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This paper connects variance–covariance estimation methods, Gaussian graphical models, and the grow-
ing literature on economic and financial networks. We construct the network using the concept of partial
correlations which captures direct linear dependence between any two entities, conditional on depen-
dence between all other entities. We relate the centrality measures of this network to shock propagation.
The methodology is applied to construct the perceived network of publicly traded Australian banks and
their connections to domestic economic sectors and international markets. We find strong links between
the big four Australian banks, real estate and other sectors of the economy, and determine which entities
play a central role in transmitting and absorbing the shocks.
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1. Introduction

The global financial crisis has called for a better understanding
of the vulnerabilities and risks of financial markets. Connections
between different segments of the market play an important role
in determining the extent and patterns of these risks. These inter-
connections can be studied using the tools of network theory.
Network modeling is a novel and rapidly developing field in social
sciences, economics, and finance (see e.g., Jackson, 2008; Allen and
Babus, 2009).

This paper brings together ideas from network theory, the
financial econometrics literature on variance–covariance model-
ing, and statistical literature on Gaussian graphical models
(GGM). The GGM are widely used for the reconstruction of net-
works when the actual network structure is unobservable. A
prominent example of this use is the biological literature on
networks of genes, proteins, etc. (e.g., Rice et al., 2005). These
methods are relatively new in economics and finance. We apply
the GGM to reconstruct the network of partial correlations
between different Australian banks, domestic economic sectors
and, international markets. We use network theory to study this
network and interpret its properties.

GGM are developed to visualize the conditional dependencies
between different elements of a multivariate random variable
through a graph of partial correlations (see Whittaker, 2009 for
detailed treatment). Partial correlations capture bi-variate linear
dependencies between any two elements of the random variable,
conditional on a set of all remaining elements. As we show, this
feature is useful to separate a direct dependence, between a pair
of economic sectors or entities, from indirect effects coming
through the remaining part of the network. For this reason, the
partial correlations are well suited for network representation.
The standard GGM literature focuses on the reduction of complex-
ity of the conditioning set from the constructed graph (so-called
Markov properties). However, our primary focus is on the adapta-
tion and interpretation of popular network-based measures in the
context of the graph of partial correlations.

Recent economic literature provides many examples of how
financial data can be described from the network perspective.1

The studies illustrate the complexity of relationships between
ali et al.
lov et al.
ers.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbankfin.2015.08.034&domain=pdf
http://dx.doi.org/10.1016/j.jbankfin.2015.08.034
http://www.cifr.edu.au
mailto:v.panchenko@unsw.edu.au
http://dx.doi.org/10.1016/j.jbankfin.2015.08.034
http://www.sciencedirect.com/science/journal/03784266
http://www.elsevier.com/locate/jbf


S242 M. Anufriev, V. Panchenko / Journal of Banking & Finance 61 (2015) S241–S255
financial entities and discover certain network properties which may
be important for the aggregate properties of the financial system. An
intuitive, but not always formalized, idea is that interdependencies
between the entities represent a channel of transmission of a shock.
Thus, discovering these interdependencies with the network
approach is useful for studying systemic risk, see review of early
contributions in Chinazzi and Fagiolo (2013) and recent studies of
Acemoglu et al. (2015), Glasserman and Young (2015) and Elliott
et al. (2014). Battiston et al. (2012) introduce the DebtRank which
is an example of a centrality measure of nodes within the network
of financial entities. High centrality of a node would reflect an
importance of the node in the shock transmission.

This paper is closely related to the recent work on reconstruct-
ing networks from time-series data by Billio et al. (2012), Dungey
et al. (2013), Barigozzi and Brownlees (2013), Diebold and Yilmaz
(2014), and, in the Australian context, Dungey et al. (2015). The
distinguishing feature of our study is that we are establishing the
links between the statistical concepts of correlations, partial corre-
lations, principal components and various centrality measures
from the network theory. Moreover, this is the first work mapping
the network of perceived financial dependencies between
Australian banks, other domestic sectors, and international mar-
kets. We use publicly available information on the share prices
and indices of the corresponding entities to reconstruct the net-
work of partial correlations between their returns. The returns
generally represent market-perceived changes in the value of these
entities. The reconstructed networks may be a useful tool for better
understanding the market and the dynamic spreading of shocks,
and, hence, may be used for policy and regulatory analysis.

We find that there are strong direct links between the big four
Australian banks, which are connected to the real economy, real
estate, and financial groups. The Australian market is also seen to
be strongly connected to the Asian market. The reconstructed net-
work can be partly explained by the network of technological input
requirements for the considered sectors.

The rest of this paper is organized as follows. Section 2 defines
the network of partial correlations. Section 3 discusses key net-
work measures and interprets them for the network of partial cor-
relations. In particular, we highlight a connection between the
eigenvalue centrality and the principal component analysis.
Section 4 details the estimation procedure. Section 5 applies the
network methods to uncover a perceived network of the Australian
banks including connections to local financial and real sectors, and
global markets, and demonstrate relevant policy examples. We
also compare the reconstructed perceived networks with the
actual networks of direct input requirements based on the input–
output tables. Section 6 concludes the paper.
2. Networks of partial correlations

Formally, a graph G ¼ ðV; EÞ is a structure consisting of a set of
nodes, V, and a set of edges, E. Every two nodes may or may not
be connected by an edge, edges may be directed or undirected,
and weighted or unweighted. Our focus here is on undirected
graphs and, hence, elements of an edge set E are unordered pairs
ði; jÞ of distinct nodes i; j 2 V. We are working with weighted graphs
where each edge has a non-zero weight wij assigned to it.

Following the literature on Gaussian graphical models (e.g.,
Whittaker, 2009), we define the network of partial correlations.
Let X denote an n-dimensional multivariate random variable and
the nodes of the graph G correspond to each element of X, i.e.,
V ¼ fX1;X2; . . . ;Xng. Let X�

ijVnfXi ;Xjg denote the best linear approxima-

tion of variable Xi based on all the variables except for Xi and Xj for
any pair i; j.
Definition. The partial correlation coefficient between Xi and
Xj;qXi ;Xj j VnfXi ;Xjg, is defined as the ordinary correlation coefficient

between Xi � X�
ijVnfXi ;Xjg and Xj � X�

jjVnfXi ;Xjg.

In other words, the partial correlation between Xi and Xj is
equal to the correlation between the residuals of the two linear
regressions: (1) Xi on a constant and a set of control variables,
which includes all variables in X except for Xi and Xj, and (2) Xj

on a constant and the same set of control variables as in the first
regression. Hence, the partial correlation measures linear depen-
dence between any two elements of X;Xi and Xj, for i– j, after con-
trolling for linear dependence with all other remaining elements in
V n fXi;Xjg. For the sake of brevity, we will use a shorter notation
qijj� for the partial correlation between Xi and Xj.

The edges of the network of partial correlations correspond to
the pairs of random variables with non-zero partial correlations,
E ¼ fði; jÞ 2 V � V j qi;jj� – 0g, and the edge weights to the corre-
sponding partial correlations, wij ¼ qijj�. Intuitively, the network
of partial correlations visualizes linear dependence between any
two random variables conditional on all other variables. When
the random variable X is multivariate normal, zero partial correla-
tion implies conditional independence of the corresponding ele-
ments. This statement holds for a more general case of an
arbitrary continuous marginal distribution for each element of X
when the dependence between the elements is characterized by
the Gaussian copula (see, e.g., Diks et al., 2010; Diks et al., 2014).

