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Abstract

Growing evidence suggests that many social and economic networks are scale free

in that their degree distribution has a power-law tail. The most widespread expla-

nation for this phenomenon is a random network formation process with preferential

attachment. For a general version of such a process, we develop PMLE and GMM

estimators. By establishing the uniform law of large numbers for growing networks,

we prove consistency of these estimators. Simulations suggest asymptotic normality

of these estimators. In contrast to these estimators, the commonly used NLLS and

local tail-index estimators perform poorly in finite samples. We apply our estimation

methodology to a co-authorship network.
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1 Introduction

Many real networks have a degree distribution with a power-law tail.1 That is, the fraction

P (d) of vertices that have d neighbors is approximately proportional to d−γ for large d, where

γ is a positive constant called the power-law parameter. Such networks are called scale-

free. The power-law parameter plays a important role for the topology of a network and

for the network’s statistical properties, such as learning, the spread of viruses, the size of

the largest component, the connectivity, the searchability, and the robustness to errors and

attacks (Albert and Barabasi, 2002). In this paper, we estimate the power-law parameter

and other parameters for a general model of random scale-free network formation.

Barabasi and Albert (1999) build the first theoretical model of scale-free network formation

(hereafter the BA model):

“...starting with a small number (m0) of vertices, at every time step we add a

new vertex with m(≤ m0) edges that link the new vertex to m different vertices

already present in the system. To incorporate preferential attachment, we assume

that the probability Π that a new vertex will be connected to vertex i depends on

the connectivity ki of that vertex, so that Π(ki) = ki/
∑

j kj. After t time steps,

the model leads to a random network with t+m0 vertices and mt edges.”

The idea of the model is that the rich get richer: more “popular” vertices get more

links than less popular vertices as a network evolves. Such a process is called preferential

attachment. The BA model initiated further wide-range investigation and modelling of scale-

free networks.2

Cooper and Frieze (2003) and Cooper (2006) introduce and analyze a general model of

scale-free network formation (hereafter the CF model). This model nests many models of

scale-free network formation, including the BA model and popular hybrid models, such as

Jackson and Rogers (2007).3

1Such networks include social networks (coauthorship, citation, movie actor, and sexual relation networks),

biological networks (ecological and food webs, cellular, protein and neural networks) and other networks

(WWW, Internet, Fedwire interbank market, and power grid networks). See Albert and Barabasi (2002) and

Dorogovtsev and Mendes (2002).
2For a general overview of scale-free network literature, see Albert and Barabasi (2002), Dorogovtsev and

Mendes (2002) and Chapter 5 of Jackson (2008). For a rigorous mathematical treatment of scale-free random

graph processes, see Bollobas and Riordan (2003).
3Specifically, the CF model is able to reproduce the same (asymptotic) degree distribution as in these

models. However, clustering obtained in Jackson and Rogers (2007) cannot be reproduced by the CF model.
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In the CF model, initially, there is a small fixed network. At each subsequent period,

a new vertex with a random number of edges is added. Some of added edges connect a

new vertex with the existing network, and others connect old vertices between themselves.

The sampling method for choosing link endpoints is decided uniformly at random with some

probability and by preferential attachment with the complementary probability.

Cooper (2006) shows that the asymptotic degree distribution depends only on the subset

of parameters including the initial degree distribution of added vertexes, p, the share of

edges added by preferential attachment, η. Moreover, the asymptotic degree distribution is

a linear combination (with coefficients p) of modified Yule-Simon distributions (see Simon,

1955). Most interestingly, the asymptotic degree distribution has a power-law tail, where the

power-law parameter is determined as 1 + 1/η. The goal of this paper is to develop rigorous

methodology for estimating the parameters determining the asymptotic degree distribution.

Despite a variety of theoretical models of network formation, there is a lack of rigorous

econometric methods that estimate structural parameters of network formation models. Many

papers just plot the transformed degree distribution for real networks on the log-log scale and

calculate the slope of the tail of the distribution to estimate the power-law parameter. The

local tail exponent estimators, starting from Pickands (1975), Hill (1975), Smith (1987), their

generalisations and similar alternative estimators are popular formal procedures for estimating

a tail exponent. However, many of these estimators assume continuous distributions, rely on a

specific tail behaviour and all of them strongly depend on the appropriate choice of the number

of tail observations. From the perspective of structural model estimation Pennock et al. (2002)

and Jackson and Rogers (2007), apply nonlinear least squares procedures (hereafter NLLS)

to fit the empirical degree distribution to an approximation of the parametrized asymptotic

degree distribution. Goldstein et al. (2004) illustrate that although such procedures give

good graphical fits of empirical and estimated distributions on the log-log scale, they may

give biased and inaccurate estimates of model parameters. Goldstein et al. (2004) also argue

that the maximum likelihood estimation is much more robust. Unfortunately, as Jackson and

Rogers (2007) note, deriving analytically and then computing numerically the true likelihood

of all possible degree distributions appears to be intractable for scale-free network formation

models. König (2015) provides behavioural foundations for the model of Jackson and Rogers

(2007) and estimates the model using Bayesian methods.

Atalay et al. (2011) and Atalay (2013) estimate parameters of a network formation model

using a pseudo maximum likelihood estimator (hereafter PML). Specifically, they calculate the

The methods presented in this paper will rely on certain properties derived for the CF model, but not yet

available (and not trivially derivable) for more general models allowing for clustering.
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likelihood assuming that each node degree is independent and identically distributed according

to a derived asymptotic degree distribution. However, in their network formation models,

node degrees are interdependent and have different distributions even in asymptotics (“old”

nodes have a much higher degree than “young” nodes). Under these conditions the asymptotic

properties the PML estimator are not well understood. Our results can be extended to derive

the properties of this estimator.

To estimate parameters of the CF model, we develop a class of generalized method of

moments (hereafter GMM) estimators, which includes the PML estimators as a special case.

This GMM estimation is computationally simple, because it requires calculating only a sam-

ple average of a moment function, as opposed to the true likelihood of all possible degree

distributions. We show formally that the GMM estimators give consistent estimates of the

CF model parameters. Standard consistency results rely on the uniform law of large numbers

for independent or stationary data. We cannot rely on these results because node degrees are

interdependent in a non-standard way in the CF model. Our main technical contribution is

the prove of the uniform law of large numbers using first principles. While the proof relies on

certain properties of the degree distribution sequence established for the CF model, the proof

is sufficiently general and can be extended to other network-formation models. Relying on

the introduced uniform law of large number we establish the asymptotic properties the GMM

and PMLE estimators. Simulations suggest that the GMM and PMLE estimators perform

well in finite sample, i.e., the distribution of estimates is close to normal, there practically no

bias even for small networks and the variance is small in comparison with other estimators.

distributed. The NLLS estimator and local tail exponent estimators exhibit larger biases

and higher variances. We illustrate the usefulness of our estimation methodology with an

application to the network of co-authorship relationship among economists which was earlier

investigated in Goyal et al. (2006) and Jackson and Rogers (2007).

The rest of the paper is organized as follows. Section 2 introduces and discusses the model.

Section 3 describes the estimation methodology by establishing new uniform law of large

numbers for growing networks, introducing the PMLE and GMM estimators and deriving the

asymptotic properties of the these estimators. Section 4 compares finite sample statistical

properties of the PMLE and GMM estimators with currently applied NLLS and local tail

exponent estimators using Monte Carlo simulations. Section 5 illustrates an application of

the estimation methodology. Section 6 concludes. Appendix A restates the key results of

Cooper (2006) used in this paper. All proofs are relegated to Appendix B. Appendix C

derives the NLSS and local tail exponent estimators for the CF model.
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2 Network Formation Model and Discussion

2.1 Setup

We study the CF model introduced by Cooper and Frieze (2003) and further analyzed by

Cooper (2006). Following them, we describe network formation as a statistical process, but

this process can be economically microfounded using benefits and costs of initiating and/or

removing an edge (see Section 2.3).

Consider a random graph process, (G(t))t≥1 = (V (t), E(t))t≥1, where V is a set of vertices,

E is a set of edges, and t ∈ {1, 2, . . . } is time.4 In economic applications, the vertices typically

represent economic agents and the edges represent their connections. Let G(1) be an initial

graph that contains |V (1)| ≥ 1 vertices and |E(1)| ≥ 1 edges (the number of elements of

an arbitrary finite set X is denoted by |X| hereafter). For t ≥ 2, the random graph G(t) is

obtained from G(t− 1) as follows. A new vertex born at time t and indexed by its birth-time

t is added to the graph. The new vertex forms a random number of edges m(t) connecting it

with some existing (old) vertices in V (t− 1). At the same time, old vertices in V (t− 1) form

M(t) edges between themselves. Both m(t) and M(t) are bounded from above by integers

P and Q, and are independently distributed (among themselves and across time) according

to finite support distributions p = (p0, . . . , pm, . . . , pP ) and q = (q0, . . . , qM , . . . , qQ), where

pm = Pr(m(t) = m) and qM = Pr(M(t) = M). These distributions characterise agents

behaviour in forming new connections over time. Denote an average number of new-old

edges added at t by m = E (m(t)) and an average number of old-old edges added at t by

M = E (M(t)). We assume that there is a positive probability that at least one edge is

added, i.e. m + M > 0. Denote the degree (i.e., the number of immediate neighbours) of a

vertex v of the graph G(t) by d(v, t).

Next we define with whom the agents form connections. First, consider edges emi (t),

i = 1, . . . ,m(t), originating from new vertex t. Their terminal endpoints, vertices with whom

t connects, are chosen independently with probability A1 by preferential attachment from

V (t − 1) (i.e. the probability that an old vertex, v, is the terminal endpoint of emi (t) is

proportional to the degree of this vertex d(v, t − 1)),5 and with probability A2 = 1 − A1

4Formally we should refer to this process as a multi-graph as we allow for loops (i.e., edges joining a vertex

to itself) and multiple edges (i.e., several edges joining the same two vertices). However, relying on Bollobas

et al. (2001), we expect that the fraction of multiple edges and loops goes to 0 as t → ∞ for the considered

process. Also, we treat all edges as undirected, but it is straightforward to extend the analysis to directed

graph processes.
5Preferential attachment arises naturally in information sharing networks, more detailed microfounda-
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uniformly at random from V (t− 1). To summarize,

pA(v, t) ≡ Pr(v is a terminal endpoint of emi (t)) = A1
d(v, t− 1)

2|E(t− 1)|
+ A2

1

|V (t− 1)|
.

