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a b s t r a c t

This paper develops a testing framework for comparing the predictive accuracy of
competing multivariate density forecasts with different predictive copulas, focusing on
specific parts of the copula support. The tests are framed in the context of the Kullback–
Leibler Information Criterion, using (out-of-sample) conditional likelihood and censored
likelihood in order to focus the evaluation on the region of interest. Monte Carlo
simulations document that the resulting test statistics have satisfactory size and power
properties for realistic sample sizes. In an empirical application to daily changes of yields
on government bonds of the G7 countries we obtain insights into why the Student-t and
Clayton mixture copula outperforms the other copulas considered; mixing in the Clayton
copula with the t-copula is of particular importance to obtain high forecast accuracy in
periods of jointly falling yields.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

In recent years academics and industry experts alike have come to regard the importance of non-linearity in the
dependence between financial asset returns. Linear dependence structures characterised by a multivariate Gaussian
distribution lead to inadequate measures of trading risk and, consequently, devastating losses. Copulas have emerged as an
efficient and popular modeling technique to remedy this situation. However, many different copula specifications are
available and the choice of the best copula for forecasting risk is still largely unresolved. Further complicating the task of risk
managers, a copula which is best suited for describing moderate financial investment returns may utterly fail to capture the
joint dynamics under substantial market instability, such as in periods of common asset depreciations.

To address this issue we propose tests for comparing the predictive accuracy of multivariate density forecasts with
different conditional copulas within specific regions of the copula support. The tests are based on average out-of-sample
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scores derived from predicted censored and conditional likelihood. The resulting tests of equal predictive accuracy are
sufficiently general to be applied to models with fully-, semi- and non-parametric copulas.

Recognising that the dependence between asset returns is generally non-linear and time-varying, research efforts to
accommodate these features have mainly focused on modeling the dynamics of conditional variances and correlations by
means of multivariate GARCH and stochastic volatility (SV) models; see the surveys by Silvennoinen and Teräsvirta (2009)
and Chib et al. (2009), respectively. Recently, copulas have become an increasingly popular tool for modeling multivariate
distributions in finance (Patton, 2009; Genest et al., 2009). The copula approach provides more flexibility than multivariate
GARCH and SV models in terms of the types of asymmetric dependence that can be captured. In addition, an attractive
property of copulas is that they allow for modeling the marginal distributions and the dependence structure of the asset
returns separately.

Many parametric copula families are available, with rather different dependence properties. An important issue in
empirical applications therefore is the choice of an appropriate copula specification. In practice, most often this is done by
comparing alternative specifications indirectly, subjecting each of them to a battery of goodness-of-fit tests, see Berg (2009)
for a detailed review. A direct comparison of alternative copulas from different parametric families has been considered by
Chen and Fan (2006) and Patton (2006), adopting the approach based on pseudo likelihood ratio (PLR) tests for model
selection originally developed by Vuong (1989) and Rivers and Vuong (2002). These tests compare the candidate copula
specifications in terms of their Kullback–Leibler Information Criterion (KLIC), which measures the distance from the true
(but unknown) copula. Similar to the goodness-of-fit tests, these PLR tests are based on the in-sample fit of the competing
copulas. Diks et al. (2010) approach the copula selection problem from an out-of-sample forecasting perspective.
Specifically, the PLR testing approach is extended to compare the predictive accuracy of alternative copula specifications,
by using out-of-sample log-likelihood values corresponding with copula density forecasts. An important motivation for
considering the (relative) predictive accuracy of copulas is that multivariate density forecasting is one of the main purposes
in empirical applications.

Comparison of out-of-sample KLIC values for assessing relative predictive accuracy has recently become popular for the
evaluation of univariate density forecasts, see Mitchell and Hall (2005), Amisano and Giacomini (2007) and Bao et al. (2007).
Amisano and Giacomini (2007) provide an interesting interpretation of the KLIC-based comparison in terms of scoring rules,
which are loss functions depending on the density forecast and the actually observed data.

In many applications of density forecasts, we are mostly interested in a particular region of the density. Financial risk
management is an example in case. Due to the regulations of the Basel accords, among others, the main concern for banks
and other financial institutions is an accurate description of the left tail of the distribution of their portfolio's returns, in
order to obtain accurate estimates of Value-at-Risk and related measures of downside risk. Correspondingly, Bao et al.
(2004), Amisano and Giacomini (2007) and Diks et al. (2011) consider the problem of evaluating and comparing univariate
density forecasts in a specific region of interest. The out-of-sample KLIC values can be adapted to this case by replacing the
full likelihood by the conditional likelihood given that the actual observation lies in the region of interest, or by the censored
likelihood, with censoring of the observations outside the region of interest. The weighted log-likelihood scoring rules
(Amisano and Giacomini, 2007) proposed are not “proper” in that an incorrect density forecast may receive a higher score
on average than the actual conditional density, just because it assigns a higher probability to the region of interest (Diks
et al., 2011).

This paper extends this to multivariate cases where the aim is to compare the predictive accuracy of two competing
density forecasts within a particular region of the copula support. The resulting tests are valid under rather general
conditions on the competing copulas, which is achieved by adopting the framework of Giacomini and White (2006). This
assumes in particular that any unknown model parameters are estimated using a moving window of fixed size. The finite
estimation window essentially allows us to treat competing density forecasts based on different copula specifications,
including the time-varying estimated model parameters, as two competing forecast methods. Comparing scores for forecast
methods rather than for models simplifies the resulting test procedures considerably, because parameter estimation
uncertainty does not play a role; it simply is part of the respective competing forecast methods. In addition, the asymptotic
distribution of our test statistic in this case does not depend on whether or not the competing copulas belong to nested
families.

We examine the size and power properties of our copula predictive accuracy tests via Monte Carlo simulations, where we
employ fully parametric and semi-parametric copula-based multivariate dynamic models. The latter class of models
(shortened as SCOMDY) developed by Chen and Fan (2005, 2006) combines parametric specifications for the conditional
mean and conditional variance with a semi-parametric specification for the distribution of the (standardized) innovations,
consisting of a parametric copula with nonparametric univariate marginal distributions. Our simulation results demonstrate
that the predictive accuracy tests have satisfactory size and power properties in realistic sample sizes.

To illustrate the usefulness of the suggested tests, we consider an empirical application to daily changes of bond yields in
the G7 economies. The analyzed data covers the period from March 6, 1991, until May 21, 2014. We identify the copula
specification with the best forecasting performance and discover what drives its success.

The paper is organised as follows. In Section 2 we develop our predictive accuracy test for copulas based on out-of-
sample log-likelihood scores and briefly review copula-based multivariate density models. In Section 3 we investigate its
size and power properties by means of Monte Carlo simulations. In Section 4 we illustrate our test with an application to
daily bond yield changes in the economies of the G7 countries. We conclude in Section 5.
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2. Methodology

The aim of this paper is to develop density forecast evaluation tests that focus on specific regions of the copula domain.
This is achieved by introducing weighted likelihood-based scoring rules with weight functions defined on the copula
domain.

2.1. Density forecast evaluation using weighted scoring rules

Before introducing the new soring rules we first motivate the use of weighted likelihood-based scoring rules for density
forecast evaluation.

Density forecast evaluation: Consider a stochastic process fZt :Ω-RkþdgTt ¼ 1, defined on a complete probability space
ðΩ;F ;PÞ, and identify Zt with ðY t ;XtÞ, where Y t :Ω-Rd is the real-valued d-dimensional random variable of interest and
Xt :Ω-Rk is a vector of exogenous or pre-determined variables. The information set at time t is defined as F t ¼ σðZ1;…;ZtÞ.
We consider the case where two competing forecast methods are available, each producing one-step ahead density
forecasts, i.e. predictive densities of Y tþ1, based on F t .