For better intuition behind the concept of partial correlations, it
is useful to show connections with linear regression. Project each
Xi; 1 6 i 6 n on the space spanned by the rest of the variables in
X as

Xi �mi ¼
X
j–i

bijðXj �mjÞ þ ei; ð1Þ

where mi is the unconditional mean of Xi and ei is a zero-mean
residual. Denote the variance–covariance matrix of the vector of
the residuals, e, as R. This matrix is not necessarily diagonal as e’s
may be correlated. The diagonal elements of R are the conditional
variances of the elements of X;VarðeiÞ ¼ VarðXi jV n fXigÞ. The
orthogonality condition, EðeiXjÞ ¼ 0; 8j– i; 1 6 i; j 6 n, implies that
regression coefficients are given by bij ¼ qijj�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðeiÞ=VarðejÞ

p
(see

Appendix A.1). It follows that qijj� ¼ signðbijÞ
ffiffiffiffiffiffiffiffiffiffi
bijbji

p
.

Partial correlations are also related to the (unconditional) vari-
ance–covariance matrix of X;X ¼ CovðXÞ. Define a concentration or
precision matrix as the inverse of a non-singular variance–covari-
ance matrix, K � X�1. The partial correlations can be expressed as

qijj� ¼
�kijffiffiffiffiffiffiffiffiffiffi
kiikjj

p ; ð2Þ

where kij is the ði; jÞ entry of K (see Appendix A.2). Furthermore,
each diagonal element of K is the reciprocal of a conditional vari-
ance, i.e., kii ¼ 1=VarðeiÞ, where ei is defined in Eq. (1).

Finally, the partial correlation can also be computed using the
inverse of R, the regular correlation matrix of X, by replacing the
kij; kii, and kjj entries in Eq. (2) with the corresponding entries of

R�1 (see Appendix A.3). The ith diagonal element of R�1 is the ratio
of unconditional variance of Xi;VarðXiÞ, to conditional variance of
Xi;VarðeiÞ. The proportion of variation in Xi as explained by all
the other elements can be defined, similarly to the regression’s
coefficient of determination, as

R2
i ¼ 1� VarðeiÞ

VarðXiÞ ; ð3Þ

and deduced from the diagonal elements of R�1. This measure can
be thought of as an endogenous network-induced variation of Xi.
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A graph with n nodes can be represented by the adjacency
matrix of size n� n. When the graph is undirected and weighted,
as in our case, the adjacency matrix is a symmetric matrix whose
ði; jÞ-entry is non-zero only if there is an edge connecting nodes i
and j, and the entry is given by the weight. As we will see in the
next Section, the adjacency matrix is a basis for other network-
based measures.

Let P denote the adjacency matrix of the graph of partial corre-
lations. The elements of this matrix are Pi;j ¼ qijj� for i– j and zeros
on the diagonal. From (2) we have

P ¼ I� D�1=2
K KD�1=2

K ; ð4Þ
where I is the identity matrix of size n;K is the concentration
matrix, and DK is the diagonal matrix composed of the diagonal ele-
ments of K. The diagonal elements of K are the inverse of the con-
ditional variances of the elements of X. Therefore,

DK ¼ diag k11; . . . ; knnf g ¼ diag
1

Varðe1Þ ; . . . ;
1

VarðenÞ
� �

¼ D�1
R ;

where DR is the diagonal matrix composed of the diagonal elements
of R.

Next, we show how the adjacencymatrix P relates to the system
of linear equations, Eq. (1). Introduce thematrix Bwith zeros on the
diagonal and bij in the ði; jÞ off-diagonal entry. Exploring the relation-
ship between qijj� and bij defined above, we find that B ¼ D1=2

R PD�1=2
R .

Then Eq. (1) can be rewritten in a matrix form as follows

X �m ¼ BðX �mÞ þ e ¼ D1=2
R PD�1=2

R ðX �mÞ þ e;

where m and e are the vectors of the means of X and the residuals,
respectively. While we should be careful about causal interpreta-
tion of this equation, it is useful to think about e’s as external shocks
influencing the system. Because Xi’s may have different conditional
variances, to compare the effects of the shocks we rescale the resid-
uals in such a way that all of themwould have unit conditional vari-
ance, e ¼ D�1=2

R e. It is important to emphasize that e’s are not
independent (neither are the entries of e).

We multiply both sides of the previous equation by D�1=2
R from

the left and introduce a rescaled variable x ¼ D�1=2
R ðX �mÞ. The

equation becomes

x ¼ Pxþ e: ð5Þ
Note that the rescaling for X is in terms of the conditional variance
as opposed to a more usual rescaling by the unconditional variance.
Intuitively, by using the conditional variance we remove the effect
of the variables endogenous to the network.

In the next section, wewill use the eigenvalues and eigenvectors
of matrix P. Note that P is the real symmetric matrix. Therefore, it
has a set of n linearly independent eigenvectors corresponding to
the real eigenvalues.2We order the eigenvalues by their absolute val-
ues as jk1j P jk2j P � � � P jknj. The spectral radius of the matrix P is
defined as qðPÞ ¼ jk1j, the largest absolute eigenvalue. It is important
to make the following assumption for further exposition.

Assumption 1. The spectral radius of the adjacency matrix of the
graph of partial correlations, P, is less than 1.

This Assumption is satisfied when all entries of P are non-
negative. Moreover, it holds more generally, when all the row sums
of the absolute values of the elements of P are less than 1. In other
words, Assumption 1 holds when partial correlation matrices exhi-
2 Note that the eigenvalues have different signs. It immediately follows from the
fact that the sum of all eigenvalues of P is equal to the trace of P, which is zero. As a
consequence, matrix P is indefinite. This is an important difference from the
correlation matrices, which are always positive semi-definite.
bit moderate dependence. In particular, this turned out to be true in
all our applications. Finally, we note that Assumption 1 is equivalent
to the condition that the smallest eigenvalue of P is larger than �1.
Formal proofs of these statements can be found in Appendix A.4.

We now demonstrate the usefulness of the network of partial
correlations for the systemic risk analysis, and its connection with
the network of correlations.

2.1. Interpretation of partial correlation network

In Section 5 we reconstruct the perceived financial networks of
the Australian banks, other sectors of the economy, and interna-
tional markets using publicly available information on the returns
of the corresponding bank shares and indexes. The returns reflect
market perception about the percentage change in the present
value of a company, sector, or market overall. By looking at the cor-
relations of the returns for some entities, we may uncover how the
market perceives joint changes in the value of these entities,
including any intermediate effects. The use of correlations in this
sense has been widely used in finance for optimal portfolio selec-
tion (Markowitz, 1952). However, if one wants to understand the
structure of the market and use it for, say, financial stability
analysis or optimal policy design, it is important to turn to partial
correlation analysis. Partial correlations can single out the direct
co-movements in the relative change of values between the pairs
of entities, while controlling for all other entities. By reconstructing
the network of partial correlations, we may observe how a unit
variance shock may spread through the network. From the per-
spective of the regulator, this allows identifying the most impor-
tant relations and focusing policy on these relations or mitigating
possible consequences of any large shocks to these entities.