Second, consider edges eMi (t), i = 1, . . . ,M(t), connecting old vertices in V (t − 1). The

initial endpoint vertex and the terminal endpoint vertex of each edge eMi (t) are chosen in-

dependently with probability B1 and C1 by preferential attachment from V (t− 1) and with

probability B2 = 1 − B1 and C2 = 1 − C1 uniformly at random from V (t − 1). Thus, we

obtain

pB(v, t) ≡ Pr(v is an initial endpoint of eMi (t)) = B1
d(v, t− 1)

2|E(t− 1)|
+B2

1

|V (t− 1)|
,

pC(v, t) ≡ Pr(v is a terminal endpoint of eMi (t)) = C1
d(v, t− 1)

2|E(t− 1)|
+ C2

1

|V (t− 1)|
.

The degree distribution, Pt(d), of a random graph is itself a random object. Define

Dt(d) as the number of vertices of the graph G(t) that have degree d. Then the degree

distribution defined as the fraction of vertices of the random graph G(t) that have degree d

is Pt(d) ≡ Dt(d)/|V (t)|, which is a random variable. Corollary 1 below shows that for all d

the fraction Pt(d) converges in probability to P (d) as t goes to infinity. The limiting fractions

P (d) are called the asymptotic degree distribution of the graph process (G(t))t≥1.

Corollary 1 also shows that the asymptotic degree distribution of the graph process

(G(t))t≥1 is fully characterized by the initial degree probability distribution of the newly

added vertexes, p, the average number of old-old edges, M , and the limiting fraction of the

endpoints inserted by the preferential attachment, η, defined as

η ≡ mA1 +M(B1 + C1)

2(m+M)
.

Parameter p uniquely defines m which we will often use to simplify notation. In this vein,

we will also use parameter κ ≥ 0 defined as

κ ≡ (m+ 2M)

η
− 2(m+M).

As in Cooper and Frieze (2003), we assume that parameters are such that 0 < η < 1 holds.6

Note that the structural parameters A1, B1, C1 and q can only be partially identified from

the asymptotic degree distribution, so we will focus on estimating p, M , and η.

tions are in Section 2.3. Importantly, the network is scale-free if and only if the attachment probability is

asymptotically linear.
6In contrast to Cooper and Frieze (2003) who assume that p0 = 0 and q0 = 0, (i.e., each vertex has

at least one neighbour), our model allows vertices to have zero degree to conform with real network data.

Nevertheless, if 0 < η < 1, all results and corresponding proofs from Cooper (2006) remain valid.
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2.2 Asymptotic Degree Distribution

Our derivations of the asymptotic degree distribution rely on the results of Cooper (2006)

presented in Appendix A. Proposition 1 restates expected degree sequence and concentration

results of Cooper (2006) in a form convenient for our analysis.

Proposition 1 For 0 ≤ d ≤ d∗(t; η), where d∗(t; η) = min{tη/3, t1/6/ ln2 t}, and for any

K > 1, we have the following

Pr

(∣∣∣∣Dt(d)

|V (t)|
− P (d; η,M,p)

∣∣∣∣ ≥ K
P (d; η,M,p)√

ln t

)
= O

(
1

ln t

)
,

where P (d; η,M,p) is the asymptotic degree distribution given by

P (d; η,M,p) =

min{P,d}∑
m=0

pm
Γ (m+ κ+ 1/η)

ηΓ (m+ κ)

Γ (d+ κ)

Γ (d+ κ+ 1 + 1/η)

 (1)

and Γ(·) is the gamma function.

Corollary 1 demonstrates the limit properties of the degree distribution.

Corollary 1 We have the following:

1. The fraction Pt(d) of vertices of the graph G(t) that have degree d converges in probability

to P (d; η,M,p) as t→∞.

2. The asymptotic degree distribution P (d; η,M,p) has a power-law tail with the power-law

parameter 1 + 1/η :

P (d; η,M,p) = C(η,M,p)d−1−1/η

(
1 +O

(
1

d

))
,

where C(η,M,p) =
∑P

m=0 pmΓ (m+ κ+ 1/η) /(ηΓ (m+ κ)).

3. When the probability of preferential attachment tends to zero, the asymptotic degree

distribution approaches a distribution proportional to the geometric distribution:

lim
η→0

P (d; η,M,p) =

min{P,d}∑
m=0

pm(1− λ)−m

λ(1− λ)d,

where λ = (2M +m+ 1)−1 is the parameter of the geometric distribution.7

7The geometric distribution is the discrete analogue of the exponential distribution, as (1−λ)d = eln(1−λ) d.
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2.3 Discussion and Examples

The CF model nests many network formation models in a sense that it is able to generate

networks with degree distribution patterns ranging from the exponential degree distribu-

tion generated by the growing random graphs to the power law degree distribution of the

preferential attachment networks and any hybrid models embedding the elements of both.8

Importantly, we use the CF model to model only the degree distribution, rather than cluster-

ing and other characteristics of the social and economics networks. In particular, Theorem 5

of Bollobas and Riordan (2003) suggests that it is possible to introduce any level of cluster-

ing in a graph process with preferential attachment without changing the asymptotic degree

distribution. Dorogovtsev and Mendes (2002) provide an example of such a process in Sec-

tion IX C. Hence, the CF model may be extended to include any level of clustering. Similar

arguments can be made about other network characteristics. Therefore, information about

clustering and other characteristics is of limited use for estimating parameters (η,M,p) which

solemnly determine the graph degree distribution.

The network models based on preferential attachment, including the CF model, provide

good fit to observed physical, social and economic networks, but may lack rigorous micro-

foundations for individual strategic behaviour and structural interpretation of game-theoretic

link formation models, as in Christakis et al. (2010) and Mele (2013). A growing literature

attempts to fill this gap.

Jackson and Rogers (2007) build a growing network model using intuitive behavioural

principles which may explain preferential attachment. Similarly to the CF model, in their

model, a new vertex is added at every period. The new vertex considers edges with mr old

vertices uniformly at random by “meeting strangers”. In addition, the new vertex considers

edges with mn direct neighbours of the previously “befriended” vertices by “meeting friends

of friends”. The new vertex chooses to create a considered edge when net marginal benefits

of creating this edge are positive. The net marginal benefits of forming an edge are not

8Specifically, to obtain the preferential attachment graph of Barabasi and Albert (1999), set pm = 1, q0 =

1, and A1 = 1, hence, η = 1/2 and M = 0; for the hybrid graph in Chapter 5 of Jackson (2008) set

pm = 1, q0 = 1, and A1 = 1 − α; for the hybrid graph in Pennock et al. (2002) set p0 = 1, qm = 1, and

B1 = C1 = α. The Dorogovtsev et al. (2000) and Buckley and Osthus (2004) setting, where the probability

to be connected to a new vertex is proportional to the sum of initial attractiveness A and degree d(v, t− 1),

can be reflected in the CF model by setting pm = 1, q0 = 1, and A1 = 1/ (1 +A/2m) . The copying model

of Kleinberg et al. (1999) and Kumar et al. (2000), in a simple version of which a new vertex either forms

a random edge (with probability α) or copies one edge from existing vertex (with probability 1− α), is also

covered by the CF model with pm = 1, q0 = 1, and A1 = 1− α.
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modelled explicitly, but are assumed to be positive with probability pr for strangers and

with probability pn for friends of friends. The network is directed in a sense that edges

go from the new vertex to the old vertices. The model has the properties of preferential

attachment since the probability to be connected to the friend of the friend is proportional

to its in-degree, di(v, t − 1). Therefore, the directed version of the CF model can replicate

the asymptotic degree distribution of the Jackson and Rogers (2007) model by setting m =

m = mnpn + mrpr, q0 = 1, A1 = prmr/m,A2 = 1 − A1 and modifying pA(v, t) = A1di(v, t −
1)/|E(t− 1)| + A2/|V (t− 1)| to reflect a directed graph.9 Jackson and Rogers (2007) apply

the model to web site links and various social networks including a co-authorship network, a

citation network, friendship and romantic relationship networks. Atalay et al. (2011) apply

a similar model incorporating growth and decay features to buyer-supplier relationships.

There is a well established literature with rigorous micro-foundations on strategic network

formation starting from Jackson and Wolinsky (1996) and Bala and Goyal (2000). In these

types of models a star network typically emerges as an equilibrium configuration. However,

introducing some noise in the decision making process of agents in these strategic network

formation models leads to emergence of networks with the preferential attachment, a special

case of the CF model. Babus and Ule (2008) suggest a stylized example, in which agents gain

access to information from others as long as they are at most two edges away in the network.

They specify a simple marginal payoff an agent might gain from connecting to agent v at

time t, but also add idiosyncratic random noise in decision making. Using discrete choice

logit framework, they show that the probability of forming an edge with an existing agent is

proportional to the degree of this agent as in the preferential attachment network.

König (2015) considers more general marginal payoff functions with some idiosyncratic

noise in the information sharing environment. Similarly to Jackson and Rogers (2007) setting,

at every period a newly born agent can sample a given number (called observation radius) of

existing agents (strangers) selected uniformly at random and can also observe neigbours of

previously met agents (friends of friends). The key innovation of the paper is that benefits of

forming an edge with sampled strangers and friends of friends are modelled explicitly. König

(2015) finds that for small noise centralized star-type networks emerge irrespectively of the

observation radius, but for larger noise and smaller observation radius the networks exhibiting

preferential attachment and power law in degree distribution emerge. In this case the derived

asymptotic degree distributions (König, 2015, Proposition 2) is similar to the asymptotic

degree distribution in the CF model given by (1).