Following Amisano and Giacomini (2007), by ‘forecast method’ we mean a given density forecast in terms of past
information, resulting from the choices that the forecaster makes at the time of the prediction. These include the variables
Xt , the econometric model (if any), and the method for estimation of unknown parameters in the model. The only
requirement that we impose on the forecast methods is that the density forecasts depend on a finite number R of most
recent observations Zt�Rþ1;…;Zt . Comparing forecast methods rather than forecast models allows for treating parameter
estimation uncertainty in a natural way as an integral part of the forecast methods. The use of a fixed (rolling) estimation
window R considerably simplifies the asymptotic theory of tests of equal predictive accuracy, as argued by Giacomini and
White (2006). It also is convenient in that it enables comparison of density forecasts based on both nested and non-nested
models, in contrast to model comparison approaches such as that of West (1996).

Scoring rules: One approach that has been put forward for density forecast evaluation in general is by means of scoring
rules, which are commonly used in probability forecast evaluation, see Diebold and Lopez (1996). A scoring rule is a loss
function Snðf̂ t ; ytþ1Þ depending on the density forecast f̂ t and the actually observed value ytþ1, such that a density forecast
that is ‘better’ receives a higher score. As argued by Diebold et al. (1998) and Granger and Pesaran (2000), any rational user
would prefer the true conditional density pt of Y tþ1 over an incorrect density forecast. It is therefore natural to focus on
“proper” scoring rules (Gneiting and Raftery, 2007), for which incorrect density forecasts f̂ t do not receive a higher average
score than the true conditional density pt, that is,

EtðSnðf̂ t ;Y tþ1ÞÞrEtðSnðpt ;Y tþ1ÞÞ; for all t:

Note that the correct density pt does not depend on estimated parameters, while density forecasts typically do. This
implies that even if the density forecast f̂ t is based on a correctly specified model, if the model includes estimated
parameters the average score EtðSnðf̂ t ;Y tþ1ÞÞ may not achieve the upper bound EtðSnðpt ;Y tþ1ÞÞ, due to non-vanishing
estimation uncertainty. As a consequence, a density forecast based on a misspecified model with limited estimation
uncertainty may be preferred over a density forecast based on a correctly specified model having larger estimation
uncertainty.

Null hypothesis and testing approach: Given a scoring rule of one's choice, there are various ways to construct
tests of equal predictive ability. Giacomini and White (2006) distinguish tests of unconditional predictive ability
and conditional predictive ability. Here we focus on tests for unconditional predictive ability for clarity of exposition.
The suggested approach can be extended to obtain tests of conditional predictive ability in a straightforward
manner.

Assume that two competing density forecasts f̂ A;t and f̂ B;t and corresponding realisations of the variable Y tþ1 are
available for t ¼ R;Rþ1;…; T�1. We may then compare f̂ A;t and f̂ B;t based on their average scores, by testing formally
whether their difference is statistically significantly different from zero on average. Defining the score difference

dn

tþ1 ¼ Snðf̂ A;t ;Y tþ1Þ�Snðf̂ B;t ;Y tþ1Þ;

for a given scoring rule Sn, the null hypothesis of equal expected scores is given by

H0:Eðdn

tþ1Þ ¼ 0; for all t ¼ R; Rþ1;…; T�1;

Let d
n

R;P denote the sample average of the score differences, that is, d
n

R;P ¼ P�1∑T�1
t ¼ Rd

n

tþ1 with P ¼ T�R. To test the null
hypothesis, we may use a Diebold and Mariano (1995) type statistic

tR;P ¼
ffiffiffi
P

p d
n

R;Pffiffiffiffiffiffiffiffiffi
σ̂2
R;P

q ; ð1Þ

where σ̂2
R;P is a heteroskedasticity and autocorrelation-consistent (HAC) variance estimator of σ2

R;P ¼ Varð
ffiffiffi
P

p
d
n

R;PÞ.



C. Diks et al. / Journal of Economic Dynamics & Control 48 (2014) 79–9482
Theorem 4 of Giacomini and White (2006) states that, under certain mixing and moment conditions, tR;P in (1) is
asymptotically (as P-1 with R fixed) standard normally distributed under the null hypothesis.

The logarithmic scoring rule: Mitchell and Hall (2005), Amisano and Giacomini (2007), and Bao et al. (2004, 2007) focus
on the logarithmic scoring rule:

Slðf̂ t ; ytþ1Þ ¼ log f̂ tðytþ1Þ; ð2Þ
such that the score assigned to a density forecast varies positively with the value of f̂ t evaluated at the observation ytþ1.
Defining scores in terms of the realisations ytþ1 rather than the random variables Y tþ1 is quite common, and can be helpful
in particular if they have a possible interpretation as a likelihood (i.e. given the observed value of Y tþ1). Since that is the case
here, we follow this convention.

Based on the P observations available for evaluation, yRþ1;…; yT , the density forecasts f̂ A;t and f̂ B;t can be ranked

according to their average scores P�1∑T�1
t ¼ R log f̂ A;tðytþ1Þ and P�1∑T�1

t ¼ R log f̂ B;tðytþ1Þ. Obviously, the density forecast yielding

the highest average score would be the preferred one. The log score differences dltþ1 ¼ log f̂ A;tðytþ1Þ� log f̂ B;tðytþ1Þ may be
used to test whether the predictive accuracy is significantly different, using the test statistic defined in (1). Note that this
coincides with the log-likelihood ratio of the two competing density forecasts.

Weighted likelihood-based scoring rules: Diks et al. (2011) adapt the logarithmic scoring rule for evaluating and comparing
density forecasts in a specific region of interest, Mt �Rd, say, by replacing the full likelihood in (2) either by the conditional
likelihood, given that the observation lies in the region of interest, or by the censored likelihood, with censoring of the
observations outside Mt. The conditional likelihood (cl) score function is given by

Scl f̂ t ; ytþ1

� �
¼ I ytþ1AMt
� �

log
f̂ tðytþ1ÞR
Mt
f̂ tðyÞ dy

 !
; ð3Þ

where Ið�Þ denotes the indicator function, which is one if the event in its argument occurs and zero otherwise, while the
censored likelihood (csl) score function is given by

Scslðf̂ t ; ytþ1Þ ¼ Iðytþ1AMtÞ log f̂ tðytþ1Þþ Iðytþ1AMc
t Þ log

Z
Mc

t

f̂ tðyÞ dy
 !

; ð4Þ

where Mt
c
is the complement of Mt.

The conditional and censored likelihood scoring rules introduced above, focus on a sharply defined region of interest Mt.
More generally one can introduce a weight function wtðytþ1Þ, leading to the scores

Scl f̂ t ; ytþ1

� �
¼wt ytþ1

� �
log

f̂ tðytþ1ÞR
wtðyÞf̂ tðyÞ dy

 !
ð5Þ

and

Scslðf̂ t ; ytþ1Þ ¼wtðytþ1Þlog f̂ tðytþ1Þþð1�wtðytþ1ÞÞ log 1�
Z

wtðyÞf̂ tðyÞ dy
� �

: ð6Þ

We make the following assumptions concerning the density forecasts that are to be compared, and the weight function.

Assumption 1. The density forecasts f̂ A;t and f̂ B;t satisfy KLICðf̂ A;tÞo1 and KLICðf̂ B;tÞo1, where KLICðhtÞ ¼
R
ptðyÞ

logðptðyÞ=htðyÞÞ dy is the Kullback–Leibler divergence between the density forecast ht and the true conditional density pt.

Assumption 2. The weight function wtðyÞ is such that (a) it is determined by the information F t available at time t, (b)
0rwtðyÞr1, and (c)

R
wtðyÞptðyÞ dy40.