It is important to emphasize at this point that with partial cor-
relations, it is not possible to establish the direction of causation.
The concept of Granger causality (Granger, 1969) can be used to
establish directional relationships within the VAR framework
(see, e.g., Billio et al., 2012). However, the presence of Granger
causality would imply predictability in returns which the market
should incorporate. Therefore, unless we turn to high frequencies,
it is hardly possible to detect substantial and stable linear Granger
causality in financial returns. Lower frequency cross-sectional
dependencies include Granger causalities accumulated at higher
frequencies (see, e.g., Barigozzi and Brownlees, 2013).

With this caution about causality in mind, we propose an
observational interpretation of system (5). The expected steady
state value of x is 0. Suppose that we observe a deviation in x.
We will now decompose the total observed deviation into a direct
effect given by unit-variance shock e and an indirect (endogenous
to the network) effect. An initial shock ei which directly hits node
Xi will also affect the immediate neighbors of Xi. For the network as
a whole, the expected effect of shock e on the immediate neighbors
is measured by Pe. The ith element of this vector, given byPn

j¼1qijj�ej, accumulates the effect of the initial shocks to all other
nodes reaching node Xi in one step. We call this a first-order effect.
The expected effect on the neighbors of the neighbors can be
computed as PðPeÞ ¼ P2e, which we call a second-order effect.

Generally, we define a kth-order effect as Pke. It gives the effect
of the initial shock after traveling k steps along the edges of the
network of partial correlations, summed over all possible walks.3

The total effect of the shock on x will now be
A walk in a graph is a sequence of (possibly repeated) nodes and edges that begins
and ends with nodes. A walk of length k has k edges. Thus, the kth order impact of the
initial shock ej on Xi is the sum over all possible walks of length k starting in node j
and finishing in node i of the products of all partial correlations along each walk,
times ej . The ith element of the vector Pke is then a sum of these kth order impacts
over all nodes (including i).
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eþ Peþ P2eþ � � � ¼
X1
k¼0

Pke; ð6Þ

when this sum converges. Assumption 1 is necessary and sufficient

for convergence,4 in which case
P

kP
k ¼ ðI� PÞ�1. Using Eq. (4), one

can see that ðI� PÞ�1, denoted by T, is equal to

T ¼ D�1=2
R XD�1=2

R ; ð7Þ

so that the total effect of the shock is given by Te. The matrix T is a
variance–covariance matrix of x, the rescaled X. Eq. (7) shows that it
is also the rescaled variance–covariance matrixX. It looks similar to
an ordinary correlation matrix, but, instead of using unconditional
variances of X for rescaling, conditional variances of X are used.

We have established that T transforms the initial shock into its
total effect on X. Instead, the matrix of partial correlations P
defines how shocks spill over on the immediate neighbors.
3. Network-based measures of centrality

The previous interpretation shows that the network of partial
correlations can be used to separate the direct and higher order
spillover effects of shocks. Understanding and measuring spillovers
by means of the partial correlation matrix, as opposed to limiting
attention to the variance–covariance matrix relevant for the total
effect of the shock, is important for a policy aiming to reduce
systemic risk. Some edges of the partial correlation network (intu-
itively, those with high weights) and, as a consequence, some
nodes (namely, those with many edges with high weights), may
play a higher role in these spillover effects. Network theory uses
various measures of centrality to measure the relative importance
of nodes in the graph.

There exist several different centrality measures that attempt to
evaluate the nodes’ positions on the graph. One of the simplest
centrality measures for a graph is degree centrality. For a weighted
graph, degree centrality is defined for each node by adding all
weights of the edges connected to the given node. In our case,
for the adjacency matrix P ¼ ðPi;jÞni;j¼1 in the partial correlation net-
work, the node’s degree is computed as

cDi ¼ P � 1 ¼
Xn
j¼1

Pi;j ¼
Xn
j¼1

qijj�;

where 1 is an n� 1 vector of ones, and cD is a vector of degree cen-
tralities. Intuitively, the nodes with high degree centrality (in abso-
lute value) are important for the transmission of the shock to/from5

the immediate neighbors because they have many edges and/or
edges with high weights.6
4 Note that this Assumption is equivalent to limk!1Pk ¼ 0. The ði; jÞ element of
matrix Pk sums, over all possible walks of length k from i to j, the products of partial
correlations of the edges of this graph along the walks. All these products converge to
1, but the number of walks explodes. Assumption 1 guarantees that the former effect
dominates the latter. It shows that our interpretation works whenever the values of
partial correlations are moderate, so that traveling over the network will sufficiently
dampen the shocks.

5 The direction of the shock is not explicitly observed because the network of
partial correlations is undirected.

6 Note that some entries of P may have a negative value, indicating that the sign of
the shock will be reversed for the corresponding nodes. If the node has some edges
with positive weights and some edges with negative weights, the effects will cancel
each other out, resulting in a small overall impact of the node. In this case, it is useful
also to consider �P, the element-wise absolute value of matrix P. For this matrix, the
degree centrality will indicate the importance of the node in the transmission of both
positive and negative shocks. In our application we find that the number of edges
with negative partial correlations is small and the numerical values of the negative
partial correlations are negligible. Therefore, we do not focus on centrality measures
for �P.
To analyze the higher order impacts of the initial shock, we
need to use self-referential centrality measures, i.e., when high
centrality is assigned to the nodes connected to other central
nodes. One such measure is eigenvector centrality, for which every
element cEi is proportional to

Pn
j¼1qijj�c

E
j , or, formally, vector cE is an

eigenvector of matrix P. Which of the n eigenvectors is taken as the
eigenvector centrality ultimately depends on the nature of the net-
work and resulting interpretation.7 We will argue now that for the
network of partial correlations, when the largest absolute eigenvalue
of P is unique, the corresponding eigenvector can be taken as the
eigenvector centrality.

Let us apply the operator P iteratively to an arbitrary non-zero
initial vector e0 2 Rn. The symmetric real matrix P has the
orthonormal basis fu1; . . . ;ung of the eigenvectors corresponding
to the eigenvalues jk1j > jk2j P � � � P jknj. Writing e0 in this basis

with coordinates fb1; . . . ; bng and then applying Pk, we obtain

Pke0 ¼ Pk
Xn
‘¼1

b‘u‘ ¼
Xn
‘¼1

b‘P
ku‘ ¼

Xn
‘¼1

b‘k
k
‘u‘

¼ b1k
k
1u1 þ

Xn
‘¼2

b‘

k‘
k1

� �k

u‘: ð8Þ

Since jk‘=k1j < 1 for all ‘ P 2, the last sum converges to 0 as k ! 1.

Therefore, the eigenvector u1 gives the asymptotic direction for Pke0
when k ! 1 for any e0 which is not orthogonal to u1. If we interpret
e0 as a vector of shocks affecting the values of nodes in the graph,
then the eigenvector u1 corresponding to the largest absolute eigen-
value k1 characterizes the asymptotic impact (k-th order when
k ! 1) of an initial shock on the nodes. This property allows us
to consider vector u1 as the eigenvector centrality measure, cE. As
any eigenvector is defined up to a multiplicative constant, the nom-
inal values of the elements of cE are not important by themselves.
The relative values of elements of this vector reflect the relative
asymptotic impact of the initial shock on the corresponding nodes.