9The derivation follows directly from equation (1) in Jackson and Rogers (2007).
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3 Methodology

3.1 Preliminaries

We propose the PMLE and GMM type estimators to estimate the parameters of the asym-

totic degree distribution of the CF model. As shown in Corollary 1, the asymptotic degree

distribution depends only on the subset of parameters of the model; specifically on η, M , and

p = (p0, . . . , pP ). Section 3.3 shows that these parameters are identified. From the setup of

the model it is clear that η ∈ (0, 1), M ∈ [0,∞) and p ∈ ∆P , where ∆P = {p ∈ RP+1
+ :∑P

i=0 pi = 1} is P dimensional simplex.10 We assume that the dimensionality P of p is

known; i.e., it is known how many parameters we need to estimate. In applications if P is

unknown, it can be chosen using information criteria such as AIC or BIC (see, e.g., Burnham

and Anderson, 2002), but we do not explore asymptotic properties of such procedures.

Parameter η is of the highest interest in this model. First, it determines the power-law

parameter 1+1/η, which is important for the statistical properties of the network. Second, it

is equal to the limiting fraction of the edge endpoints inserted by the preferential attachment.

Let θ = (η,M,p), i.e. θ is P + 3 dimensional parameter with the domain Θ = (0, 1) ×
[0,∞) ×∆P . To represent the true value, a generic value, and an estimate, we write θ0, θ,

and θ̂ respectively.

In Section 3.3 we derive asymptotic properties of the introduced estimators, θ̂, as t goes

to infinity. This asymptotic is similar to the standard large sample asymptotic, in which the

number of observations goes to infinity. In the random graph process that we consider, one

vertex and at most P + Q edges are added at each time step t. Thus all asymptotic results

will continue to hold if we consider an alternative asymptotic, in which the number of vertices

|V (t)| or the number of edges |E(t)| of the graph G(t) goes to infinity, since |V (t)| → ∞,

|E(t)| → ∞ and t→∞ are equivalent.

3.2 Uniform Law of Large Numbers

Before introducing estimators and establishing their consistency we establish the uniform law

of large numbers under non-standard conditions prevalent in growing network models. The

standard regularity conditions for establishing consistency of estimators are continuity and

uniform convergence. We can establish continuity by checking standard technical conditions

for the distribution function P (d;θ) given by (1). However, we cannot establish uniform

10Formally, because of the assumption m + M > 0, whenever M = 0 we should eliminate point p =

(1, 0, ..., 0), which corresponds to p0 = 1, from simplex ∆P .
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convergence by using the standard uniform laws of large numbers for independent or weakly-

dependent stationary data processes, because the CF model yields substantial heterogeneity

in the vertex degrees and nonstandard vertex degree interdependencies. The main technical

contribution of the paper is the uniform law of large numbers established for the CF model.11

Proposition 2 If a(d;θ) is a matrix of functions continuous in θ on a compact set Θ ⊂ Θ,

and there is F such that ‖a(d;θ)‖ < F · (d + 1) for all d ∈ N and all θ ∈ Θ, where

‖a(d;θ)‖ =
(∑

j,k a
2
jk

)1/2

is the Euclidean norm, then we have the following.

1. G0(θ) =
∑∞

d=0 a(d;θ)P (d;θ0) is continuous in θ.

2. supθ∈Θ

∥∥∥Ĝt(θ)−G0(θ)
∥∥∥ P→ 0, where Ĝt(θ) =

∑∞
d=0 a(d;θ)Dt(d)/|V (t)|.

To prove Proposition 2, we do not impose any specific dependence structure on the vertex

degrees, but instead use the concentration result of Proposition 1. To illustrate the key steps

of the proof, suppose that a (d;θ) is a function a(d) that does not depend on θ and satisfies

0 < a(d) < d. Part 1 of Proposition 2 holds because
∑n

d=0 a(d)P (d;θ0) is a converging series

as follows from η0 < 1, a(d) < d, and P (d;θ0) being approximately proportional to d−1−1/η0

by part 2 of Corollary 1. To prove part 2, we bound
∣∣∣Ĝt(θ)−G0(θ)

∣∣∣ by the sum of the three

terms as follows

∣∣∣Ĝt(θ)−G0(θ)
∣∣∣ ≤ ∞∑

d=d̃(t)

a(d)P (d;θ0)

︸ ︷︷ ︸
Ŝ1

+

d̃(t)−1∑
d=0

a(d)

∣∣∣∣Dt(d)

|V (t)|
− P (d;θ0)

∣∣∣∣︸ ︷︷ ︸
Ŝ2

+
∞∑

d=d̃(t)

a(d)
Dt(d)

|V (t)|︸ ︷︷ ︸
Ŝ3

,

and show that each term converges in probability to zero if d̃(t) grows to infinity but much

slower than d∗(t; η) and ln t. Ŝ1 → 0 again by part 2 of Corollary 1. Ŝ2
P→ 0 by the concentra-

tion result of Proposition 1. Finally, Ŝ3 can be bounded above by
∑∞

d=d̃(t) dDt(d)/|V (t)|, which

is equal to the difference between Ŝ4 =
∑∞

d=0 dDt(d)/|V (t)| and Ŝ5 =
∑d̃(t)−1

d=0 dDt(d)/|V (t)|.
Ŝ5

P→ 2(m0 +M0) by Proposition 1 and part 1 of Corollary 1. Finally, Ŝ4
P→ 2(m0 +M0) by

the law of large numbers applied to independent draws of m(t) + M(t). Therefore, Ŝ3
P→ 0,

and part 2 of Proposition 2 follows.

11This section closely follows Newey and McFadden (1994) notation. Symbols  and
P→ stand for conver-

gence in distribution and probability respectively. OP (1) and oP (1) are stochastic order symbols, formally

defined in van der Vaart (2000).
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3.3 Consistency of PML and GMM Estimators

The established uniform law of large numbers allows us to extend the standard consistency

results to our network formation model. We define the pseudo log-likelihood based on the

asymptotic degree distribution in (1) as follows:

L̂t(θ) =
∞∑
d=0

Dt(d)

|V (t)|
lnP (d;θ). (2)

The true log-likelihood is different from the pseudo log-likelihood, because (i) degrees of

vertices are interdependent, and (ii) a finite sample (not asymptotic) degree distribution

should be used.

The PML estimator is defined as:

θ̂
PML

= arg max
θ∈Θ

L̂t(θ). (3)

The plug-in PML estimator is formally defined as:

θ̂
plPML

= arg max
θ∈Θ

L̂t(θ), (4)

s.t. m+M =
1

2

∞∑
d=0

d
Dt(d)

|V (t)|
. (5)

That is, θ̂
plPML

is obtained by replacingm+M in (2) with its estimate m̂+M = 1
2

∑∞
d=0 d

Dt(d)
|V (t)|

and maximizing (2) over the remaining parameters η and p; so θ̂
plPML

is faster to compute

than θ̂
PML

, because it requires maximization over one less parameter, M . A rationale for this

estimator is that m̂+M is a consistent estimate of m0 +M0 with the standard asymptotic:√
|V (t)|

(
m̂+M −m0 −M0

)
 N (0,Var(m(t)) + Var(M(t))),

because m(t) and M(t) are independent of each other and across time t.

Consistency of the PML and the plug-in PML estimators is established in Propositions 3.

Proposition 3 Let Θ ⊂ Θ be compact and θ0 ∈ Θ. If θ̂ satisfies L̂t(θ̂) ≥ maxθ∈Θ L̂t(θ) +

oP (1) where L̂t(θ) is given by (2), then θ̂
P→ θ0. In particular, θ̂

PML P→ θ0 and θ̂
plPML P→ θ0.

We now consider a more general class of GMM estimators. A GMM estimator θ̂ is defined

as θ that maximizes

Q̂t(θ) = −

[
∞∑
d=0

g(d;θ)
Dt(d)

|V (t)|

]′
Ŵ

[
∞∑
d=0

g(d;θ)
Dt(d)

|V (t)|

]
, (6)
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where Ŵ is a positive semi-definite matrix and the moment function vector g(d;θ) satisfies

∞∑
d=0

g(d;θ0)P (d;θ0) = 0. (7)

Since (1) gives the explicit expression for P (d;θ), it is easy to verify whether a given g(d;θ)

satisfies (7). In particular, from the discussion of the PML estimators, it is evident that (7)

is satisfied for the moment function vector that consists of the score function vector and the

degree function:

g(d;θ) =
(
∇θ lnP (d;θ), d− 2(m+M)

)′
. (8)

Proposition 4 specifies sufficient conditions on moment function g(d;θ) and matrix Ŵ for

the GMM estimate θ̂ to be consistent.

Proposition 4 Let θ̂ maximize (6) where Ŵ
P→ W , (i) W

∑∞
d=0 g(d;θ)P (d;θ0) = 0 only if

θ = θ0; and (ii) θ0 ∈ Θ ⊂ Θ where Θ is compact.

1. If (iii) g(d;θ) is continuous on Θ; and (iv) there is F such that ‖g(d;θ)‖ < F · (d+ 1)

for all d ≥ 0 and all θ ∈ Θ, then θ̂
P→ θ0.

2. If g(d;θ) is given by (8), then θ̂
P→ θ0.

Conditions (i), (ii), and (iii) are standard identification, compactness, and continuity

assumptions (see Theorem 2.6 of Newey and McFadden, 1994). Condition (iv) is required for

the uniform law of large numbers established in Proposition 2.

We suggest using the moment function vector given by (8). With appropriately chosen

weights in Ŵ , GMM estimators based on this moment function vector nest the PML and

plug-in PML estimators when they are viewed as solutions to their first-order conditions. In

particular, θ̂
PML

is a solution to

∞∑
d=0

∇θ lnP (d;θ)
Dt(d)

|V (t)|
= 0;

so it can be viewed as a GMM estimator with Ŵ that puts the full weight on the score

function (and no weight on the degree function).

As part 2 of Proposition 4 shows, for the consistency of GMM estimators based on the

moment function vector (8), we only need to check the identification condition (i). In contrast

to the identification of the PML and plug-in PML estimators established in Proposition 3,

it is difficult to specify primitive conditions on g(d;θ) and W such that the identification

13



condition holds. A common practice in the GMM literature, therefore, is to simply assume

identification (see, e.g., p. 2127 of Newey and McFadden, 1994).12

3.4 Discussion of Asymptotic Normality and Variance

We now specify sufficient conditions for establishing asymptotic normality of GMM estimators

based on the moment function vector (8), and, thus, of the PML and plug-in PML estimators.