Assumption 1 ensures that the expected score differences for the competing density forecasts are finite. Assumption 2(c) is
needed to avoid cases where wtðyÞ takes strictly positive values only outside the support of the data.

Under Assumptions 1 and 2, the generalised conditional likelihood scoring rule given in (5) and the generalised censored
likelihood scoring rule given in (6) are proper. A proof for univariate predictive densities has been given in the appendix of
Diks et al. (2011). The steps in that proof remain valid if the univariate densities are replaced by multivariate densities, and
scalar integration variables by a vector-valued integration variables.

2.2. Copula comparison with weights on the copula domain

Patton's (2006) extension of Sklar's (1959) theorem to the time-series case describes how the time-dependent
multivariate distribution Ftðytþ1Þ can be decomposed into conditional marginal distributions Fj;tðyjÞ, j¼ 1;…;d, and a
conditional copula Ctð�Þ, that is

FtðyÞ ¼ CtðF1;tðy1Þ; F2;tðy2Þ;…; Fd;tðydÞÞ; ð7Þ



C. Diks et al. / Journal of Economic Dynamics & Control 48 (2014) 79–94 83
provided that the marginal conditional cumulative distribution functions (CDFs) Fi;t are continuous. The subscript t in Ft, Fi;t
(i¼ 1;…; d) and Ct emphasises that these are conditional on F t . This decomposition emphasises the attractiveness of the
copula approach for modeling multivariate distributions. Given that the marginal distributions Fj;t , j¼ 1…; d, only contain
univariate information on the individual variables Yj;tþ1, their dependence is governed completely by the copula function Ct.
As the choice of marginal distributions does not restrict the choice of copula, or vice versa, a wide range of joint distributions
can be obtained by combining different marginals with different copulas.

The one-step-ahead predictive log-likelihood associated with ytþ1 based on (7) is given by

∑
d

j ¼ 1
log f j;tðyj;tþ1Þþ log ctðF1;tðy1;tþ1Þ; F2;tðy2;tþ1Þ;…; Fd;tðyd;tþ1ÞÞ; ð8Þ

where f j;tðyj;tþ1Þ, j¼1,…,d, are the conditional marginal densities and ct is the conditional copula density, defined as

ct u1;u2;…;udð Þ ¼ ∂d

∂u1∂u2…∂ud
Ct u1;u2;…;udð Þ;

which we will assume to exist throughout. Using (8), the conditional likelihood and censored likelihood scoring rule of a
density forecast f̂ tðytþ1Þ with marginal predictive densities f̂ j;t , j¼ 1;…; d, and copula density ĉt can be decomposed as

Scltþ1 ¼wtðytþ1Þ ∑
d

j ¼ 1
log f̂ j;tðyj;tþ1Þþ log ĉtðûtþ1Þ

 !
�wtðytþ1Þ log

Z
wtðyÞf̂ tðyÞ dy

� �
; ð9Þ

and

Scsltþ1 ¼wtðytþ1Þ ∑
d

j ¼ 1
log f̂ j;tðyj;tþ1Þþ log ĉtðûtþ1Þ

 !

þð1�wtðytþ1ÞÞ log 1�
Z

wtðyÞf̂ tðyÞ dy
� �

; ð10Þ

where Sntþ1 is short-hand notation for Snðf̂ t ; ytþ1Þ, ĉt is the conditional copula density associated with the density forecast,
and ûtþ1 ¼ ðF̂ 1;tðy1;tþ1Þ;…; F̂ d;tðyd;tþ1ÞÞ0 its multivariate conditional probability integral transform (PIT).

As in Diks et al. (2010) we assume that the two competing multivariate density forecasts differ only in their copula
specifications and have identical predictive marginal densities f̂ j;t , j¼ 1;…;d. The two competing copula specifications are
assumed to have well-defined densities ĉA;t and ĉB;t . The null hypothesis of equal predictive ability is

H0:EðSnA;tþ1Þ ¼ EðSnB;tþ1Þ;

where ‘n’ stands for either ‘cl’ or ‘csl’, and where we have, with slight abuse of notation, used the same notation for the
random variables Sn�;tþ1 and their realisations. Since the conditional marginals are identically specified under both density
forecasts, the logarithms of the marginal densities in (9) and (10) cancel out, so that an equivalent formulation of the null
hypothesis is

H0:EðSn

A;tþ1Þ ¼EðSn

B;tþ1Þ;

based on the simpler scores (note the absence of the contributions from the predictive marginals)

Scl
tþ1 ¼wtðytþ1Þ log ĉðûtþ1Þ

� �� log
Z

wtðyÞf̂ tðyÞ dy
� �

and

Scsl
tþ1 ¼wtðytþ1Þlog ĉtðûtþ1Þþð1�wtðytþ1ÞÞ log 1�

Z
wtðyÞf̂ tðyÞ dy

� �
:

We use the weight function to focus on specific regions of the copula support. This can be achieved by taking weight
functions of the form:

wtðytþ1Þ ¼ ~wðû1;tþ1ðy1;tþ1Þ;…; ûd;tþ1ðyd;tþ1ÞÞ;

where ~wðu1;…;udÞ is a weight function defined on the copula support. Note thatZ
wtðyÞf̂ tðyÞ dy¼

Z
wtðyÞĉtðûðyÞÞf̂ 1;tðy1Þ �⋯� f̂ d;tðydÞ dy

¼
Z

~wtðûÞĉtðûÞ dû:

This allows us to rewrite the scores Sn

tþ1 as

Scl
tþ1 ¼ ~wtðûtþ1Þ log ĉtðûtþ1Þ� log

Z
~wtðuÞĉtðuÞ du

� �
ð11Þ
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and

Scsl
tþ1 ¼ ~wtðûtþ1Þðlog ĉtðûtþ1ÞÞþð1� ~wtðûtþ1ÞÞ log 1�

Z
~wtðuÞĉtðuÞ du

� �
: ð12Þ

By choosing the weight function ~wtðuÞ ¼ 1 one retrieves the log scoring rule:

Sl
tþ1 ¼ log ĉtðûtþ1Þ ð13Þ

considered in Diks et al. (2010) for density forecast comparison on the full copula domain.
Note that the ‘reduced’ scoring rules (11) and (12) take the same form as the weighted likelihood-based scoring rules (5)

and (6) derived before, but now involve only the density forecast copula instead of the full density forecast and the observed
conditional PITs ûtþ1 instead of the variable ytþ1. This points out an important difference with Diks et al. (2010), where no
weight function was used on the copula, and emphasis was placed on comparing density forecasts with the same predictive
marginals merely to obtain simplified scoring rules. Here the fact the forecasts have identical predictive marginals also
serves another purpose, namely of guaranteeing that the two competing density forecasts agree on the conditional PITs ûtþ1

on which the weight function is defined.
In the cases considered in this paper, ~wt will be time independent, and will take the form of an indicator function of a

given fixed subset of the copula support. This allows for a simplification of the scoring rules, since the integrals occurring in
(11) and (12) can be expressed in term of the copula Ĉ t .

Above, we have assumed that the two competing multivariate density forecasts differ only in their copula specifications
and have identical predictive marginal densities f̂ j;t , j¼1,…,d. Implicitly this assumes that the parameters in the marginals
and the copula can be separated from each other, so that they can be estimated in a multi-stage procedure for a given
dataset. No other restrictions are put on the marginals. In particular, they may be specified parametrically, nonparame-
trically, or semi-parametrically.