In case of multiple largest absolute eigenvalues, the last sum in
Eq. (8) will not converge to zero. In such situations, the shock will
asymptotically belong to the space spanned by all the eigenvectors
corresponding to the largest absolute eigenvalues. Moreover, even
when there is a unique largest absolute eigenvalue, the convergence
of the last sum in (8) may be slowwhen the second largest absolute
eigenvalue is close to the first (see Section 11.1.1 in Newman, 2010).
It motivates the introduction of the p-eigenvector centrality space of
dimension p < n as the space spanned by the p eigenvectors
corresponding to the p largest absolute eigenvalues. When the
largest p absolute eigenvalues are large relative to the remaining
eigenvalues, but close to each other, this space will provide a better
asymptotic approximation for convergence of the initial shock.

This approach resembles the principle component analysis
(PCA), and the following proposition allows us to establish the link
between p-eigenvector centrality space for the matrix P and the
PCA applied to the matrix T defined in (7).

Proposition 1. Let k be an eigenvalue of the adjacency matrix P of the
graph of partial correlations with corresponding eigenvector u. Then
1=ð1� kÞ is the eigenvalue of matrix T, the variance–covariance
matrix of x, defined in (7), with the same corresponding eigenvector u.
Proof. The statement follows from the following chain of equiva-
lence relations:
7 The network literature typically works with non-negative matrices (i.e., having
non-negative entries). Non-negative matrices have a unique non-negative eigenvec-
tor and this vector is taken as the eigenvector centrality. As P is not necessarily non-
negative, such a criterion is not sufficient for us.
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Pu ¼ ku () u� D�1=2
K KD�1=2

K u ¼ ku

() D�1=2
K KD�1=2

K u ¼ ð1� kÞu
() D1=2

R X�1D1=2
R u ¼ ð1� kÞu

() T�1u ¼ ð1� kÞu () 1
1�ku ¼ Tu:

�

The last Proposition asserts that the matrix P has the same
eigenvectors as the rescaled variance–covariance matrix T, and
even if their eigenvalues differ, their ordering does not. If p largest
absolute eigenvalues are positive, the space to which the first p
principle components of T belong will coincide with the
p-eigenvector centrality space of P.

Finally, we discuss another centrality measure which is often
found relevant in the economic literature: the so-called Bonacich
centrality.8 As the eigenvector centrality, it is defined in a self-
referential manner but also reflects the degree centrality. Specifi-
cally, cBi ¼ a

Pn
j¼1qijj�c

B
j þ cDi . The weight a measures the importance

of the centrality of the neighbors with respect to one’s own degree
centrality. In matrix form, this definition reads

cB ¼ aPcB þ P � 1 () cB ¼ ðI� aPÞ�1P � 1;
where, as before, 1 is an n� 1 vector of ones and I is the identity
matrix of size n. When a ¼ 0 the Bonacich centrality is simply the
degree centrality, i.e, the first-order effect of the unit shock e ¼ 1.
For any a 6 1, Assumption 1 allows us to rewrite the Bonacich cen-
trality as cB ¼ P � 1þ aP2 � 1þ a2P3 � 1þ � � �. However, intermediate
values of a 2 ð0;1Þ are not particularly important in our application.9

When a ¼ 1, the Bonacich centrality is equal to the cumulative of the
first-, second-, and all higher order effects of the unit shock e ¼ 1, as

cB ¼ ðI� PÞ�1P � 1 ¼ P � 1þ P2 � 1þ P3 � 1þ � � � ¼ T � 1� 1; ð9Þ
where the latter equality stems from Eq. (6). In this way we estab-
lish a direct link between Bonacich centrality and the initial vari-
ance–covariance matrix, X, via its rescaling T.

To summarize, in this section we introduced three measures of
centrality. Each measure highlights a particular aspect of shock
propagation. Degree centrality identifies the nodes relevant for
transmission of shocks to the immediate neighbors and for the
first-order effects of unit shock. Eigenvector centrality (and, more
generally, p-eigenvector centrality space) is relevant for describing
the asymptotic distribution of shocks. Bonacich centrality identi-
fies the nodes hit by a cumulated shock.
10 There are other models for conditional volatility, e.g., stochastic volatility models
(Kim et al., 1998) or recently introduced GAS models (Creal et al., 2013). Even within
the class of ARCH models one may choose a number of different volatility
specifications and make various distributional assumptions (see, e.g., Bao et al.,
2007). These choices are important in risk management and conditional volatility
forecasting (Diks et al., 2011), but not in our context.
11 Another popular and more flexible specification is the dynamical conditional
correlations (DCC) model of Engle (2002). We have implemented this specification as
4. Estimation procedure for time series

In Section 2 we have defined the network of partial correlations
for an n-variate random variable. Now we show how to construct
partial correlations from an n-variate time series process. This is
done by modeling serial dependence possibly present in time ser-
ies data so that after filtering it out we obtain a serially indepen-
dent n-variate random variable.

In our application we will use the financial return series. A well-
known stylized fact of the financial time series is volatility
8 Acemoglu et al. (2012) derive the expression for Bonacich centrality in the
context of intersectoral (input–output) network. Ballester et al. (2006) relate the
Bonacich centrality to the actions in the Nash equilibrium of noncooperative game.
The definition given here is a special case of the measure proposed in Bonacich
(1987). There, for the network with adjacency matrix A, the centrality is defined as
cBða; bÞ ¼ bðI� aAÞ�1A � 1. The constant b scales the centralities of all the nodes and
here we assume b ¼ 1.

9 The Bonacich centrality measure was introduced for social networks where the
edges are directly observed and the cumulative effect of the interactions is of interest.
Dampening is a reasonable assumption for this setup. In our case, the network of
partial correlations is obtained from the variance–covariance matrix, which already
gives us the cumulative effect. The dampening is already accounted for in matrix P.
clustering. GARCH-type specifications (see, e.g., Bollerslev et al.,
1992) are typically used to model conditional volatility.10 There
are many multivariate GARCH specifications available (see a survey
of Bauwens et al., 2006), but the most flexible multivariate models
require estimating an infeasibly large number of parameters. We
select a parsimonious specification, the constant conditional correla-
tions (CCC) model by Bollerslev (1990).11 In the CCC model, the con-
ditional means and conditional variances are modeled separately for
each dimension using univariate models, and then correlations are
estimated from the filtered series. Denote an n-variate time series
as Yt ¼ ðY1;t ; . . . ;Yn;tÞ0. Formally the model is specified as

Yt ¼ lt þ
ffiffiffiffiffiffi
Ht

p
�t ; ð10Þ

where lt ¼ ðl1;t ; . . . ;ln;tÞ0 is a specification of the conditional mean,
Ht ¼ diagðh1;t; . . . ;hn;tÞ is the conditional variance, and
�t ¼ ð�1;t; . . . ; �n;tÞ0 are the standardized innovations, assumed to be
serially independent, and identically normally distributed with each
element having zero mean and unit variance, but cross-sectionally
dependent, with a constant correlation matrix R. For simplicity,
we assume ARMA(1,1) and GARCH(1,1) specifications for the condi-
tional means and variances, respectively,12 so that

li;t ¼ ci þ /iYi;t�1 þ hiðYi;t�1 � li;t�1Þ;
hi;t ¼ xi þ aiðYi;t � li;tÞ2 þ cihi;t�1:

The correlation matrix can now be estimated from the estimates of

the standardized innovations as bR ¼ 1
T

PT
t¼1
b�tb�0t , whereb�i;t ¼ ðYi;t � bli;tÞbh�1=2

i;t and T is a sample size.