Proposition 5 Let θ̂ maximize (6) where g(d;θ) is given by (8), Ŵ
P→ W , θ̂

P→ θ0, and

θ0 ∈ interior(Θ). If (i) G′WG is nonsingular where G =
∑∞

d=0∇θg(d;θ0)P (d;θ0) and

(ii)
√
|V (t)|

∑∞
d=0 g(d;θ0)Dt(d)/|V (t)| N(0,Σ), then√
|V (t)|

(
θ̂ − θ0

)
 N

[
0, (G′WG)

−1
G′WΣWG (G′WG)

−1
]
.

Condition (i) holds under local identification. Condition (ii) is an asymptotic normality

condition for a sample average of g(d;θ0). If we could assume independence this condition

would follow from a central limit theorem (CLT). 13 Simulations suggest that this condition

holds. Informally asymptotic normality is suggested by the results of Cooper (2006, Theo-

rem 2.2), who shows that most vertex degrees are asymptotically independently distributed

according to a negative binomial distribution. The asymptotic normality of the estimators

is supported by our simulations. However, the simulations show that the independence does

not hold in finite samples which has implications for the asymptotic variance.

To get a consistent estimate of the asymptotic variance of θ̂, we need to find consistent es-

timates of G and Σ.14 A consistent estimate of G can be obtained by Ĝ =
∑∞

d=0 g(d; θ̂)Dt(d)
t

,15

12It is easier to verify a local identification condition, which requires that there is a unique solution to

W
∑∞
d=0 g(d;θ)P (d;θ0) = 0 only in some neighbourhood of θ0. By Rothenberg (1971), a sufficient condition

for local identification is that WG has full column rank, where G =
∑∞
d=0∇θg(d;θ0)P (d;θ0). At the end of

the proof of Proposition 5 we derive G for the moment function vector (8); so for given θ0 and W , we can

verify local identification – in particular, it holds for GMM estimators used in our simulations.
13Under independence and certain additional assumptions this condition follows from a central limit theorem

(CLT). Formally, we cannot assume independence because of interdependencies in vertex degrees. Jenish and

Prucha (2009, 2012) establish CLT for weakly dependent spatial processes, which requires certain mixing or

near-epoch dependence. It is non-trivial to verify whether these conditions hold in our context.

14By assumption (ii) of Proposition 5, Ŵ
P→ W and G′WG is nonsingular. If in addition

Ĝ
P→ G and Σ̂

P→ Σ, then by continuous mapping theorem,
(
Ĝ′Ŵ Ĝ

)−1
Ĝ′Ŵ Σ̂Ŵ Ĝ

(
Ĝ′Ŵ Ĝ

)−1
→

(G′WG)
−1
G′WΣWG (G′WG)

−1
.

15Consistency, continuity, and uniform convergence imply:
∥∥∥Ĝ−G∥∥∥ ≤ ∥∥∥Ĝ−G(θ̂)

∥∥∥ +
∥∥∥G(θ̂)−G

∥∥∥ ≤
supθ∈Θ

∥∥∥∑∞d=0 g(d; θ̂)Dt(d)
t −G(θ)

∥∥∥+
∥∥∥G(θ̂)−G

∥∥∥ P→ 0.
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but it is difficult to get a consistent estimate of Σ, because vertex degrees are interdependent

and are not identically distributed.

To overcome this issue, we propose using parametric bootstrap (see, e.g., Efron and Tib-

shirani, 1994) to compute standard errors of the parameter estimates. The procedure amounts

to resampling from the parametric CF model given the estimated values of the parameters.

The complication with this procedure is that some of the structural parameters of the network

are only partially identified. Namely, parameters A1, B1 and C1 are between 0 and 1 and are

bound by the relationship in (1). When M = 0 (q0 = 1), we have complete identification,

A1 = 2η, and we can easily implement the parametric bootstrap. In other cases parameter q

is not identified, but if we assume a lower bound and an upper bound for M , say 0 and Q, by

specifying q0 = 1−M/Q and qQ = M/Q for given M the variance of the estimator for M will

be maximized given all other parameters. The minimum variance for the estimator of M can

be achieved by setting qbMc = M −
⌊
M
⌋

and qdMe =
⌈
M
⌉
−M , where bxc and dxe denote

the largest integer not greater than x and the smallest integer not less than x, respectively.

The variance of the estimator for η will be maximized by using q that maximizes the variance

of M and after assuring that the maximized variance of M is greater than the variance of m,

setting A1 = 0 and B1 as close as possible to C1, e.g. for η = 0.5, p0 = 1 set B1 = C1 = 0.5.

The variance for η will be minimised for q minimizing the variance of M and after making

sure that is smaller than the variance of m setting A1 = 0 and B1 as apart as possible to C1,

e.g., for η = 0.5, p0 = 1 set B1 = 1, C1 = 0. This way we can find the lower bound and the

upper bound for standard errors using the parametric bootstrap. In application we use 1000

replications.

Asymptotic efficiency Newey and McFadden (1994, Theorem 5.2) implies that the GMM

estimator with Ŵ
P→ Σ−1 is asymptotically efficient in the class of GMM estimators. We

applied the above bootstrap procedure to estimate variance of the moments and use its inverse

as an estimate of the optimal weighting matrix. However, our simulations indicate that in

finite samples using the identity weighting matrix produces similar and sometimes better

results in terms of the MSE in comparison to using the estimate of the optimal weighting

matrix. Similar finite sample results are often found in the GMM literature (see, e.g., Altonji

and Segal, 1996).
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4 Simulations

We investigate finite sample performance of the GMM (including PML), NLLS, and several

local tail exponent estimators including the discrete local tail exponent (DLTE) estimator,

the log-log rank-degree regression with Gabaix and Ibragimov (2011) correction (hereafter

GI), and Hill (1975) estimator with Clauset et al. (2009) correction (hereafter Hill). The

NLLS and the local tails exponent estimators are formally discussed and derived for the CF

model in Appendix C.

We compare estimators using sample statistics of parameter estimates, namely, sample

mean, sample standard deviation, bias, a difference between the sample mean of an estimate

and its true value, and the mean squared error between an estimate and the true value. We

also perform the Anderson-Darling (AD) test for normality of the estimate and reports its

p-value. For the local tail exponent estimators we report the median value of trashhold dtr

selected using the AD distance (see Appendix C for details). All simulation results are based

on 10000 replications.

As a benchmark, we consider the CF model with the following parameters: t = 1000,

η = 0.5, p0 = 1 (m(t) = 0), and q1 = q2 = 1/2 (M = 1.5). Similar to Bollobas et al.

(2001), we assume that initial graph G(1) consists of one vertex and a random number

max{m(1)+M(1), 1} of loops.16 We compare the GMM estimator using the moment function

vector with the score function and the degree function as in (8) and the GMM−M estimator

excluding M -component of the score function from the moment vector. In this treatment,

the PML and GMM estimators assume the correct model (P = 0).

Table 1 compares the results for all considered estimators. In terms of η, the PMLE and

GMM class estimators are effectively unbiased, while the NLLS and the local tail exponent

estimators show some bias. Similarly in terms of the standard error the PMLE and GMM

outperform the other estimators. The AD test suggests normality for that η estimates from

the PMLE and GMM estimators and rejects normality for NLLS and the local tail exponent

estimators. Overall, the GMM estimator based on the score function and the degree function

attains the smallest MSE, though, its performance is closely comparable to the plug-in PLME

and GMM−M estimators.

<<Place Table 1 about here>>

Table 2 investigates how bias of the considered estimators changes with sample size or

16As a robustness check we also considered different initial graphs, but the results were not effected, which

supports ergodicity for the CF model.
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the number of vertices, t, (assuming |V (1)| = 1). We consider the benchmark parameters

and vary η. The bias of the GMM class of estimators (including PMLE) is virtually 0 and

reduces with t. The bias of the NLLS estimator is relatively high and reduction with t

is rather slow. The bias of DLTE and Hill estimators is initially large, but there is some

reduction with t, while the bias of the GI estimator is not very large initially, but it does not

reduce (but sometimes increase) with t. These results support consistency for the GMM class

of estimators and suggest that convergence of NLLS estimator is rather slow, while the GI

estimator does not converge to the true value even in large samples. Also the bias depends

on the value of η in a non-trivial way.

<<Place Table 2 about here>>

Figure 1 explores the behaviour of the standard deviations of the estimates for η for

benchmark parameters and different η-s as t increases. For brevity for the class of the GMM

estimators we report only the PMLE and the GMM using the score and the degree moment

function. The standard errors of the plug-in PMLE and GMM−M estimators are very close

to this GMM estimator. The GMM-based estimates attain the smallest standard deviations

for all t and different values of parameter η. Moreover, the standard deviation of the PMLE

and GMM estimates of η appears to decrease with the rate
√
t, which suggests that these

estimators are
√
t-consistent. While normality of the GMM-class based estimates sometimes

does not hold for t = 1000, the simulations (not shown here for brevity) suggest that for larger

samples the normality seem to hold. For the other considered estimators the convergence

results are noisy and depend on the value to the parameters η. Out of these estimators the

NLLS seem to perform better than the local tail exponent estimators for large t, while the GI-

based estimates show smaller standard deviation for small t. Similarly, for these estimators

normality is rejected even in large samples.

<<Place Figure 1 about here>>

Next, we investigate the behaviour of the GMM estimator under overspecification, when

the assumed P is larger than the actual P , and misspecification, when the order is reversed.

Table 3 report the results for the true model with P = 1 and p0 = p1 and the rest of the

parameters as in the benchmark. The assumed order is the GMM of estimators is indicated

by superscript P , e.g., GMM0 denoted the misspecified model with P = 0. In case of

overspecification when the assumed order is P = 2, the GMM estimator is less efficient

for all parameters, but the bias remains rather small. For η it is still smaller than for the
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NLLS and the local tail exponent estimators. However, in case of misspecification, when

the assumed order is P = 0, the GMM estimator shows a substantial bias, in both η and

M which is much higher than the bias of NLLS and the local tail exponent estimators. In

the this sense the GMM estimator is nor robust to the misspecification. We can use BIC

criterion the perform model selection. The last raw of Table 3 reports an average values

of the BIC criterion, which suggest that on the correct specified model with P = 1 would

be often selected. The behaviour of the other types of the GMM estimators (including the

PMLE) is qualitatively similar.