2.3. Copula-based multivariate dynamic models

In the Monte Carlo simulations and the empirical application in subsequent sections we use copula-based multivariate
dynamic models (see Patton, 2012, 2013 for reviews). To keep this paper self-contained we briefly describe this class of
models here. The general copula-based multivariate dynamic model is specified as

Y t ¼ μtðθ1Þþ
ffiffiffiffiffiffiffiffiffiffiffiffi
HtðθÞ

q
εt ; ð14Þ

where

μtðθ1Þ ¼ ðμ1;tðθ1Þ;…;μd;tðθ1ÞÞ0 ¼ E½Y t jF t�1�
is a specification of the conditional mean, parameterised by a finite dimensional vector of parameters θ1, and

HtðθÞ ¼ diagðh1;tðθÞ;…;hd;tðθÞÞ;
where

hj;tðθÞ ¼ hj;tðθ1;θ2Þ ¼E½ðYj;t�μj;tðθ1ÞÞ2jF t�1�; j¼ 1;…; d;

is the conditional variance of Yj;t given F t�1, parameterised by a finite-dimensional vector of parameters θ2, where θ1 and
θ2 do not have common elements. The innovations εt ¼ ðε1;t ;…; εd;tÞ0 are independent of F t�1 and independent and
identically distributed (i.i.d.) with Eðεj;tÞ ¼ 0 and Eðε2j;tÞ ¼ 1 for j¼ 1;…;d. Applying Sklar's theorem, the joint distribution
function FðεÞ of εt can be written as

FðεÞ ¼ CðF1ðε1Þ;…; FdðεdÞ;αÞ � Cðu1;…;ud;αÞ; ð15Þ
where Cðu1;…;ud;αÞ: ½0;1�d-½0;1� is a member of a parametric family of copula functions with finite dimensional
parameter vector α.

The univariate marginal distributions of the standardised innovations Fjð�Þ, j¼ 1;…; d are estimated either parametrically
or nonparametrically. The models with parametrically specified marginal distributions are typically estimated in two stages.
First, for a given marginal distribution univariate quasi-maximum likelihood is used to estimate the parameters of the
marginals θ1 and θ2 separately for each for each j¼ 1;…; d. Second, the parameters α of the given copula specification are
estimated by maximising the corresponding copula log-likelihood and conditioning on the parameters of the marginals
obtained in the first stage. While this procedure is less efficient than full MLE, it is much simpler, and the loss of efficiency is
generally not substantial (Patton, 2006).

Chen and Fan (2006) propose estimating the marginal distributions of the standardised innovations nonparametrically
and introduce the class of semi-parametric copula-based multivariate dynamic (SCOMDY) models. They suggest a three-
stage procedure to estimate the SCOMDY model parameters. The first stage coincides with the first stage of the parametric
estimation under the assumptions of normality of the standardised innovations εj;t . The second stage estimates the marginal

distributions Fjð�Þ by means of the empirical CDF (ECDF) transformation of the residuals ε̂ j;t � ðyj;t�μj;tðθ̂1ÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hj;tðθ̂Þ

q
. Finally,
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the parameters of a given parametric copula are estimated using a parametric procedure conditioning on the estimates of
the marginal CDFs obtained in the second stage.

3. Monte Carlo simulations

In this section we use Monte Carlo simulation to examine the finite-sample behaviour of our predictive accuracy tests for
comparing alternative copula specifications in specific regions of the copula support.

In all experiments, the true data generating process (DGP) is based on an AR(1) specification for the conditional mean
with zero constant term and AR coefficient set to 0.1 and a GARCH(1,1) specification for the conditional variance, with
coefficients that are typical for financial applications, that is, the constant term, the ARCH and GARCH coefficients are set to
0:1;0:05 and 0.85, respectively.

The vector-valued innovations εt are i.i.d. with mean zero and variance one, but the elements εj;t , jA1;…; d for given t are
not independent. Specifically, for given t, each of the variables εj;t are marginally standard normally distributed, while their
true dependence is described by the Student-t copula. The alternative copulas used in the simulations are the Gaussian
copula, the Clayton copula and the non-exchangeable Clayton copula. For a detailed description of these copulas and their
applications in financial econometrics we refer to Nelsen (2006) and the reviews of Patton (2009, 2012, 2013).

Non-exchangeable copulas are not invariant under permutation of their arguments (see Liebscher, 2008 for their construction
and examples). For size simulations we employ a non-exchangeable copula based on the Clayton copula family, that is,

CnonexClðu;αÞ ¼ ∏
d

j ¼ 1
u1�θj

j ∑
d

j ¼ 1
u�αθj
j �dþ1

 !�1=α

with α40; 0rθjr1:

The parameter α determines the joint strength of dependence for all variables in the copula and the parameter θj tilts each
dimension away from the independence copula.

All models are estimated using maximum likelihood. For models involving marginal distributions we estimate the
parameters of the marginal distributions first and after obtaining the standardised innovations we transform them into PITs,
either using the ECDF or the corresponding parametric CDF. These are then used to estimate the copula parameters.

In the simulation experiments we consider copulas of various dimensions, namely, d¼2, d¼5 and d¼10. We set the
number of observations for the moving in-sample window to R¼1000 and compare the results for two different out-of-
sample forecasting periods P¼1000 and P¼5000. The asymptotic distribution results for the considered tests assume that
P tends to infinity with R fixed, but in practice it is not always possible to have large P. This motivates us to consider the
finite sample properties of the tests for the more feasible situation R¼ P ¼ 1000. The number of replications in each
experiment is set to B¼1000.
Table 1
Size test of equal performance of the two non-exchangeable Clayton copulas for the DGP with the Student-t copula.

r¼0.10 r¼0.15 r¼0.25 r¼0.30

Simulation parameters cens cond cens cond cens cond cens cond

P¼1000
d¼2 ν¼ 5 0.025 0.025 0.020 0.019 0.023 0.022 0.024 0.026

ν¼ 10 0.030 0.031 0.017 0.017 0.023 0.022 0.026 0.025
ν¼ 20 0.040 0.039 0.024 0.024 0.026 0.024 0.026 0.026

d¼5 ν¼ 5 0.025 0.024 0.043 0.041 0.054 0.049 0.056 0.048
ν¼ 10 0.023 0.020 0.040 0.040 0.049 0.047 0.056 0.047
ν¼ 20 0.019 0.018 0.026 0.027 0.037 0.037 0.051 0.046

d¼10 ν¼ 5 0.012 0.006 0.022 0.018 0.041 0.039 0.049 0.041
ν¼ 10 0.007 0.000 0.019 0.016 0.041 0.038 0.048 0.043
ν¼ 20 0.006 0.002 0.019 0.016 0.053 0.054 0.041 0.036

P¼5000
d¼2 ν¼ 5 0.010 0.010 0.011 0.009 0.011 0.009 0.013 0.013

ν¼ 10 0.009 0.009 0.009 0.009 0.010 0.010 0.013 0.013
ν¼ 20 0.010 0.013 0.011 0.009 0.012 0.012 0.007 0.006

d¼5 ν¼ 5 0.044 0.046 0.055 0.052 0.074 0.062 0.079 0.064
ν¼ 10 0.043 0.046 0.056 0.054 0.051 0.044 0.068 0.060
ν¼ 20 0.051 0.048 0.051 0.050 0.055 0.055 0.065 0.049

d¼10 ν¼ 5 0.043 0.038 0.047 0.042 0.056 0.053 0.051 0.046
ν¼ 10 0.044 0.041 0.050 0.047 0.053 0.047 0.050 0.044
ν¼ 20 0.032 0.034 0.058 0.057 0.052 0.052 0.048 0.046

Note: The table shows the rejection rates of a two-sided test of equal performance of the two non-exchangeable Clayton copulas for 0.05 significance level.
The true DGP is based on a Student-t copula with ν¼ 5 degrees of freedom and all pair-wise correlations set to ρ¼ 0:5. The true marginals follow an AR(1)-
GARCH(1,1) process with standard normal innovations and are estimated using SCOMDY model. The tests are based on the copula region ½0; r�d with
variable threshold r and dimension d and use either censored or conditional scores. The number of observations in the moving in-sample estimation
window is R¼1000 and the number of out-of-sample evaluations is P¼1000 and P¼5000. The reported results are based on 1000 replications.
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3.1. Size