From the correlationmatrix bR, the matrix of partial correlations,bP, is obtained using Eq. (2). If T is small and the number of consid-

ered variables n is large, this procedure may become unstable as bR
may be ill-conditioned.13 In this case shrinkage or penalized maxi-
mum likelihood estimators are handy. Given that our sample size is
sufficiently large relative to the matrix dimension, we do not experi-
ence this problem. However, as a robustness check we implement a
shrinkage-based glasso estimator by Peng et al. (2009) and report
these results in Appendix E.

5. Empirical application

The network setup described above may be applied in many dif-
ferent contexts. In this section we use this setup to uncover the
perceived network of the Australian banks and industries. We
use the term ‘‘perceived” to emphasize that our analysis is based
solemnly on the returns of publicly traded banks and sectors,
well, but the daily changes in partial correlations were very small relative to the
overall average level. The estimates of the partial correlations we obtained with the
DCC model were similar to those obtained with the CCC model.
12 Formal model selection criteria, e.g., AIC, can be used to choose an optimal order
for ARMA and GARCH processes. Typically, parsimonious low-order models are
selected. Normality of the standardized innovations may also be relaxed (Lee and
Long, 2009). Note that in our specific application, conditional mean and volatility
filtering are not important in the sense that the partial correlations obtained from the
raw returns are similar to those obtained after ARMA(1,1)-GARCH(1,1) filtering in the
CCC model.
13 The conditioning number for a symmetric positive definite matrix is defined as
the ratio of its maximum and minimum eigenvalues, k ¼ kmax=kmin. In case of the
large conditioning number, the matrix is said to be ill-conditioned and the
computation of its inverse is subject to large numerical errors (Belsey et al., 1980).
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Fig. 1. Network of partial correlations of the Australian banks and other sectors. Full sample of 3600 days was used for estimation.

14 The absolute values of all negative entries were far below this threshold, so that
all shown edges have positive weights.
15 BoQ large exposures to Property and Construction sectors were around 80% in
2011–2008 as reported in their presentations to investors. Source: http://www.
boq.com.au/shareholder_investor.htm
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and can reveal the network of connections implied only by the
market-driven return co-movements.

Our sample spans the period from 6 November 2000 to 22
August 2014 and was obtained from Datastream with 3600 daily
observations in total. We have identified 8 publicly traded banks
in the most recent period: the ‘‘big four” (ANZ, CBA, NAB, Westpac),
two regional banks (Bank of Queensland, and Bendigo and Adelaide
Bank) and two large financial groups providing banking services
among others (Suncorp and Macquarie group). We also look at
the index returns of two major financial sub-sectors other than
banking: Insurance and Real Estate. Additionally, we include 9
major sectors of the Australian economy, i.e., Basic materials,
Industrials and others. The sectoral classification is based on the
Industry Classification Benchmark and is provided by Datastream
(see Appendix B for details). Finally, we include the Datastream
Asian market index, which includes major Asian companies, given
the region’s close links to the Australian economy.

Initially the CCC model was estimated using the full 2000–2014
sample of 3600 days. Later we divided the sample into two
subsamples of roughly equal lengths: ‘‘pre-2008” covering
2000–2007 with 1868 observations and ‘‘post-2008” covering
2008–2014 with 1732 observations. These may be thought of as
pre-crisis and post-crisis subsamples, respectively.

Appendix C reports the matrices of correlations, bR, and partial

correlations, bP, for the full sample. There are multiple instances
when two entities with relatively high correlation exhibit low
partial correlation. For example, the correlation between NAB
and Westpac is 0.65, whereas the partial correlation is only 0.1,
indicating that NAB and Westpac have relatively strong indirect
connections.

Fig. 1 shows the reconstructed network of partial correlations.
The thickness of the edges corresponds to the strength of the par-
tial correlations. For improved visibility, we omit edges corre-
sponding to partial correlations smaller than 0.075 by absolute
value.14 The banks and other financial institutions are collected in
the lower part of the graph. We notice strong partial correlations
between the big four banks and their links with other banks, and with
the financial and real economy sectors. Interestingly, the Macquarie
group acts as a link between the banking sector and the real
economy and Asia. This is likely due to the fact that Macquarie is the
largest Australian investment bank, which provides M&A advisory
services and has a large presence in the Asian region. ANZ and Bank
of Queensland have strong direct links with the Real Estate subsec-
tor. Bank of Queensland consistently reported large exposures con-
centrated in Real Estate.15 The regional banks, Bank of Queensland
and the Bendigo and Adelaide Bank, have a strong direct link. The
former is directly linked with NAB, while the latter is directly linked

http://www.boq.com.au/shareholder_investor.htm
http://www.boq.com.au/shareholder_investor.htm
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Fig. 2. Evolution of the network of partial correlations (upper panels) and of the Input–Output network (lower panels) of the Australian economy.
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with the Macquarie group and Suncorp.16 Suncorp operates both
insurance and banking businesses, which explains its links with
the Insurance sector and other banks. The Industrials and Consumer
Services sectors seem to be in the center of the Australian economy.
The Asian market influences the Australian economy primarily
through Basic materials, Oil & Gas, and Consumer Services.17
16 Possible explanations for some of these links may stem from a proposed, but not
realized, merger between the Bendigo and Adelaide Bank and BoQ in 2007 (source:
http://www.boq.com.au/uploadedFiles/BOQ_merger_proposal_Investor_Presenta-
tion.pdf) and the fact that the Bendigo and Adelaide Bank acquired Macquarie Group’s
margin lending portfolio in 2009 (source: https://www.macquarie.com/mgl/com/
news/2009/20090108a.htm).
17 We also considered other major international markets such as the European and
North American markets. However, the trading hours of the Australian market and
these international markets do not overlap. As a result, in our network the
international markets were strongly linked with the Asian market and had negligible
links with all the nodes of Australian economy.
The two upper panels in Fig. 2 show the networks of partial cor-
relations for pre-2008 and post-2008 subsamples. We notice that
some connections have changed substantially pre- and post-
2008. Note that the estimates for subsamples are subject to a
higher estimation noise due to a smaller sample size compared
to the full sample. Interestingly, the interbank connections and
connections between the banks and other sectors have increased
post-2008. At the same time we note a decrease in the central role
of Basic Materials and an increase in the central role of Industrials
post-2008.