<<Place Table 3 about here>>

Lastly, Table 4 explores how the properties of the GMM class of estimators change with

other parameters. Columns 1 − 4 present the results for values of q0 = q3 = 1/2 keeping

all other parameters fixed at the benchmark level. The GMM estimator outperforms the

PMLE estimator, but generally the bias is small. Columns 5− 8 present results for another

modification, when B1 = 0 and C1 = 1 instead of B1 = C1 = 1/2; i.e., the initial vertex of

each edge is chosen uniformly at random and the terminal vertex of each edge is chosen by

preferential attachment. Again, the GMM estimator performs a bit better than the PMLE

estimator.

<<Place Table 4 about here>>

5 Application to Co-authorship Network

We illustrate the usefulness of the introduced methods by estimating the CF model for the

network of coauthorship relations among economists publishing in journals listed by EconLit

in the 1990s. This dataset was first considered by Goyal et al. (2006). They produced a

network of collaboration in which every publishing author is a vertex in the network, and two

vertices are linked with an edge if they have published a paper or more together within in the

period of ten years between 1990 and 1999. The network contains t = 81217 authors with

average number of coauthors 1.672, i.e. m̂+M = 0.836. Jackson and Rogers (2007) used the

NLLS to estimate the parameters for this network.

As we do not know the support of m(t), we use the BIC criterion, which selects order

P = 2, that is, m(t) ∈ {0, 1, 2}. We compute the standard errors of the parameters using

the parametric bootstrap. As the estimate of M is nearly 0, all structural parameters of the
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model are identified and it is straightforward to perform the parametric bootstrap. We use

1000 replications.

Table 5 presents the parameter estimates and their standard errors for the coauthorship

network. For local exponent estimators we also report thrashhold dtr. There is a substantial

difference between the parameter estimates found by the GMM estimators, the NLLS and

the local tail exponent estimators. Our estimate of η using the NLLS is 0.19 which is close to

the estimate of 0.21 in Jackson and Rogers (2007).17 One of the peculiarities of this data is

that about 99% of the observations have degree between 0 and 10, while the highest degree

in the sample is 54. This explain the substantial variation in the parameter estimates. Under

these conditions the tail exponent estimators are very sensitive to dtr and we observe rather

different results for all three local tail exponent estimators.

Structurally, the CF model suggests that the number of old-old egdes is negligibly small

and the network is mostly formed by new-old edges with majority of new vertexes about 43%

having one edge (co-author). In 37% of case the new vertices have no edges (single-authored

papers) and only in about 20% of cases new vertex have two co-authors. Also, we conjecture

that about 76% of new-old connection are done by preferential attachment. There is a large

number of collaborations between graduate students and their (former) supervisors, but it

is not common to coauthor with more than one supervisor. Single-authors papers are fairly

standard for graduating economists. Preferential attachment mechanism is natural in this

setting as successful professors attract more new graduate students and grow their network

of collaborations.

<<Place Table 5 about here>>

6 Conclusion

We estimate a general model of scale-free network formation using the PMLE, GMM, NLLS,

and local tail exponent estimators. We prove consistency of the GMM class of estimators

and derive conditions for asymptotic normality of these estimators. Our simulations indicate

that GMM class of estimators (including PMLE) produce considerably better estimates with

virtually no bias and smaller standard errors than the other considered estimators if the

model is correctly specified. However, the GMM estimators are less robust to misspecification

compared to the NLLS and the local tail exponent estimator. Our simulations suggest that

the misspecification can be avoided using model selection based on BIC.

17Their parametrization is different and they actually estimate 1/η which they find to be equal to 4.7
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The results of this paper are useful for a new and growing literature on estimation of

network formation models. The methodology for establishing the UNLL can be extended

to other growing network models. For example, Atalay et al. (2011) and Atalay (2013) use

the PML estimator to estimate similar network formation models. Using the methodology

developed in this paper, one can prove consistency of the PML estimator for these models.

Moreover, our simulations suggest that some GMM estimators yield 33% smaller standard

errors of estimates than the PML estimator does; so one can estimate model parameters more

precisely using our general class of GMM estimators, which includes the PML estimator as a

special case.

One of the challenges with the growing networks models is non-trivial dependencies in

the degree distribution. We hope that further research will lead to better characterisation of

these dependencies, which, in turn, will help formalising the procedures for establishing the

normality and estimating the asymptotic variance of the estimators.

Appendix A: Results for Degree Distribution

Following Cooper (2006), define d∗(t; η) as d∗(t; η) = min{tη/3, t1/6/ ln2 t} and nm(d; η, κ) for

d ∈ {m,m+ 1, . . . } as

nm(d; η, κ) =
B (d+ κ, 1 + 1/η)

B (m+ κ, 1/η)
=

Γ (m+ κ+ 1/η)

ηΓ (m+ κ)

Γ (d+ κ)

Γ (d+ κ+ 1 + 1/η)
, (9)

where Γ(z) =
∫∞

0
tz−1e−tdt is the Gamma function and B(x, y) =

∫ 1

0
tx−1(1 − t)y−1dt is

the Beta function. The second equality in (9) follows from B(x, y) = Γ(x)Γ(y)/Γ(x + y).

Notice that nm(d; η, κ) is a probability distribution because nm(d; η, κ) ≥ 0 for d ≥ m and∑∞
d=m nm(d; η, κ) = 1, where the latter follows from B(x+ 1, y) = B(x, y)x/(x+ y).

To present Cooper (2006)’s main result, we define Dt(d,m) as the number of vertices of

the graph G(t) with initial degree d(v, v) = m and current degree d(v, t) = d. Following

Cooper (2006), the equations with terms like O (1/ ln t) should be treated as inequalities

giving upper and lower bounds (no explicit functional form is implied). Constants in error

terms like O (1/ ln t) may depend on parameters of the model but not on d.

Lemma A.1 For m ≤ d ≤ d∗(t; η), we have the following:

1. expected degree sequence

EDt(d,m) = pmnm(d; η, κ)t

(
1 +O

(
1

ln t

))
,
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2. concentration

Pr

(
|Dt(d,m)− EDt(d,m)| ≥ EDt(d,m)√

ln t

)
= O

(
1

ln t

)
.

Proof of Lemma A.1. See the proof of Theorem 2.1 in Cooper (2006).

Since the initial degrees of vertices are not observed in real networks, we need to extend

Lemma A.1 in the following way for our analysis.

Proposition A.1 For 0 ≤ d ≤ d∗(t; η), we have the following:

1. expected degree sequence

EDt(d) = P (d; η,M,p)t

(
1 +O

(
1

ln t

))
,

2. concentration

Pr

(
|Dt(d)− EDt(d)| ≥ EDt(d)√

ln t

)
= O

(
1

ln t

)
.

Proof of Proposition A.1. Summing up expressions from part 1 of Lemma A.1 gives

part 1 of Proposition A.1. The following sequence of inequalities establishes part 2:

Pr
(
|Dt(d)− EDt(d)| ≥ EDt(d)√

ln t

)
= Pr

(∣∣∣∑min{P,d}
m=0 (Dt(d,m)− EDt(d,m))

∣∣∣ ≥ ∑min{P,d}
m=0 EDt(d,m)√

ln t

)
≤ Pr

(∑min{P,d}
m=0 |Dt(d,m)− EDt(d,m)| ≥

∑min{P,d}
m=0 EDt(d,m)√

ln t

)
≤ Pr

(
∃m : |Dt(d,m)− EDt(d,m)| ≥ EDt(d,m)√

ln t

)
≤
∑min{P,d}

m=0 Pr
(
|Dt(d,m)− EDt(d,m)| ≥ EDt(d,m)√

ln t

)
= O

(
1

ln t

)
.

Appendix B: Main Proofs

Proof of Proposition 1. The proof follows from Proposition A.1 and the following sequence

of equalities and inequalities:

Pr
(
|Dt(d)− EDt(d)| ≥ EDt(d)√

ln t

)
= Pr

(∣∣∣Dt(d)
|V (t)| − P (d; η,M,p) t

t+|V (1)|−1

(
1 +O

(
1

ln t

))∣∣∣ ≥ P (d;η,M,p)√
ln t

t
|V (t)|

(
1 +O

(
1

ln t

)))
= Pr

(∣∣∣Dt(d)
|V (t)| − P (d; η,M,p)

∣∣∣ ≥ P (d;η,ν,p)√
ln t

(
1 +O

(
1

ln t

)))
≥ Pr

(∣∣∣Dt(d)
|V (t)| − P (d; η,M,p)

∣∣∣ ≥ K P (d;η,M,p)√
ln t

)
,
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for any K > 1 and sufficiently large t.

Proof of Corollary 1. To prove part 1, we note that d∗(t; η) → ∞ as t → ∞; so d ≤
d∗(t; η) and Corollary 1 applies. Part 2 follows from the well-known result (see, e.g., Palumbo,

1998) Γ(z + α)/Γ(z + β) = zα−β(1 +O (1/z)) applied to Γ (d+ κ) /Γ (d+ κ+ 1 + 1/η). Part

3 follows from Γ(z + 1) = zΓ(z) applied to (9):

nm(d; η,M,m) =
(d−1−2(m+M)+(m+2M)/η)...(m−2(m+M)+(m+2M)/η)

η(d−2(m+M)+(m+2M+1)/η)...(m−2(m+M)+(m+2M+1)/η)
→
η→0

1
m+2M+1

(
m+2M
m+2M+1

)d−m
.

Proof of Proposition 2.

Part 1. We first prove that Gn
0 (θ) =

∑n
d=0 a(d;θ)P (d;θ0) converges uniformly on Θ to

G0(θ). Palumbo (1998) shows that

Γ(k+λ)
Γ(k+1)

> (k + 1)λ−1 for λ > 2 and k ≥ 0.