In order to assess the size properties of the tests, a case is required with two competing copulas that are both ‘equally (in)
correct’. We achieve this with the following setup. We consider DGPs with a Student-t copula with degrees of freedom ν¼ 5,
10 and 20, and all pair-wise correlations set to ρ¼ 0:5. We test the null hypothesis of equal predictive accuracy of two non-
exchangeable Clayton copulas for one of which the tilting parameter is set to θ1 ¼ 0:5 and all θj ¼ 1; j¼ 2;…; d and for the
other θd ¼ 0:5 and all θj ¼ 1; j¼ 1;…; d�1. The parameter α is estimated for both non-exchangeable Clayton copulas, based
on the moving in-sample window. Due to the exchangeability of the Student-t copula, the two competing copula
specifications are equally distant from the true copula. We consider the lower tail region ½0; r�d for r¼ 0:10;
0:15;0:25;0:30. For smaller r the number of observations falling within the regions of interest was not sufficient, especially
in higher dimensions. We report results based on two-sided tests, for censored as well as conditional scores.

Table 1 shows the observed rejections rates for all considered dimensions and degrees of freedom at 0.05 significance
level while Fig. 1 shows the discrepancy between the observed rejection rate (or actual size) and the nominal size of the test
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Fig. 1. Size discrepancy plots for the test of equal predictive accuracy for various levels of dependence in the DGP. The panels display the actual size –

nominal size discrepancy of a two-sided asymptotic test of equal performance of the two non-exchangeable Clayton copulas. The true DGP is based on a
Student-t copula with ν¼ 5 degrees of freedom and all pair-wise correlations set to ρ¼ 0:5. The true marginals follow an AR(1)-GARCH(1,1) process with
standard normal innovations and are estimated using SCOMDY model. The tests are based on the copula region ½0; r�d (d¼5) and use either censored (left)
or conditional scores (right). The number of observations in the moving in-sample estimation window is R¼1000 and the number of out-of-sample
evaluations is P¼1000 and P¼5000. The reported results are based on B¼1000 replications. The thin lines indicate the 95% point-wise significance
intervals (71:96 times the theoretical standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1�αÞ=B

p
of the estimated rejection rate for nominal size α under H0).



Table 2
Power of a one-sided test of equal performance of the Gaussian and Student-t copulas with correctly specified Student-t copula.

r¼0.10 r¼0.15 r¼0.25 r¼0.30

Simulation parameters cens cond cens cond cens cond cens cond

P¼1000
d¼2 ν¼ 5 0.269 0.352 0.369 0.404 0.478 0.496 0.501 0.506

ν¼ 10 0.189 0.245 0.217 0.248 0.252 0.275 0.257 0.261
ν¼ 20 0.188 0.237 0.210 0.240 0.171 0.180 0.163 0.170

d¼5 ν¼ 5 0.238 0.413 0.412 0.553 0.702 0.718 0.784 0.786
ν¼ 10 0.096 0.247 0.244 0.357 0.443 0.469 0.511 0.518
ν¼ 20 0.067 0.229 0.204 0.308 0.312 0.346 0.324 0.337

d¼10 ν¼ 5 0.105 0.205 0.335 0.480 0.748 0.775 0.857 0.873
ν¼ 10 0.047 0.099 0.184 0.327 0.524 0.571 0.604 0.627
ν¼ 20 0.030 0.062 0.157 0.258 0.365 0.410 0.383 0.412

P¼5000
d¼2 ν¼ 5 0.779 0.786 0.866 0.867 0.958 0.958 0.976 0.976

ν¼ 10 0.477 0.541 0.576 0.597 0.638 0.649 0.691 0.688
ν¼ 20 0.405 0.454 0.452 0.478 0.421 0.426 0.374 0.377

d¼5 ν¼ 5 0.885 0.932 0.985 0.987 1.000 1.000 1.000 1.000
ν¼ 10 0.557 0.741 0.806 0.863 0.955 0.962 0.980 0.982
ν¼ 20 0.368 0.566 0.633 0.708 0.767 0.785 0.795 0.803

d¼10 ν¼ 5 0.820 0.942 0.962 0.983 1.000 1.000 1.000 1.000
ν¼ 10 0.544 0.816 0.860 0.933 0.982 0.987 0.994 0.994
ν¼ 20 0.315 0.618 0.762 0.882 0.927 0.940 0.923 0.933

Note: The table shows the observed rejection rates of a one-sided test of equal performance of the Gaussian and Student-t copulas, against the alternative
hypothesis that the correctly specified Student-t copula has a higher average score. The tests are based on the left tail copula region ½0; r�d and use either
censored or conditional scores. The Student-t copula characterising the DGP has varying degrees of freedom parameter ν and varying dimensions d. The
pair-wise correlation coefficients ρij, ia j, are all set to 0.5. The true marginals follow an AR(1)-GARCH(1,1) process with standard normal innovations and
are estimated using SCOMDY model. The test of equal predictive accuracy compares a Student-t copula (with both parameters ρ and ν estimated, rather
than known) against a Gaussian copula with the parameter ρ also being estimated. The nominal size is 0.05, the number of observations in the moving
in-sample estimation window is R¼1000 and the number of out-of-sample evaluations is P¼1000 and P¼5000. The reported results are based on 1000
replications.
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for d¼5 and n¼ 5. The test seems to be rather conservative for d¼2 and gets closer to the actual size for higher dimensions.
The deviations are mainly caused by relatively poor finite sample performance of the HAC variance estimator, which
attempts to capture dependence between scores.1 The tests based on censored and conditional likelihood scores exhibit
similar properties.

We also considered other DGPs and regions to verify the size properties of the test. We do not report detailed results here
for brevity; they can be briefly summarised as follows. The unifying theme is that the size distortion increases with the
strength of dependence in the considered DGP and reduces for higher dimensions. We also considered different treatments
of the marginal distributions in addition to the baseline case of semi-parametric marginals, namely, parametric marginals
with known parameters and parametric marginals with estimated parameters. In some cases the semi-parametric models
showed somewhat larger size distortions than the parametric models and models with fully known marginals.

3.2. Power

We evaluate the power of the tests of equal predictive accuracy by performing a simulation experiment where one of the
competing copula specifications corresponds with that of the true DGP, while the distance of the alternative, incorrect
copula specification to the DGP varies depending on a certain parameter of the DGP. Specifically, the DGP is a Student-t
copula of varying dimension d¼ 2;5;10 with all pair-wise correlation coefficients ρ¼ 0:5. The number of degrees of freedom
ν is varied over the interval ½5;20�. We compare the predictive accuracy of the correct Student-t copula specification (with
both parameters ρ and ν being estimated) against an incorrect Gaussian copula specification in the left tail region ½0; r�d for
r¼ 0:10;0:15;0:25;0:30. Hence, we focus on the question whether the proposed tests can distinguish between copulas with
and without tail dependence. Note, however, that the Student-t copula approaches the Gaussian copula as ν increases, and
the tail dependence disappears. Intuitively, the higher the value of ν in the DGP, the more difficult it becomes to distinguish
between these two copula specifications.