We suggested reasons for several strong links between the
financial entities in the network of partial correlations. The
observed connections between sectors may also arise from inter-
dependencies induced by technological processes. For illustration
purposes we provide an example of an economic network captur-
ing these interdependencies, namely the network based on the

http://www.boq.com.au/uploadedFiles/BOQ_merger_proposal_Investor_Presentation.pdf
http://www.boq.com.au/uploadedFiles/BOQ_merger_proposal_Investor_Presentation.pdf
http://https://www.macquarie.com/mgl/com/news/2009/20090108a.htm
http://https://www.macquarie.com/mgl/com/news/2009/20090108a.htm


Table 1
Centrality measures for the network of partial correlations.

R2 Degree Eigenvector Bonacich Bonacich Bonacich

full full full full pre 2008 post 2008

ANZ 0.660 1 1.074 4 1.000 1 23.481 1 13.212 2 32.294 3
Westpac 0.646 2 1.056 6 0.968 2 22.759 3 12.454 4 31.993 4
Industrials 0.621 4 1.363 1 0.967 3 23.478 2 12.111 7 40.957 1
NAB 0.618 5 1.063 5 0.932 4 21.993 4 11.319 10 31.947 5
CBA 0.609 6 0.995 8 0.906 5 21.333 5 12.362 6 29.240 6
Basic Materials 0.623 3 1.121 3 0.877 6 21.189 6 15.276 1 28.138 8
Consumer Svs 0.557 8 1.221 2 0.831 7 20.258 7 11.858 8 34.707 2
Oil & Gas 0.578 7 0.971 9 0.795 8 19.204 8 11.484 9 28.156 7
Insurance 0.490 9 1.010 7 0.743 9 17.975 9 12.494 3 23.976 10
Macquarie 0.469 10 0.851 10 0.713 10 17.031 10 10.238 11 23.117 11
Asia Market 0.451 11 0.793 13 0.665 11 15.993 11 9.161 13 24.890 9
Real Estate 0.395 12 0.813 11 0.615 12 14.818 12 9.679 12 19.196 15
Suncorp 0.377 13 0.740 17 0.591 13 14.135 13 8.888 14 18.485 16
Bank of Qlnd. 0.365 14 0.741 16 0.570 14 13.676 14 7.164 15 19.419 14
Bend&Ad.Bank 0.365 15 0.799 12 0.564 15 13.597 15 6.801 16 20.748 13
Utilities 0.350 17 0.766 15 0.543 16 13.210 16 6.680 17 21.128 12
Health Care 0.351 16 0.787 14 0.526 17 12.874 17 12.373 5 14.632 18
Consumer Gds 0.217 18 0.504 18 0.363 18 8.888 18 6.168 18 17.513 17
Technology 0.159 20 0.432 20 0.306 19 7.472 19 4.711 20 11.205 19
Telecom 0.167 19 0.464 19 0.304 20 7.453 20 5.472 19 9.764 20
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flows of goods and services between the sectors. The two lower
panels of Fig. 2 show the IO networks, which reflect the direct tech-
nological requirements and are derived from the Input–Output
tables for the tax years 2006–2007 and 2009–2010, respectively.18

These periods roughly correspond to the pre-2008 and post-2008
subsamples of our primary data. The nodes in the networks are
sectors of the Australian economy that we matched closely to the
Datastream sectoral classification used for the partial correlation
network. All banks are included in the Financials sector. The IO net-
work is directed and weighted, with an edge from sector A to sector B
carrying the weight equal to the dollar amount of sector A produc-
tion required to produce a one dollar output of sector B. Industrials
is at the center of the IO network, as in the network of perceived
correlations based on the sector returns. The Financials sector is con-
nected to Real estate, Industrials and Insurance. On both networks
the Basic Materials sector is linked with Oil & Gas and Industrials.19

In addition to graphical representations of the network of par-
tial correlations, we compute network-based centrality measures
which help to identify the most important nodes. Table 1 reports
these measures for all economic entities. The first measure is R2

as defined in (3), which is the proportion of variation in the returns
explained by the returns of all other entities in the network. The
remaining measures are the degree centrality, the eigenvector
centrality,20 and the Bonacich centrality with a ¼ 1, discussed in
Section 3. Next to each measure we report its ranking in the
descending order. The rows are ordered according to the eigenvector
centrality for the full sample. All measures are reported for the full
sample, and for Bonacich centrality we additionally report the values
for pre- and post-2008 samples (the other measures for these
periods are reported in Appendix D). We notice that the ranking
for the full sample is similar for all the considered measures. The
18 Source: Australian Bureau of Statistics, cat. No. 5209.0.55.001 – Australian
National Accounts: Input–Output Tables, for the tax years 2006–2007, 2009–2010.
19 The input–output analysis has a long history in economics (see Leontief, 1987).
There has been a recent surge of interest in looking at an economy as a linked web of
production units (see e.g., Acemoglu et al., 2012; Carvalho, 2014) with an obvious
connection to the input–output analysis and the network theory. As our paper is
focused on the network of partial correlations, we do not go beyond a simple
illustration of the IO network.
20 The largest absolute eigenvalue is distant from the rest of the eigenvalues. (The
three largest absolute eigenvalues are k1 ¼ 0:95; k2 ¼ 0:68 and k3 ¼ �0:60.) There-
fore, we focus only on the eigenvector centrality as opposed to the p-eigenvector
centrality space with p > 1. We normalize the eigenvector corresponding to the
largest absolute eigenvalue by fixing its largest component to 1.
eigenvector centrality and the Bonacich centrality measures have
the closest ranking similarity with only one different entry.

Using all four measures, ANZ seems to have the most central
position. The big four banks together with Industrials have the
highest centrality using the full sample. This indicates the impor-
tance of the banking sector in shock transmission. Interestingly,
Macquarie, which seems to be rather central visually on the full
sample and especially post-2008 (Figs. 1 and 2b), has moderate
centrality measures. This is due to the relatively small weights of
its edges, i.e., relatively small partial correlations.

When we compare the pre- and post-2008 periods overall, we
notice a significant increase in the network effects. Indeed, the
average R2 of all entities increases from 0.34 pre-2008 to 0.54
post-2008. Similarly, the average Bonacich centrality increases
from 10 to 24. Interestingly, Basic Materials shows the highest cen-
trality pre-2008, and Industrials becomes the most central post-
2008. The big four banks remain highly central in both periods.
Moreover, their levels of Bonacich centrality increase dramatically
post-2008 indicating higher network effects of the banks.

Finally, let us briefly discuss the results based on the glasso
method reported in Appendix E. Due to shrinkage we notice
substantially lower values of correlations and somewhat reduced
partial correlations in comparison to the baseline case. However,
the centrality-based ranking is very similar.
5.1. Policy examples

Suppose a policy-maker wishes to lower the total effect of a
shock to the economic system in the most effective way. We can
measure the total effect of a unit exogenous shock affecting all
entities to any specific entity in the system with the Bonacich cen-
trality measure. Using the centrality measures in Table 1, it is easy
to identify that ANZ is the most central in the system (based on the
full sample).

