pnyn∑n
i=1 piyi

 = α(I−A)−1β .

Thus vector of the relative sales in the economy depends on the technology and

preferences. Note that the last equation implies that the sum of components of

this vector is equal to one, i.e.,

α1T (I−A)−1β = 1 . (20)

If preferences are symmetric as in Acemoglu et al. (2012), i.e., βi = 1/n for every

i, the vector of sales is s = α
n
(I−A)−11.
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B Shock Propagation

Using the results about the competitive equilibrium discussed in Appendix A,

we will now focus on the consequences of the shock to the values of endogenous

variables.

Effects of shocks on equilibrium prices. Using Eq. (19), one can quantify

the effect of a demand shock (change in the government spending) to the sales in

different industries. However, such demand shock may also affect the prices in the

competitive equilibrium. If this is the case, expression (19) is not very useful if

one would like to predict changes on output level, yj.

To evaluate the effect on real output, we will first take the log of the production

function (1). We then have

ln yj = zj + αj ln `j +
n∑
i=1

aij lnxij .

Furthermore, the first order conditions of the firm imply:

xij : lnxij = ln aij + ln pj + ln yj − ln pi

`j : ln `j = lnαj + ln pj + ln yj − lnw

Substituting these last two equations into the previous formula and using (2), we

can write

ln yj = zj + αj lnαj +
n∑
i=1

aij ln aij + ln pj + ln yj − αj lnw −
n∑
i=1

aij ln pi .

Let us define for industry j the constant bj = −αj lnαj −
∑n

i=1 aij ln aij > 0,

which does not depend on the shocks zj in the production function and on the

endogenous variables. Then from the previous equation we obtain

ln pj = −zj + bj + αj lnw +
n∑
i=1

aij ln pi .

or, equivalently in the light of (2),

ln
pj
w

= −zj + bj +
n∑
i=1

aij ln
pi
w
. (21)

This expression defines the linear system of equations with respect to the nor-

malized prices. (For the sake of concreteness, we take w = 1.) In the matrix form

this system reads (
I−AT

)
ln p = −z + b ,
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where ln p, z and b are the column vectors whose components are ln pj, zj and bj,

respectively. Solving the system we find

ln p =
(
I−AT

)−1
(−z + b) . (22)

This implies that the equilibrium price vector does not respond to the changes in

the government spending. On the other hand, the response of the technological

shocks z on prices is linear in shocks.

Effects of technological shocks. To study the effect of technological shocks

on various variables we will totally differentiate (21) (and set w = 1 by normal-

ization). We then have

d ln pj = −dzj +
n∑
i=1

aijd ln pi .

We will assume that the government spendings are set to zero. Then from (16)

we conclude that the equilibrium labor ` does not depend on the technological

shocks. But then from (15) we have that d ln pi = −d ln ci for every i. Therefore,

d ln cj = dzj +
n∑
i=1

aijd ln ci,

which can be solved with respect to the vector d ln c. We obtain that

d ln c =
(
I−AT

)−1
dz.

Comparing it with (22), which implies d ln p = −
(
I−AT

)−1
dz we observe that

chocks have exactly opposite effects on price and consumed quantities. Indeed,

under the Cobb-Douglas preferences the effect of prices and consumption cancel

out leaving the total spending for a commodity unchanged.

Market clearing (14) and the first order condition of consumers imply that

yj
cj

= 1 +
n∑
i=1

xji
cj

= 1 +
n∑
i=1

ajipiyi
pjcj

= 1 +
n∑
i=1

βi
βj

aijyi
ci

,

which means that in the equilibrium there is a unique vector of yj/cj that depends

only on taste and production coefficients. This implies that d ln y = d ln c and

hence,

d ln y =
(
I−AT

)−1
dz. (23)

This is a consequence of the Cobb-Douglas production function: the effect of shock

on prices are exactly balanced by the effect of shocks on quantities.

Equations (22) and (23) summarize the effect that the endogenous variables

will have as a consequence of shocks.
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Effect of technological shocks on GDP. To evaluate the effect of shock z

on the GDP, which is given by w` as in (2.1), we recall that the optimal ` does

not depend on the shocks, and so all the effect will be accumulated in the w. We

rewrite (21) as

αj lnw = zj − bj + ln pj −
n∑
i=1

aij ln pi

or in the vector form

lnw α = z− b +
(
I−AT

)
ln p .

Recall from (10) that α = (α1 α2 . . . αn)T =
(
I−AT

)
1. Therefore, pre-

multiplying this equality by
(
I−AT

)−1
we obtain

lnw 1 =
(
I−AT

)−1
z−

(
I−AT

)−1
b + ln p .

Finally, to express lnw, we sum all the equalities up and divide by their number,

n. In other words, we premultiply the last equality by 1T/n in order to obtain

lnw =
1

n
1T
(
I−AT

)−1
z− 1

n
1T
(
I−AT

)−1
b +

1

n
1T ln p . (24)

Let us analyze this decomposition. First of all we introduce the vector

v =
1

n
(I−A)−1 1,

which is defined in (5) in the main text. The transpose of this vector, vT , pre-

multiplies the vector of shocks in the right hand-side of (24). For this reason,

following Acemoglu et al. (2012), we call vector v the influence vector. The second

term in the right hand-side of (24) is vTb, which depends only on the parameters of

technology and the number of sector but not on endogenous variables and shocks.

The last term

p̄n :=
1

n
1T ln p =

1

n

n∑
i=1

ln pi = ln
n∏
i=1

p
1/n
i

is the average of the log prices, which in this procedure can be interpreted as a

price index. Choosing the price normalization so that ln `− vTb + p̄n = 0, where

` is an optimal labor defined from (16), from (24) we obtain that

ln GDP = lnw + ln ` = vTz .

This result is essentially the same as in Acemoglu et al. (2012), except that it

is obtained here with more general utility function and production process. In

Acemoglu et al. (2012) it is assumed that α = α1.

28