The full results are shown in Table 2 and are visualised for the censored likelihood-based scores in Fig. 2 in the form of
power plots, showing the observed rejection rates (for a nominal size of 0.05) as a function of the degrees of freedom
parameter, ν, in the DGP. The results displayed are for the null hypothesis that the Gaussian and Student-t copulas perform
equally well, against the one-sided alternative hypothesis that the correctly specified Student-t copula has a higher average
1 We have tried various implementations of the HAC estimator available in the literature (see den Haan Wouter and Levin Andrew, 1996 for a review),
but no implementation was fully satisfactory for the considered DGPs and sample sizes.
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score. Since the true DGP uses the Student-t copula, we might expect the Student-t copula to perform better. Note, however,
that as the number of degrees of freedom ν in the copula describing the DGP becomes large, the Gaussian copula might
outperform the Student-t copula. This is a consequence of the fact that the Gaussian copula is very close to the Student-t
copula for large values of ν, but requires one parameter less to be estimated. Indeed, the rejection rates become smaller than
the nominal size for very large values of ν. Consequently, Fig. 2 shows that the test has higher power for smaller values of ν. For
higher dimensions we typically observe increased power, at least in the situations when a sufficient number of observations
falls in the considered tail region. We also observe that in most of the cases, for higher r, that is, a larger tail region the power is
higher. However, in the situation when both copulas are close to each other, ν¼ 20, the tests based on lower regions may
provide a slightly higher power, especially in the lower dimensions when the number of observations falling within these
regions is sufficiently high. Hence, in practice, the selection of the appropriate region will depend on the specific DGP and
considered dimension. It is important to verify that a sufficient number of observations falls within a considered region.
Naturally, the test based on the larger number of out-of-sample evaluations, P, shows higher rejection rates.

We also considered other DGPs to verify the power properties and generally for higher levels of dependence our test
showed higher power. In summary, although the suggested tests of predictive accuracy in the selected region of support
exhibit moderate discrepancy from the nominal size, they have satisfactory statistical power.

4. Empirical application

We examine the empirical usefulness of our predictive accuracy test with an application to modeling yield changes in
major world economies. Specifically, we consider daily changes of yields on the 10 year benchmark government bonds of the
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Fig. 2. Power of the test of equal predictive accuracy for various levels of tail dependence. The panels show the observed rejection rates (on the vertical
axis) of a one-sided test of equal performance of the Gaussian and Student-t copulas, against the alternative hypothesis that the correctly specified Student-
t copula has a higher average score. The tests are based on the left tail copula region ½0; r�d and use censored-likelihood based scores. The horizontal axis
displays the degrees of freedom parameter of the Student-t copula characterising the DGP. The pair-wise correlation coefficients ρij, ia j, are all set to 0.5.
The true marginals follow an AR(1)-GARCH(1,1) process with standard normal innovations and are estimated using SCOMDY model. The test of equal
predictive accuracy compares a Student-t copula (with both parameters ρ and ν estimated, rather than known) against a Gaussian copula with the
parameter ρ also being estimated. The nominal size is 0.05, the number of observations in the moving in-sample estimation window is R¼1000 and the
number of out-of-sample evaluations is P¼1000 and P¼5000. The reported results are based on 1000 replications.
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G7 countries: United States, Canada, Japan, United Kingdom, Germany, France, and Italy. The data on the yields are obtained
from Datastream. We base our analysis on the daily data over the period from March 6, 1991, until May 21, 2014, comprising
6055 observations.2

Recalling that yields are inversely related to prices of fixed income securities, notice that yield increases correspond to
drops in bond prices, while yield decreases correspond to growth in bond prices. Since multiple fixed income instruments
depend crucially on their domestic yield curves, the yield changes influence trades involving positions in multiple sectors of
the fixed income market. Understanding and managing the market risks of fixed income portfolios is of significant interest
to pension funds, insurance companies, and hedge funds. From the macroeconomic perspective, yields on government debt
represent an important measure of the interest rates in the economy. With the post-crisis increase in the role of the
monetary policy (Quantitative Easing), the yield curve has become a major indicator of the economic policy and the stimulus
applied to the economy. The dependence between yield changes in the G7 economies reflects the contemporary views held
by the central banks of these countries.

We employ a GARCH framework to model the marginal characteristics of the daily yield changes. For the conditional
mean and the conditional variance of the change of yield j we use an AR(5)-GARCH(1,1) specification, given by

Yj;t ¼ cjþ ∑
5

l ¼ 1
ϕj;lYj;t� lþ

ffiffiffiffiffiffiffi
hj;t

q
εj;t ð16Þ

hj;t ¼ωjþαj Yj;t�1�cj� ∑
5

l ¼ 1
ϕj;lYj;t�1� l

 !2

þβjhj;t�1; ð17Þ

where ωj40, βjZ0, αj40 and αjþβjo1. These lag lengths and GARCH orders were sufficient to remove AR and GARCH
effects in the marginals. No attempts were made to optimise lag lengths of the model.

The joint distribution of the standardised innovations εj;t combines empirical univariate marginal distributions Fj with a
parametric copula C. We consider a substantial number of different copula specifications. In particular, we consider the
Gaussian (Ga) and Student-t (St-t) elliptic copulas and the classic Clayton (Cl), Clayton survival (Cl-s), and a mixture of
Clayton and Clayton survival (Cl/Cl-s) copulas. Moreover, we extend the standard set of copulas by also analyzing the
predictive performance of mixtures of elliptic and Clayton family copulas: Gaussian and Clayton (Ga/Cl), Gaussian and
Clayton survival (Ga/Cl-s), Student-t and Clayton (St-t/Cl), Student-t and Clayton survival (St-t/Cl-s). In the application we
have considered a number of copulas as well as some of their mixtures. It might be possible to obtain better results by
considering combinations of more than two copulas, but this is left for future research.

We compare the one-step ahead density forecasting performance of the different copula specifications using a rolling
window scheme. The length of the rolling estimation window is set to R¼1000 observations, such that P¼5055
observations (from January 5, 1995, until May 21, 2014) are left for out-of-sample forecast evaluation. For comparing the
accuracy of the resulting copula-based density forecasts we use the Diebold–Mariano–West type test based on the
conditional likelihood in (11) and the censored likelihood in (12). As both scoring rules give qualitatively similar results, to
save space we only report results of the tests based on the censored likelihood.3

We focus on three specific regions of the copula support. The first region, labeled D, corresponds to a simultaneous fall of
all the yields, and is defined as

D¼ fðu1;…;udÞA ½0;1�djujor for all j¼ 1;…; dg;
where d¼7 and the threshold rAf0:15;0:20;0:25;0:30g. Note that we only consider regions with identical thresholds for all
yield changes. This admittedly is an arbitrary choice, but it is made in order to limit the number of regions under
consideration. Below, we present detailed results for r¼0.25 only, but consider the alternative values in the verification of
the robustness of overall results. The second region, denoted U, is the mirror image of D in the sense that it represents a
simultaneous increase of all the considered yields

U ¼ fðu1;…;udÞA ½0;1�djuj41�r for all j¼ 1;…;dg;
where again the threshold rAf0:15;0:20;0:25;0:30g. The third region concerns the central part of the copula support. This
region M is defined as

M¼ fðu1;…;udÞA ½0;1�djroujo1�r for all j¼ 1;…; dg;
where we use the same values of r as for the regions D and U. Region M corresponds to ‘regular’ economic conditions.

As an additional diagnostic tool, we use the model confidence set (MCS) concept of Hansen et al. (2011) to identify the
collection of models which includes the best copula specification with a certain level of confidence. Starting with the full set
of models, at each iteration we test the null hypothesis that all considered models have equal predictive ability on average
across the out-of-sample period. If the null hypothesis is rejected, the worst performing model is omitted, and equal
predictive ability is tested again for the remaining models. This procedure is repeated until the null hypothesis can no longer
2 The choice of the particular range of dates reflects data availability for yields on Italian government debt and the date the sample was obtained.
3 Detailed results based on the conditional likelihood are available upon request.
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be rejected, and the collection of models that remains at this point is defined to be the MCS. In our implementation
of the MCS procedure, we continue to exclude the worst performing model at each iteration and repeat the algorithm
until only one model remains in the MCS. In this way we obtain a complete ranking of the competing models, together
with corresponding p-values. We report the MCS p-values at every iteration. The critical values of the MCS are based
on the stationary bootstrap of Politis and Romano (1994) with a probability of sampling the consecutive observation
equal to 0.90. The ranking of the different copula specifications and the MCS p-values are robust with respect to the
choice of this probability. Due to space considerations, the MCS results are reported in the tables, but not discussed in
detail.