Thus for d ≥ 1− κ0

P (d;θ0) =
min{P,d}∑
m=0

pm0
Γ(m+κ0+1/η0)
η0Γ(m+κ0)

Γ(d+κ0)
Γ(d+κ0+1+1/η0)

< C(θ0) (d+ κ0)−1−1/η0 , (10)

where C(θ0) =
P∑

m=0

pm0Γ (m+ κ0 + 1/η0) / (η0Γ (m+ κ0)). Thus,

‖a(d;θ)P (d;θ0)‖ < C(θ0) (d+ κ0)−1−1/η0 F (d+ 1) = Jd.

Evidently,
∑∞

d=0 Jd < ∞. Thus Gn
0 (θ) converges uniformly on Θ to G0(θ) (Theorem 7.10

of Rudin, 1976). Moreover, since Gn
0 (θ) is continuous on Θ, G0(θ) is also continuous on Θ

(Theorem 7.12 of Rudin, 1976).

Part 2. Clearly, there exists d̃(t) such that d̃(t) ≤ d∗(t; η), d̃(t)→∞, and d̃(t)/ ln t→ 0

as t→∞. Then,∥∥∥Ĝt(θ)−G0(θ)
∥∥∥ =

∥∥∥∑d̃(t)−1
d=0 a(d;θ)

(
Dt(d)
|V (t)| − P (d;θ0)

)
+
∑∞

d=d̃(t) a(d;θ)
(
Dt(d)
|V (t)| − P (d;θ0)

)∥∥∥
≤

∥∥∥∥∥∥
∞∑

d=d̃(t)

a(d;θ)P (d;θ0)

∥∥∥∥∥∥︸ ︷︷ ︸
Ŝ1(θ)

+

∥∥∥∥∥∥
d̃(t)−1∑
d=0

a(d;θ)

∣∣∣∣Dt(d)

|V (t)|
− P (d;θ0)

∣∣∣∣
∥∥∥∥∥∥︸ ︷︷ ︸

Ŝ2(θ)

+

∥∥∥∥∥∥
∞∑

d=d̃(t)

a(d;θ)
Dt(d)

|V (t)|

∥∥∥∥∥∥︸ ︷︷ ︸
Ŝ3(θ)

.

To prove supθ∈Θ

∥∥∥Ĝt(θ)−G0(θ)
∥∥∥ P→ 0, it suffices to show that supθ∈Θ Ŝ1 (θ)

P→ 0,

supθ∈Θ Ŝ2 (θ)
P→ 0, and supθ∈Θ Ŝ3 (θ)

P→ 0.

Because Gn
0 (θ) uniformly converges to G0(θ) on Θ, we have supθ∈Θ Ŝ1 (θ)

P→ 0.
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Proposition 1 implies that for any K > 1 there exists N(θ0) such that for 0 ≤ d ≤ d∗(t; η),

we have:

Pr
(∣∣∣Dt(d)
|V (t)| − P (d;θ0)

∣∣∣ ≥ K P (d;θ0)√
ln t

)
≤ N(θ0)

ln t
.

Therefore, by definition of d̃(t), we have

Pr
(
∃d ≤ d̃(t) :

∣∣∣Dt(d)
|V (t)| − P (d;θ0)

∣∣∣ ≥ K P (d;θ0)√
ln t

)
≤ N(θ0)d̃(t)

ln t
→ 0. (11)

Thus, with probability approaching one:

Ŝ2 (θ) ≤
∥∥∥∑d̃(t)−1

d=0 a(d;θ)K P (d;θ0)√
ln t

∥∥∥ < C1
K‖G0(θ)‖√

ln t
,

for some C1. The last inequality follows from the uniform convergence of Gn
0 (θ) on Θ. Since

G0(θ) is continuous on a compact set Θ, ‖G0(θ)‖ is bounded on Θ; so supθ∈Θ Ŝ2 (θ)
P→ 0.

Since ‖a(d;θ)‖ < F (d+ 1), showing
∑∞

d=d̃(t) d
Dt(d)
|V (t)|

P→ 0 is sufficient for supθ∈Θ Ŝ3 (θ)
P→ 0.

Using the definition of nm(d; η, κ) and the property B(x+1, y) = B(x, y)x/(x+y), we can rep-

resent
∑∞

d=m dnm(d; η, κ) as the composition of an infinite geometric series and its derivative,

which simplifies to ∑∞
d=m dnm(d; η, κ) = κη+m

1−η .

Next, using the definition of P (d;θ) and κ, we obtain

∑∞
d=0 dP (d;θ)) =

∑P
m=0 pm

∑∞
d=m dnm(d; η, κ) = 2

(
m+M

)
. (12)

Since m (t) +M (t) are i.i.d. with finite variance, the law of large numbers implies

∑∞
d=0 d

Dt(d)
|V (t)|

P→ 2(m0 +M0) =
∑∞

d=0 dP (d;θ0)), (13)

where the equality follows from (12). Using (11) and part 1 of this proposition, we get∑d̃(t)−1
d=0 dDt(d)

|V (t)| =
(∑d̃(t)−1

d=0 dP (d;θ0)
)(

1 +OP

(
1√
ln t

))
P→
∑∞

d=0 dP (d;θ0). (14)

Combining (13) and (14) gives

∑∞
d=d̃(t) d

Dt(d)
|V (t)| =

∑∞
d=0 d

Dt(d)
|V (t)| −

∑d̃(t)−1
d=0 dDt(d)

|V (t)|
P→ 0,

which completes the proof of supθ∈Θ Ŝ3 (θ)
P→ 0.

Proof of Proposition 3. Denote η = minθ∈Θ η and κ = maxθ∈Θ κ. Palumbo (1998) shows

that
Γ(k+λ)
Γ(k+1)

<
(
k + λ

2

)λ−1
for λ > 2 and k ≥ 0.

23



Thus,

|lnP (d;θ)| = − lnP (d;θ) ≤ ln
(

Γ(d+κ+1/η+1)
CΓ(d+κ)

)
< − lnC +

(
1 + 1/η

)
ln
(
d+ κ+ 1/(2η)

)
,

where C = min
θ∈Θ

pmo
Γ(mo+κ+1/η)
ηΓ(mo+κ)

> 0 and mo is min(m) such that pm > 0. Thus, there is C such

that |lnP (d;θ)| < C ln(d + 1) and Proposition 2 applies; i.e., supθ∈Θ

∣∣∣L̂t(θ)− L0(θ)
∣∣∣ P→ 0,

where L0(θ) ≡
∑∞

d=0 lnP (d;θ)P (d;θ0) is a continuous function.

L0(θ) is uniquely maximized at θ0 by information inequality. Indeed, it is clear that∑∞
d=0 |lnP (d;θ)|P (d;θ0) = −L0(θ) < ∞ for all θ ∈ Θ. Moreover, if θ 6= θ0, then there

exists d such that P (d;θ) 6= P (d;θ0) and thus by the strict version of Jensen’s inequality:

L0(θ0)− L0(θ) = −
∑∞

d=0 ln P (d;θ)
P (d;θ0)

P (d;θ0) < ln
(∑∞

d=0
P (d;θ)
P (d;θ0)

P (d;θ0)
)

= ln (
∑∞

d=0 P (d;θ)) = 0.

(15)

Thus, if L̂t(θ̂) ≥ maxθ∈Θ L̂t(θ) + oP (1), then all conditions of Theorem 2.1 of Newey and

McFadden (1994) are satisfied and thus θ̂
P→ θ0. By definition L̂t(θ̂

PML
) = maxθ∈Θ L̂t(θ);

so θ̂
PML P→ θ0. To solve for an estimate θ̂

plPML
, we substitute (m + M) = (m̂+M) in L̂t(.)

and maximize L̂t(η, M̂,p) over η and p, where M̂ = (m̂+M) −m. Since M̂ is continuous,

(m̂+M)
P→ (m0 + M0), and L̂t(θ) uniformly converges to a continuous function L0(θ),

it follows that L̂t(θ̂
plPML

) ≥ L̂t(η̂
PML, M̂ , p̂PML) = L̂t(θ̂

PML
) + oP (1), which implies that

θ̂
plPML P→ θ0.

Proof of Proposition 4.

Part 1. See the proof of Theorem 2.6 in Newey and McFadden (1994) and replace Lemma

2.4 with our Proposition 2 in the argument.

Part 2. Equation (7) holds for = d−2(M +m) by (12) and for ∇θ lnP (d;θ) by (15) and

interchangeability of summation and differentiation (see Theorems 7.10 and 7.17 of Rudin,

1976). We now verify conditions of part 1 to make sure that θ̂
P→ θ0. Condition (iii), clearly,

holds. To verify condition (iv), it is convenient to use the following representation

lnP (d;θ) = ln Γ (d+ κ)− ln Γ (d+ κ+ 1/η + 1) + ln

min(P,d)∑
m=0

pm
Γ (m+ κ+ 1/η)

ηΓ (m+ κ)


︸ ︷︷ ︸

R(θ)

,

where R(θ) collects all terms independent of d, for any d ≥ P . Let rx(θ) denote a partial

derivative of R(θ) with respect to x and rxy(θ) denote a second-order partial derivative with

respect to x and y.
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The score function s(d;θ) = ∇θ lnP (d;θ) can be written as

sη(d;θ) = −m+ 2M

η2
ψ (d+ κ) +

m+ 2M + 1

η2
ψ (d+ κ+ 1 + 1/η) + rη(θ)

sM(d;θ) = 2

(
1

η
− 1

)(
ψ (d+ κ)− ψ (d+ κ+ 1 + 1/η)

)
+ rM(θ),

spm(d;θ) = m

(
1

η
− 2

)(
ψ (d+ κ)− ψ (d+ κ+ 1 + 1/η)

)
+ rpm(θ),

where ψ(.) is a polygamma function. Polygamma function of order n is defined as ψ(n)(z) =(
d
dz

)n+1
ln Γ(z) with ψ(z) = ψ(0)(z). Qi et al. (2005) show that for x > 0:

1

2x
− 1

12x2
< ψ (x+ 1)− lnx <

1

2x
,

which implies that there is F such that

‖g(d;θ)‖ < F (d+ 1) , (16)

for all d ≥ 0 and all θ ∈ Θ; so condition (iv) of part 1 holds, and, therefore, θ̂
P→ θ0.