Let us assume that a policy-maker implements a set of mea-
sures reducing the partial correlations of all entities connected
with ANZ by 10 percent. We compute that, in this case, the Bona-
cich centrality measure of ANZ will be reduced by 33 percent from
about 23 to 15.3. Moreover, the average Bonacich centrality of all
big four banks will be reduced by 31 percent from 22.4 to 15.4,
while the average Bonacich centrality of the system will be
reduced by 24 percent from 16.5 to 12.5.
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Now, let us check what will happen if a policy-maker were to
focus on an important, but less central entity, say the Macquarie
group, and reduced its partial correlations by 10 percent. The
Bonacich centrality of the Macquarie group would reduce by 23
percent, the average Bonacich centrality of the big four banks
would be reduced by 15 percent and the average Bonacich central-
ity of the whole system would be reduced by 15 percent, which is
smaller compared to the optimal policy targeting the most central
entity. Focusing on the least central entity such as the Telecom sec-
tor and reducing all its connections by 10 percent would reduce
the average Bonacich centrality of the system by only 3.5 percent.

It is important to mention that the policy examples considered
above are rather stylized and are given merely as an illustration of
possible use for the discussed centrality measures. We have only
considered the benefits of the policy. However, the costs of reduc-
ing the connections of a highly central entity may be substantially
higher than the cost of reducing the connections of a less central
entity. The centrality measures along with the networks of partial
correlations may be used as complementary indicators guiding
policy-makers.

6. Concluding remarks

In this paper we linked various methods for reconstructing the
partial correlation networks, established the connections between
the theoretical network measures and principal component analy-
sis, and applied the methodology to reconstruct the implied net-
works of partial correlations between the relative change in
value of the Australian banks, other domestic sectors, and interna-
tional markets. We investigated the evolution of the networks over
time and computed network-based measures for the considered
entities.

We found strong direct links between the big four Australian
banks and their connection to the real economy via financial ser-
vices. We demonstrated that the reconstructed network may be
somewhat explained by the IO network. A more formal comparison
of the perceived partial correlation network and directly observed
networks (such as the IO network or the network of interbank
exposures) can be an interesting direction for further research.

Appendix A. Properties of partial correlations

This Appendix collects the results on partial correlations which
are used in this paper; most of them are mentioned in Section 2.
Many results about partial correlations can be found in Chapter
13 of Bühlmann and Van De Geer (2011), Chapter 17 of Hastie
et al. (2009) and Chapter 5 of Whittaker (2009). We selected here
the results we need in this paper and adopted them to our
notation.

First, we reproduce the definition. Let X be the multivariate ran-
dom variable with elements X1; . . . ;Xn. Let X

�
ijj� denote the best lin-

ear approximation of variable Xi based on all the variables except
for Xi and Xj for any pair i; j.

Definition. The partial correlation coefficient between Xi and Xj

denoted by qijj� is defined as the ordinary correlation coefficient
between Xi � X�

ijj� and Xj � X�
jij�.

Without loss of generality we can assume that all the elements
of X have zero mean.

For the sake of notation simplicity, the proofs will be focused on
random vectors X1 and X2. We denote �12 ¼ X1 � X�

12j� and
�21 ¼ X2 � X�

21j� the elements of X1 and X2 orthogonal to the space
spanned by the remaining random variables X3; . . . ;Xn. By defini-
tion the partial correlation coefficient between X1 and X2 is
q12j� ¼
Eð�12�21Þffiffiffiffiffiffiffiffiffiffi
E�212

q ffiffiffiffiffiffiffiffiffiffi
E�221

q :
A.1. Connection with linear regression

To get representation (1) we project X1 on all the remaining ele-
ments of X and also project X2 on all the remaining elements of X
(recall that in this appendix the variables are already transformed
to have zero mean):

X1 ¼ b12X2 þ b13X3 þ � � � þ b1nXn þ e1
X2 ¼ b21X1 þ b23X3 þ � � � þ b2nXn þ e2:

ð11Þ

We will assume that the elements of X are linearly independent and
so the projection errors e1 and e2 are not constant. The next result
establishes the link between E�212, the variance of the projection
error when X1 is projected on the space spanned by X3; . . . ;Xn,
and Ee21, the variance of the projection error when X1 is projected
on the space spanned by X2;X3; . . . ;Xn. The latter is called the con-
ditional variance of X1 in the main text.

Lemma. Assume the orthogonality conditions Eðe1XiÞ ¼ 0 for all i – 1
and Eðe2XiÞ ¼ 0 for all i – 2. Then

E�212 ¼ Ee21
1� b12b21

:

Proof. Using several times the orthogonality of �12 to the space
spanned by X3; . . . ;Xn and substituting X1 and X2 from (11), we
obtain that

E�212 ¼ EðX1�12Þ ¼ E ðb12X2 þ e1Þ�12ð Þ ¼ b12EðX2�12Þ þ Ee21
¼ b12E ðb21X1 þ e2Þ�12ð Þ þ Ee21 ¼ b12b21E�

2
12 þ Ee21:

At the last step we used Eðe2�12Þ ¼ 0 which holds due to the orthog-
onality conditions for e2. Note that �12 ¼ X1 � X�

12j� is a linear combi-
nation of X1;X3, . . ., Xn.

The required result follows now from the equality derived
above. Note that b12b21 – 1, as otherwise Ee21 ¼ 0. But this would
contradict the assumption of linear independence of X1; . . . ;Xn. h
Proposition 2. Assume the orthogonality conditions Eðe1XiÞ ¼ 0 for
all i – 1 and Eðe2XiÞ ¼ 0 for all i – 2 in (11). Then

b12 ¼ q12j�

ffiffiffiffiffiffiffiffi
Ee21
Ee21

s
¼ q12j�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðe1Þ
Varðe2Þ

s

Proof. Let’s compute Eðe1�21Þ. On the one hand, we can express e1
from (11) and due to orthogonality of �21 to X3; . . . ;Xn we get

Eðe1�21Þ ¼ EðX1�21Þ � b12EðX2�21Þ:
On the other hand, �21 ¼ X2 � X�

21j� is a linear combination of
X2; . . . ;Xn and e1 is orthogonal to all these vectors. Hence,
Eðe1�21Þ ¼ 0 and therefore

b12 ¼ EðX1�21Þ
EðX2�21Þ ¼

E ðX�
12j� þ �12Þ�21

� �
E ðX�

21j� þ �21Þ�21
� � ¼ Eð�12�21Þ

E�221
¼ q12j�

ffiffiffiffiffiffiffiffiffiffi
E�212
E�221

s
;

where at the last step we used the definition of the partial correla-
tion. The previous lemma implies that the ratio of variances of �12
and �21 is the same as the ratio of variances of e1 and e2. It completes
the proof. h
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From the last Proposition by symmetry we derive that

b12b21 ¼ q2
12j� () q12j� ¼ signðb12Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b12b21

p
Since correlation coefficient is always between �1 and 1, it follows
(see the previous Lemma) that b12b21 < 1 and that Ee21 < E�212.

These results hold for any i and j and allow us to establish a link
between the matrix of partial correlations, P, and the matrix of lin-
ear coefficients in system (1), B. (Both matrices have zeros on the
diagonal.) In the main text we defined the diagonal matrix
DR ¼ diag Varðe1Þ; . . . ;VarðenÞf g. The result of Proposition 2 implies
that B ¼ D1=2

R PD�1=2
R . With this result we can directly obtain system

(5) which played a crucial role in our separation of the first-order
effect of the shock from the total effect of the shock.