We first conduct the test of forecasting accuracy based on the entire support, that is, without distinguishing its particular
regions. Table 3 reports the values of the pairwise QR;P test statistic based on the log-scoring rule Slðytþ1Þ as given in (13).
Obviously, the matrices in the two panels are antisymmetric, that is QR;Pði; jÞ ¼ �QR;Pðj; iÞ for copula specifications i and j. We
nevertheless report the full matrices as this allows for an easy assessment of the relative performance of the various copulas.
Given that in each panel the (i,j)th entry is based on the score difference dltþ1 ¼ Sl

j;tþ1ðytþ1Þ�Sl
i;tþ1ðytþ1Þ, positive values of

the test statistic indicate that the copula in column j achieves a higher average score than the one in row i. Hence, the more
positive values in a given column, the higher the ranking of the corresponding copula specification.

From Table 3, we observe that the mixture of the Student-t and Clayton copulas (St-t/Cl) performs best when the
full support is taken into account. Based on the pairwise QR;P test statistic, the null of equal predictive accuracy is rejected at
better than the 0.01 significance level for all competing copula specifications, with the exception of the mixture
of the Student-t and Clayton survival copulas (St-t/Cl-s) (against which the test statistic has a p-value of 0.108). Thus,
adding either lower or upper tail dependence structure of the Clayton family copulas improves upon the simple Student-t
copula.

Next we proceed to analyze the source of this result by focusing on sub-regions. Table 4 shows results of the pairwise
QR;P test statistic based on the censored likelihood scoring rule for regions D, M, and U with r¼0.25. These demonstrate that
the mixture of the Student-t and Clayton copulas (St-t/Cl) is strongly preferred for the D region, while the mixture of the
Student-t and Clayton survival copulas (St-t/Cl-s) performs marginally better in the M and U regions. The numbers of
observations in each of the sub-regions across the out-of-sample period are 90 for D, 280 for M and 72 for U, respectively.
Next, we describe and discuss these results in more detail.

The dependence structure in region D strongly favours the mixture of the Student-t and Clayton copulas (see Panel A in
Table 4). Notably, this specification outperforms the Student-t copula at the 0.05 significance level. This signifies a departure
from the purely elliptical copula specification. Moreover, the p-value of the test of the Student-t and Clayton mixture (St-t/
Cl) against the Student-t and Clayton survival (St-t/Cl-s) mixture is 0.016.

Region M of the copula support corresponds to modest changes in the yields. The Student-t copula and its mixtures with
the Clayton family copulas decisively outperform (at significance levels of less than 0.01) all other competing specifications
in this region of support, see Panel B in Table 4. For region U, associated with a common increase in the yields, the mixture of
the Student-t and Clayton survival copulas (St-t/Cl-s) emerges as the marginally better option, see Panel C in Table 4.
However, the Student-t copula mixture specifications (St-t/Cl and St-t/Cl-s) are statistically indistinguishable in the M and U
regions. This supports the conjecture that the value added by mixing in the Clayton copula with the Student-t copula stems
from its performance in region D. Thus, the addition of the Clayton copula allows one to better capture the dependence
Table 3
Daily yield changes: pair-wise tests of equal predictive accuracy of copulas for full copula support, based on the test developed by Diks et al. (2010).

Copula St-t Ga Cl Cl-s Cl/Cl-s Ga/Cl Ga/Cl-s St-t/Cl St-t/Cl-s

St-t �5.75 �24.99 �26.01 �22.40 �3.30 �3.56 3.30 3.21
Ga 5.75 �14.36 �14.92 �11.11 3.73 3.67 5.56 5.54
Cl 24.99 14.36 �0.67 16.91 30.36 30.07 25.94 25.92
Cl-s 26.01 14.92 0.67 18.36 31.93 31.89 27.06 27.04
Cl/Cl-s 22.40 11.11 �16.91 �18.36 28.12 27.92 23.52 23.50
Ga/Cl 3.30 �3.73 �30.36 �31.93 �28.12 �1.86 5.46 5.27
Ga/Cl-s 3.56 �3.67 �30.07 �31.89 �27.92 1.86 5.83 5.63
St-t/Cl �3.30 �5.56 �25.94 �27.06 �23.52 �5.46 �5.83 �1.24
St-t/Cl-s �3.21 �5.54 �25.92 �27.04 �23.50 �5.27 �5.63 1.24

MCS order 7 4 2 1 3 6 5 8
MCS p-value 0.004 0.00 0.00 0.00 0.00 0.00 0.00 0.191

Note: Values of the Diks et al. (2010) test statistic. The test statistic is based on one-step ahead density forecasts for daily yield changes during the period
from January 5, 1995, until May 21, 2014. The length of the rolling estimation window set equal to R¼1000 observations. Consequently, the number of
forecasts is P¼5055. In each panel the (i,j)th entry is based on the score differences such that positive values of the test statistic indicate that the model in
column j achieves a higher average score than the model in row i. Acronyms used for referring to copula specifications: Ga – Gaussian; St-t – Student-t; Cl –
Clayton; Cl-s – Clayton survival; Cl/Cl-s – Clayton–Clayton survival mixture; Gaussian and Clayton mixture (Ga/Cl), Gaussian and Clayton survival mixture
(Ga/Cl-s), Student-t and Clayton mixture (St-t/Cl), Student-t and Clayton survival mixture (St-t/Cl-s). MCS order is the iteration, at which the model is
omitted from the MCS, while the MCS p-val is the corresponding p-value.



Table 4
Daily yield changes: pair-wise tests of equal predictive accuracy of copulas for selected regions of support, based on the censored likelihood scoring rule.