Proof of Proposition 5. To prove Proposition 5, we notice that all conditions, except

for condition (iv), of Theorem 3.2 in Newey and McFadden (1994) are satisfied by assumption.

Thus, we only need to check condition (iv) that supθ∈Θ ‖
∑∞

d=0∇θg(d;θ0)Dt(d)/|V (t)| −G(θ)‖ P→
0 for some compact set Θ such that θ0 ∈ Θ ⊂ Θ.

Denote G(d;θ) = ∇θg(d;θ) and recall that θ = (η,M,p). Then the last row of G(d;θ)

is given by

∇θ
(
d− 2(M +m)

)
=
(

0 −2 0 . . . −2m . . .
)
.

Next, we calculate h(d;θ) = ∇θθ lnP (d;θ)
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hηη(d;θ) =
2(m+ 2M)

η3
ψ (d+ κ)− 2(m+ 2M + 1)

η3
ψ (d+ κ+ 1 + 1/η)

+
(m+ 2M)2

η4
ψ(1) (d+ κ)− (m+ 2M + 1)2

η4
ψ(1) (d+ κ+ 1 + 1/η) + rηη(θ)

hηM(d;θ) = − 2

η2

(
ψ (d+ κ)− ψ (d+ κ+ 1 + 1/η)

)
+ 2

(
1

η
− 1

)
·(

−m+ 2M

η2
ψ(1) (d+ κ) +

m+ 2M + 1

η2
ψ(1) (d+ κ+ 1 + 1/η)

)
+ rηM(θ)

hηpm(d;θ) = −m
η2

(
ψ (d+ κ)− ψ (d+ κ+ 1 + 1/η)

)
+m

(
1

η
− 2

)
·(

−m+ 2M

η2
ψ(1) (d+ κ) +

m+ 2M + 1

η2
ψ(1) (d+ κ+ 1 + 1/η)

)
+ rηpm(θ)

hMM(d;θ) = 4

(
1

η
− 1

)2 (
ψ(1) (d+ κ)− ψ(1) (d+ κ+ 1 + 1/η)

)
+ rMM(θ)

hMpm
(d;θ) = 2m

(
1

η
− 1

)(
1

η
− 2

)(
ψ(1) (d+ κ)− ψ(1) (d+ κ+ 1 + 1/η)

)
+ rMpm

(θ)

hpmpm(d;θ) = m2

(
1

η
− 2

)2 (
ψ(1) (d+ κ)− ψ(1) (d+ κ+ 1 + 1/η)

)
+ rpmpm(θ)

Qi et al. (2005) shows that for x > 0

1

2x
− 1

12x2
< ψ (x+ 1)− lnx <

1

2x
,

1

2x2
− 1

6x3
<

1

x
− ψ(1) (x+ 1) <

1

2x2
− 1

6x3
+

1

30x5
,

which implies that there is F such that

‖G(d;θ)‖ < F (d+ 1), (17)

for all d ≥ 0 and all θ ∈ Θ.

In addition G(d;θ) is continuous; so Proposition 2 applies. Therefore, condition (iv) of

Theorem 3.2 in Newey and McFadden (1994) holds and

G(θ) =
∞∑
d=0



hηη(d;θ) hηM(d;θ hηp0(d;θ) ...

hηM(d;θ) hMM(d;θ) hMp0
(d;θ) ...

hηp0(d;θ) hMp0
(d;θ) hp0p0(d;θ) ...

... ... ... ...

0 −2 0 ...


P (d;θ0).

Notice that we interchange the order of summation and differentiation using Theorems 7.10

and 7.17 of Rudin (1976).
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Appendix C: NLSS and Local Tail Exponent Estimators

We start with approximating the asymptotic degree distribution of the CF model by a mean-

field method. First, this method provides the intuition as to why the asymptotic degree

distribution has a power-law tail. Second, this method also suggests which parameters of the

random graph process are crucial for the asymptotic degree distribution. Third, the NLLS

method discussed further is based on the mean-field approximation of the asymptotic degree

distribution.

Mean-Field Approximation of the degree distribution

Using the mean-field methods of Barabasi and Albert (1999) we approximate the CF network

formation process by a continuous time process such that

dE (d(v, t))

dt
=

(
mA1 +M(B1 + C1)

)
E (d(v, t))

2E|E(t− 1)|
+
mA2 +M(B2 + C2)

E|V (t− 1)|

=

(
mA1 +M(B1 + C1)

)
E (d(v, t))

2(m+M)(t− 2) + 2|E(1)|
+
mA2 +M(B2 + C2)

t− 2 + |V (1)|
,

where mA1 +M(B1 +C1) and mA2 +M(B2 +C2)) is the expected number of edge endpoints

added at time t by preferential attachment and uniformly at random, respectively.

Assuming t� max{|V (1)|, |E(1)|} the differential equation becomes

dE (d(v, t))

dt
=
ηE (d(v, t))

t
+
ηκ

t
,

where (ηκ) is the number of edges added uniformly at random. The solution to this differential

equation is:

φmt (v) ≡ E (d(v, t)) =

(
m(v) +

ν

η

)(
t

v

)η
− κ,

where m(v) is the degree of a newly added vertex at time v. The function φmt (v) is decreasing

in v, which means that given an initial degree, “older” vertices have a larger expected degree

than “younger” vertices. Thus the distribution of expected degrees of vertices with initial

degree m can be approximated by (for d ≥ m):

Fm
t (d) =

pm|{i : φmt (i) ≤ d}|
pmt

= 1− φ
m(−1)
t (d)

t
= 1− (m+ κ)

1
η (d+ κ)−

1
η . (18)

Thus the distribution of expected degrees of graph G(t) can be approximated by:

FMF(d) =

min{P,d}∑
m=0

pmF
m
t (d), (19)
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where Fm
t (d) are given by (18).

Claim 1 part 2 shows that for sufficiently large d asymptotic degree distribution can be

approximated by power law distribution, which we denote P tail(d; η),

P tail(d; η) ≡ Cd−1−1/η. (20)

This and related distributions will appear in the local tail exponent methods. We compare

the approximations with asymptotic and empirical distribution of the the degree for the

benchmark specification t = 1000, η = 0.5, p0 = 1 (m(t) = 0), and q1 = q2 = 1/2 (M = 1.5).

Figure 1 shows the simulation-based empirical cumulative distribution function (ECDF) of

the degree distribution, F̂t(d) ≡
∑t

v=1 1(d(v, t) ≤ d)/|V (t)|, and the cumulative distribution

functions (CDF) based on the asymptotic degree distribution F (d) =
∑d

d̃=0 P (d̃), the mean-

field approximation, FMF(d), and the power law approximation, F tail(d) = 1−
∑

d̃>d P
tail(d),

on linear and log-log scales. As we can see, the CDF of the asymptotic distribution, F (d),

is close to the ECDF, F̂t(d), but the CDF based on the mean-field approximation, FMF(d),

and the CDF based on the power law approximation, F tail (d), deviate from the ECDF for

small d. This may explain subpar performance of the estimators based on the latter two

approximation.

<<Place Figure A.1 about here>>

NLLS Estimator

We now turn to the NLLS method commonly used to estimate scale-free network formation

models (see Pennock et al., 2002; Jackson and Rogers, 2007; Jackson, 2008). Pennock et al.

(2002) assume m(t) = 0 and M(t) = M for some M , whereas Jackson (2008) and Jackson and

Rogers (2007) assume m(t) = m and M(t) = 0 for some m. More generally, the NLLS method

can be used only when m(t) = m for some m but M (t) can have an arbitrary distribution,

q. Since most real networks have vertices with zero degree, we use the NLLS method for the

case of m(t) = 0.

Under this assumption (19) can be rewritten as

ln(1− FMD(d)) = 1/η
(
ln
(
2M(1/η − 1)

)
− ln

(
d+ 2M(1/η − 1)

))
.

Moreover, M cab consistently estimated by
∑t

v=1 d(v, t)/2|V (t)| as shown in (??); denote the

estimate by M̂ . F (d) can be estimated by ECDF F̂t(d).18 Thus, the only parameter to be

18Since F̂t (dmax) = 1, ln(1− F̂t(d)) is not defined. As a remedy, we drop observations with d = dmax as in

Jackson (2008).
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estimated is η, which is done by numerically minimizing the quadratic loss:

η̂NLLS = argmin
∑
d

(
ln(1− F̂t(d))− 1/η

(
ln(2M̂(1/η − 1))− ln(d+ 2M̂(1/η − 1))

))2

,

where the sum is taken over all observed distinct degrees as in Barabasi and Albert (1999).19

Local Tail Exponent Estimators

There is a well developed literature on local tail exponent estimators starting from Pickands

(1975), Hill (1975), Smith (1987), see Beirlant et al. (2006) for detailed treatment and refer-

ences. These estimators rely on behaviour in the tail of the distribution and, therefore, are

robust against misspecification in the rest of the distribution. However, an appropriate choice

of the number of observations in the tail, or a threshold, dtr after which the tail approximation

holds is crucial for these estimators. For the moment we will assume that dtr is known and

will discuss various methods for finding dtr after introducing the estimators.

A simple and popular way to estimate the tail exponent is for to run a log-log rank-degree

regression, log(r) = c − 1
η

log(d), for d ≥ dtr, where r is rank of d. Ordinal ranking assigns

each observation a distinct ordinal number according to their degree d in ascending order. We

use fractional ranking to determine r, which, in case of the ties, when different observations

have equal d-s, assigns these observations their average ordinal rank. The log-log rank-degree

regression is based on the fact that approximating the degree by continuous distribution from

(20) we can find the probability that a degree is higher than d, 1 − F tail(d) ∝ d−1/η, which,

in turn, can be estimated by rank r up to a normalizing constant. Gabaix and Ibragimov

(2011) proposed a simple, yet important bias-reducing adjustment, to use r − 1/2 instead of

r, which we implement for this estimator and refer to it as GI estimator.