Copula St-t Ga Cl Cl-s Cl/Cl-s Ga/Cl Ga/Cl-s St-t/Cl St-t/Cl-s

Panel A: region D
St-t �3.42 �5.61 �6.10 �5.27 �2.77 �3.43 1.80 0.91
Ga 3.42 �5.45 �6.10 �4.58 0.84 �1.47 3.49 3.46
Cl 5.61 5.45 �4.44 2.16 5.99 5.49 5.61 5.60
Cl-s 6.10 6.10 4.44 4.66 6.24 6.13 6.10 6.10
Cl/Cl-s 5.27 4.58 �2.16 �4.66 5.01 4.59 5.27 5.26
Ga/Cl 2.77 �0.84 �5.99 �6.24 �5.01 �1.08 2.82 2.79
Ga/Cl-s 3.43 1.47 �5.49 �6.13 �4.59 1.08 3.50 3.46
St-t/Cl �1.80 �3.49 �5.61 �6.10 �5.27 �2.82 �3.50 �2.14
St-t/Cl-s �0.91 �3.46 �5.60 �6.10 �5.26 �2.79 �3.46 2.14
MCS order 7 5 2 1 3 6 4 8
MCS p-val 0.125 0.002 0.00 0.00 0.00 0.009 0.001 0.125
Panel B: region M
St-t �5.98 �8.67 �8.71 �8.23 �6.01 �6.01 0.52 0.68
Ga 5.98 �9.60 �9.64 �9.21 �5.23 �5.67 6.08 6.06
Cl 8.67 9.60 �0.31 9.21 9.63 9.63 8.72 8.71
Cl-s 8.71 9.64 0.31 9.25 9.67 9.67 8.76 8.75
Cl/Cl-s 8.23 9.21 �9.21 �9.25 9.24 9.23 8.29 8.28
Ga/Cl 6.01 5.23 �9.63 �9.67 �9.24 0.22 6.10 6.08
Ga/Cl-s 6.01 5.67 �9.63 �9.67 �9.23 �0.22 6.11 6.09
St-t/Cl �0.52 �6.08 �8.72 �8.76 �8.29 �6.10 �6.11 0.17
St-t/Cl-s �0.68 �6.06 �8.71 �8.75 �8.28 �6.08 �6.09 �0.17
MCS order 7 6 2 1 3 5 4 8
MCS p-val 0.737 0.00 0.00 0.00 0.00 0.00 0.00 0.879
Panel C: region U
St-t �0.84 �5.02 �5.62 �5.64 �0.86 �0.87 1.96 2.10
Ga 0.84 �5.13 �6.10 �5.47 �0.96 �1.33 0.97 0.97
Cl 5.02 5.13 3.57 3.44 5.15 5.15 5.02 5.02
Cl-s 5.62 6.10 �3.57 0.04 6.15 6.14 5.63 5.63
Cl/Cl-s 5.64 5.47 �3.44 �0.04 5.49 5.49 5.63 5.63
Ga/Cl 0.86 0.96 �5.15 �6.15 �5.49 �3.05 0.99 1.00
Ga/Cl-s 0.87 1.33 �5.15 �6.14 �5.49 3.05 1.00 1.00
St-t/Cl �1.96 �0.97 �5.02 �5.63 �5.63 �0.99 �1.00 0.43
St-t/Cl-s �2.10 �0.97 �5.02 �5.63 �5.63 �1.00 �1.00 �0.43
MCS order 7 6 3 1 2 5 4 8
MCS p-val 0.349 0.349 0.00 0.00 0.00 0.349 0.349 0.661

Note: Values of the Diebold–Mariano–West type test statistic tR;P defined in (1) based on the censored likelihood score (12) for the regions D, M and U with
the threshold r¼0.25. The test statistic is based on one-step ahead density forecasts for daily yield changes during the period from January 5, 1995, until
May 21, 2014. The length of the rolling estimation window set equal to R¼1000 observations. Consequently, the number of forecasts is P¼5055. In each
panel the (i,j)th entry is based on the score difference dcsltþ1 ¼ Scsl

j;tþ1ðytþ1Þ�Scsl
i;tþ1ðytþ1Þ such that positive values of the test statistic indicate that the model

in column j achieves a higher average score than the model in row i. Acronyms used for referring to copula specifications: Ga – Gaussian; St-t – Student-t;
Cl – Clayton; Cl-s – Clayton survival; Cl/Cl-s – Clayton–Clayton survival mixture; Gaussian and Clayton mixture (Ga/Cl), Gaussian and Clayton survival
mixture (Ga/Cl-s), Student-t and Clayton mixture (St-t/Cl), Student-t and Clayton survival mixture (St-t/Cl-s). MCS order is the iteration, at which the model
is omitted from the MCS, while the ‘MCS p-val’ is the corresponding p-value.
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structure between falling yields. In this respect, it is interesting to note that a common adoption of QE-like monetary
policies by the central banks of the G7 countries contributed to the dependence structure between negative yield changes.
Finally, the obtained results are sufficiently robust with respect to the choice of the cutoff value defining the regions.
In particular, our conclusions about the chief sources of the outstanding forecasting performance of the Student-t and
Clayton mixture copula (St-t/Cl) mostly hold.

We conclude this section with a brief description of the dynamics of the copula parameters for the case of the Student-t
and Clayton mixture specification. The richness of the problem is illustrated in Fig. 3 with three groups of correlations
between yield changes: the high correlation group (typified by the US–Canada and Germany–France pairs), the medium
correlation group (exemplified by the US and Canada paired with European countries), and the low correlation group
(composed of Japan paired with other G7 countries). This heterogeneity explains the inadequacy of a single parameter
Clayton family copulas (and the three-parameter Cl/Cl-s mixture) for the task of capturing the dependence structure
between yield changes. In the run-up to and during the 2007 financial crisis and the great recession, we observe increasing
dependence between yield changes. As shown in Fig. 4, this is reflected in the higher probability of yield changes visiting the
D region of support. Recall that the superior performance in this region, corresponding to jointly falling yields, is what
ensured the leading role of the Student-t and Clayton mixture copula. Fig. 5 contains the dynamics of the mixture parameter
of the Student-t and Clayton copulas. Note that the Clayton copula comes into play during the period of strong dependence
immediately before and during the latest economic recession.



Fig. 3. Rolling window estimates of the correlation matrix of the Student-t component of the Student-t and Clayton mixture copula. The size of the rolling
estimation window is R¼1000 observations. The legend labels are listed in descending order of the correlations on January 1, 2005, and partitioned into
groups based on the strength of correlations. The correlations are reported for one day ahead of the end of estimation window, which ranges from January
5, 1995, until May 21, 2014.
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Fig. 4. Rolling window estimates of the one-day-ahead probability of the yield differences jointly visiting region D of the support. The probabilities are
calculated in accordance with the Student-t and Clayton mixture copula specification and the SCOMDY model with a rolling estimation window of R¼1000
observations. The probabilities are smoothed with a 20-day moving average. The dark gray line is the probability of yield changes visiting region D defined
by the 0.30 cutoff; the black line is the probability of yield changes visiting region D defined by the 0.25 cutoff; the light gray line is the probability of yield
changes visiting region D defined by the 0.20 cutoff. The considered time period is from January 5, 1995, until May 21, 2014.
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5. Summary and conclusions

Many practical applications involving joint density forecasts of multivariate asset returns focus on a particular part of the
domain of support. Given that the dependence structure may vary, for example, with the sign and magnitude of changes, it
becomes imperative to identify the best forecast method for the targeted part of the distribution. Copula modeling allows
for a straightforward construction of a flexible multivariate distribution via their decomposition into the dependence
structure, represented by a copula function, and marginal distributions. Thus, copulas represent an indispensable
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Fig. 5. Rolling window estimates of the mixture parameter, which take the value of 1 for a pure Student-t copula and 0 for a pure Clayton copula. The size
of the rolling estimation window is R¼1000 observations. The parameter is smoothed using a 20-day moving average. The parameter is reported for one
day ahead of the end of estimation window, which ranges from January 5, 1995, until May 21, 2014.
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instrument in the arsenal of modern risk management. However, the multitude of their specifications poses the challenge of
selecting the best copula for forecasting risk under different types of market dynamics. This paper develops tests that take
on this challenge and provide a reliable solution as indicated by a Monte Carlo study of their power and size.

In this paper we have developed Kullback–Leibler Information Criterion (KLIC) based tests of equal (out-of-sample)
forecasting accuracy of different copula specifications in a selected region of the copula support. Proper scoring rules were
obtained by making use of censored and conditional logarithmic scoring rules. To highlight the importance of the suggested
tests, we have considered an application to the daily changes of yields on the 10 year benchmark government bonds of the
G7 countries. We discovered the origins of the dominating forecasting performance of the Student-t and Clayton mixture
specification across the full copula by considering the area of support corresponding to jointly falling yields. The negative
tail dependence contributed by the Clayton copula when mixed with the t-copula is crucial to obtain high forecasting
accuracy in periods of jointly falling yields.

Although throughout we have focused on one-step ahead forecasts, the methodology can easily be adjusted to the
context of multi-step ahead forecasts. In the application we have compared a number of copulas as well as some of their
mixtures. It might be possible to obtain better results by considering combinations of more than two copulas, but this is left
for future research.
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