Hill (1975) estimator is another well-known local tail exponent estimator. It can be de-

rived as an MLE estimator based on the assumption that the tail of the distribution follows

continuous Pareto distribution with pdf f(d) = d
η

(
d
dtr

)−1/η

for d ≥ dtr and these tail observa-

tions are independent. For discrete distribution Clauset et al. (2009) propose an adjustment

for Hill estimator, which we adopt here. Let ntail ≡ |{v : d(v, t) ≥ dtr}| be the number of

vertices that have degree at least dtr, then the adjusted Hill estimator is given by

η̂Hill =
1

ntail

∑
v:d(v,t)≥dtr

ln
d(v, t)

dtr − 1/2
. (21)

19An alternative would be to use all degrees in the range [dmin, dmax] where dmin = minv d(v, t) and dmax =

maxv d(v, t) as in Jackson (2008). Asymptotically these methods are equivalent, but our simulations show

that taking actually observed degrees works better in finite samples.
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There are various generalisations of the Hill estimator proposed in the literature; e.g. Dekkers

et al. (1989) uses higher moments, which we also implement for comparison. We also consider

Pickands (1975) estimator which is based on sample quantiles in the tails.

The discrete counterpart of the Pareto distribution is zeta distribution, which can be used

to derive local tail exponent estimator using (20) without the continuous approximation (see,

e.g., Clauset et al., 2009). Conditional on having a degree not lower than dtr, a vertex chosen

uniformly at random has degree d with probability

P (d) =
d−1−1/η

ζ(1 + 1/η, dtr)
, (22)

where ζ(1 + 1/η, dtr) =
∑∞

i=0(i+ dtr)
−(1+1/η) is the Hurwitz zeta function. The discrete local

tail exponent (DLTE) estimator is found by maximizing the pseudo log-likelihood conditional

on having degree not lower than dtr given by

L̂t(η|dtr) = −
∑

v:d(v,t)≥dtr

(1 + 1/η) ln d(v, t) + ln ζ(1 + 1/η, dtr) .

Until now, we treated dtr as given. Next, we discuss several methods for selecting dtr as

this is a crucial step for any local tail exponent estimator. For discrete distribution Handcock

and Jones (2004) propose to select dtr using AIC or BIC criteria on the basis of the complete

log-likelihood. For each d < dtr they assume separate probability Pr(d = k) = πk for k < dtr,

where πk are treated as parameters to be estimated. Then the log-likelihood can be written

as

L̃t(π, η) =
dtr−1∑
d=0

Dt(d) lnπd + ntail ln

(
1−

dtr−1∑
d=0

πd

)
+ L̂t(η|dtr). (23)

Handcock and Jones (2004) show that empirical frequencies π̂d = Dt(d)
|V (t)| and the DLTE esti-

mator, η̂, maximize (23). Then dtr is selected by minimizing AIC or BIC:

AIC = −2L̃t(π̂, η̂) + 2 (dtr + 1) ,

BIC = −2L̃t(π̂, η̂) + (dtr + 1) ln |V (t)|.

For comparison we use (23) and plug-in η̂ for the other local tail exponent estimators described

above to use AIC and BIC criteria.

Clauset et al. (2009) suggests an alternative approach which is based on choosing dtr in

such a way that the distance between the CDF of the corresponding power-law distribution

with estimated η̂ and the ECDF is minimised for all d ≥ dtr. The authors suggest using

Kolmogorov-Smirnov (KS), or supremum, distance, and demonstrate superior performance
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of this measure in comparison to the above AIC and BIC criteria. They argue that there are

many other possible distance measures. Hence, in addition to the KS distance, we implement

Cramer-von-Misses (CM) and Anderson-Darling (AD) distance measures. Our simulations

showed that the AD distance-based criterion resulted in the lowest MSE of parameter η for

most considered local tail exponent estimators and parametrisation. Out of all considered

local tail exponent estimators, GI, adjusted Hill and DLTE performed best. For brevity in

Section 4, we report the results for these three local tail exponent estimators with d ≥ dtr

selection based on the AD distance. The complete set of results is available on request.
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Table 1: Comparison of various estimations for benchmark parameters

PMLE plPMLE GMM GMM−M NLLS DLTE Hill GI

mean(η) 0.5009 0.5007 0.5007 0.5007 0.5441 0.6267 0.5287 0.4854

std(η) 0.0250 0.0169 0.0167 0.0169 0.0472 0.0600 0.0522 0.0213

bias(η) 0.0009 0.0007 0.0007 0.0007 0.0441 0.1267 0.0287 -0.0146

MSE (η) 0.0006 0.0003 0.0003 0.0003 0.0042 0.0196 0.0035 0.0007

AD p-val(η) 0.1584 0.1656 0.2438 0.1656 <0.0005 <0.0005 <0.0005 <0.0005

median(dtr) 12 11 12

mean(M) 1.5019 1.5001 1.5001 1.5001

std(M) 0.0418 0.0157 0.0157 0.0157

bias(M) 0.0013 0.0001 0.0001 0.0001

MSE (M) 0.0018 0.0002 0.0002 0.0002

AD p-val(M) <0.0005 <0.0005 0.0035 <0.0005

Table 2: Bias of considered estimations for increasing t and different η.

t PMLE plPMLE GMM GMM−M NLLS DLTE Hill GI

η = 0.5

1000 0.0009 0.0007 0.0007 0.0007 0.0441 0.1267 0.0287 -0.0146

10000 -0.0001 0.0001 0.0001 0.0001 0.0407 0.0615 0.0096 -0.0344

100000 -0.0001 0.0000 0.0000 0.0000 0.0333 0.0306 0.0038 -0.0464

η = 0.2

1000 0.0013 0.0012 0.0012 0.0012 0.0463 0.1512 0.0914 0.1271

10000 0.0002 0.0002 0.0002 0.0002 0.0379 0.0692 0.0520 0.0981

100000 0.0000 0.0000 0.0000 0.0000 0.0306 0.0266 0.0319 0.0778

η = 0.8

1000 0.0023 0.0002 0.0002 0.0002 0.0111 0.1120 -0.0209 -0.1892

10000 -0.0003 0.0000 0.0000 0.0000 -0.0099 0.0452 -0.0239 -0.2180

100000 -0.0001 0.0000 0.0000 0.0000 0.0097 0.0190 -0.0141 -0.2340
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Table 3: GMM behaviour under overspecification and misspecification in comparison with

other estimators. True P = 1 : p0 = p1 = 0.5.

GMM1 GMM2 GMM0 NLLS DLTE Hill GI

mean(η) 0.5006 0.5125 0.3424 0.4698 0.6147 0.5236 0.4833

std(η) 0.0207 0.0224 0.0162 0.0488 0.0526 0.0464 0.0179

bias(η) 0.0006 0.0125 -0.1576 -0.0302 0.1147 0.0236 -0.0167

MSE (η) 0.0004 0.0007 0.0251 0.0033 0.0159 0.0027 0.0006

AD p-val(η) 0.0016 0.1709 0.7329 0.0017 <0.0005 <0.0005 <0.0005

median(dtr) 13 12 13

mean(M) 1.5001 1.4559 1.9993

std(M) 0.0417 0.0704 0.0223

bias(M) 0.0001 -0.0441 0.4993

MSE (M) 0.0017 0.0069 0.2498

AD p-val(M) <0.0005 <0.0005 0.1254

mean(p0) 0.5002 0.4826

std(p0) 0.0419 0.0449

bias(p0) 0.0002 -0.0174

MSE (p0) 0.0018 0.0023

AD p-val(p0) <0.0005 0.2713 <0.0005

average BIC 4715 4721 4781
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Table 4: Different distributions of M(t) and values of B1 and C1

q0 = q3 = 1/2 B1 = 0, C1 = 1

PMLE plPMLE GMM GMM−M PMLE plPMLE GMM GMM−M

mean(η) 0.4990 0.5005 0.5006 0.5005 0.5010 0.5006 0.5007 0.5006

std(η) 0.0287 0.0200 0.0198 0.0200 0.0210 0.0137 0.0135 0.0137

bias(η) -0.0010 0.0005 0.0006 0.0005 0.0010 0.0006 0.0007 0.0006

MSE (η) 0.0008 0.0004 0.0004 0.0004 0.0004 0.0002 0.0002 0.0002

AD p-val(η) 0.3070 0.0029 0.0059 0.0029 0.0082 0.1224 0.1700 0.1224

mean(M) 1.4962 1.5001 1.5000 1.5001 1.5020 1.5001 1.5001 1.5001

std(M) 0.0638 0.0469 0.0469 0.0469 0.0368 0.0157 0.0157 0.0157

bias(M) -0.0038 0.0001 0.0000 0.0001 0.0020 0.0001 0.0001 0.0001

MSE (M) 0.0041 0.0022 0.0022 0.0022 0.0014 0.0002 0.0002 0.0002

AD p-val(M) 0.0065 0.0018 0.0066 0.0018 <0.0005 <0.0005 <0.0005 <0.0005

Table 5: Parameter estimates and their standard error for the co-authorship network

PMLE plPMLE GMM GMM−M NLLS DLTE Hill GI

η 0.3994 0.4024 0.3734 0.3732 0.1912 0.1753 0.0959 0.1228

se(η) 0.0039 0.0049 0.0033 0.0033 0.0087 0.0352 0.0267 0.0228

dtr 30 29 27

M 0.0000 0.0000 0.0000 0.0000

se(M) 0.0054 0.0093 0.0054 0.0054

p0 0.3551 0.3401 0.3675 0.3676

se(p0) 0.0037 0.0054 0.0035 0.0035

p1 0.4333 0.4351 0.4253 0.4253

se(p1) 0.0030 0.0030 0.0029 0.0029

p2 0.2117 0.2248 0.2072 0.2071

se(p2) 0.0032 0.0046 0.0031 0.0031
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Figure 1: Sample standard deviation of η estimates as a function of t.
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Figure A.1: Degree distributions for a simulation of the CF model with benchmark parame-

ters.

0 2 4 6 8 10

degree

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F

Linear Scales

Empirical
Asymptotic
Mean-field

100 101 102

degree

10-3

10-2

10-1

100

1-
F

Log Scales

Empirical
Asymptotic
Mean-field
Tail

38