A.2. Connection with concentration matrix

To obtain a useful characterization of partial correlation, we
investigate the elements of the concentration matrix K ¼ X�1.
Without loss of generality, we will focus only on the first row
and the first column of this matrix.

Let X denote the matrix corresponding to the multivariate ran-
dom variable X. The columns of X are the random vectors X1, . . ., Xn.
Let X�1 denote the matrix whose columns are the random vectors
X2, . . ., Xn. Consider the first equality in (11), and write it as
X1 ¼ X�1bþ e1, where b ¼ ðb12 � � � b1nÞT . Using the orthogonality
condition, we obtain from the normal equations that

b ¼ ðEðXT
�1X�1ÞÞ�1

EðXT
�1X1Þ: ð12Þ

The next result exploits the block structure of the variance–covari-
ance matrix of X.

Lemma. Variance–covariance matrix of X can be represented as
follows

X ¼ EðXTXÞ ¼ 1 bT

0 I

 !
Varðe1Þ 0

0 EðXT
�1X�1Þ

� �
1 0
b I

� �
Proof. This can be checked by direct computation. For example,
variance of X1 is

EðXT
1X1Þ ¼ E ðbTXT

�1 þ eT1ÞðX�1bþ e1Þ
� �

¼ bTEðXT
�1X�1Þbþ Varðe1Þ

which is exactly the upper left element from the right-hand side of
the equality. Also, the row vector of covariances of X1 with the
remaining vectors is

EðXT
1X�1Þ ¼ E ðbTXT

�1 þ eT1ÞX�1

� �
¼ EðbTXT

�1X�1Þ

which coincides with the upper right element of the right-hand
side. h

Using the decomposition of X derived in the previous Lemma
we can express the concentration matrix, K ¼ X�1 in the block
form as well:

X�1 ¼ 1 0
b I

� ��1 1
Varðe1Þ 0

0 EðXT
�1X�1Þ

� ��1

0@ 1A 1 bT

0 I

� ��1

¼ 1 0
�b I

� � 1
Varðe1Þ 0

0 EðXT
�1X�1Þ

� ��1

0@ 1A 1 �bT

0 I

� �

¼
1

Varðe1Þ � 1
Varðe1Þ b

T

� 1
Varðe1Þ b

1
Varðe1Þ bb

T þ EðXT
�1X�1Þ

� ��1

0@ 1A
Studying the elements in the first row of this matrix we obtain the
following results for the concentration matrix. The upper left ele-
ment, k11 ¼ 1=Varðe1Þ. The second element in the first row
k12 ¼ �b12k11 which using Proposition 2 can be rewritten as

k12 ¼ �b12k11 ¼ �q12j�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðe1Þ
Varðe2Þ

s
k11 ¼ �q12j�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k11k22

p
:

Expressing the partial correlation from the equation we obtain an
instance of (2). In general, the following holds.

Proposition 3. The on-diagonal elements of the concentration matrix
K are given by

kii ¼ 1
VarðeiÞ : ð13Þ

The off-diagonal elements of the concentration matrix K are
proportional to the negative of the corresponding partial correlations.
Namely, Eq. (2) holds

qijj� ¼
�kijffiffiffiffiffiffiffiffiffiffi
kiikjj

p ;

The last result in the matrix form is Eq. (4).
A.3. Connection with the inverse of correlation matrix

We use the matrix notation. Let DX be the diagonal matrix
composed of the diagonal elements of X. Then, by definition, the
correlation matrix of X, denoted as R can be written as

R ¼ D�1=2
X XD�1=2

X . Therefore,

R�1 ¼ D1=2
X KD1=2

X :

Thus, ði; jÞ element of matrix R�1 is kij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXiÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXjÞ

p
. With such

proportionality to the elements of K, the partial correlations can
also be computed if in Eq. (2) the elements of K are substituted
by the elements of R�1. Using (13) we find that the diagonal ele-
ments of R�1 are VarðXiÞ=VarðeiÞ.

A.4. Spectrum of matrix of partial correlations

Interpretation of the network of partial correlations given in
Section 2.1 and discussion in Section 3 relies on Assumption 1. This
Assumption says that, qðPÞ, the spectral radius (i.e., the largest
absolute eigenvalue) of matrix P is less than 1.

It is well known (see, e.g., Meyer, 2000, page 618) that this
Assumption is equivalent to each of the following:

� the convergence of a so-called Neumann series,
Iþ Pþ P2 þ � � � ;
which then is equal to ðI� PÞ�1.

� limk!1Pk ¼ 0, which is a zero-matrix.

The former fact is used in deriving Eq. (6), and thus this Assump-
tion is crucial for our interpretation. The latter fact is mentioned
in footnote 4.

While Assumption 1 is often made in the literature on partial
correlations (see e.g., Malioutov et al., 2006), it is important to
ask when it is satisfied. The following general result can be used
to derive sufficient conditions.

Proposition 4. For square matrix A it holds that qðAÞ 6 kAk for every
matrix norm.



Table 2
Matrix of correlations.

Table 3
Matrix of partial correlations.
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The elementary proof of this result can be found in page 497 of
Meyer (2000). Since the largest absolute row sum, maxi

P
jjaijj, is a

matrix norm, we can conclude that when all the absolute row sums
in P are less than 1, Assumption 1 is satisfied.

Other sufficient conditions can be found, using the fact that P is
the matrix of partial correlations.
Lemma. All eigenvalues of the matrix of partial correlations are less
than 1.

Proof. In Proposition 1 we establish a one-to-one relation between
eigenvalues of P and the eigenvalues of a certain invertible
variance–covariance matrix. Namely, if k is the eigenvalue of the



Table 4
Centrality Measures for the Network of Partial Correlations based on pre 2008 sample.

R2 Degree Eigenvector Bonacich

Basic Materials 0.553 1 1.377 1 1.000 1 15.276 1
ANZ 0.532 2 1.015 7 0.889 2 13.212 2
Westpac 0.510 3 0.955 8 0.839 3 12.454 4
CBA 0.474 4 1.041 6 0.824 4 12.362 6
Insurance 0.427 8 1.098 3 0.819 5 12.494 3
Health Care 0.431 6 1.109 2 0.807 6 12.373 5
Industrials 0.417 10 1.068 4 0.790 7 12.111 7
Consumer Svs 0.421 9 1.063 5 0.776 8 11.858 8
Oil & Gas 0.435 5 0.849 11 0.761 9 11.484 9
NAB 0.429 7 0.888 9 0.758 10 11.319 10
Macquarie 0.344 11 0.811 12 0.676 11 10.238 11
Real Estate 0.315 12 0.857 10 0.633 12 9.679 12
Asia Market 0.309 13 0.712 14 0.607 13 9.161 13
Suncorp 0.274 14 0.784 13 0.584 14 8.888 14
Bank of Qlnd. 0.203 15 0.661 15 0.467 15 7.164 15
Bend&Ad.Bank 0.193 17 0.639 16 0.442 16 6.801 16
Utilities 0.194 16 0.593 17 0.435 17 6.680 17
Consumer Gds 0.172 18 0.506 18 0.404 18 6.168 18
Telecom 0.151 19 0.505 19 0.357 19 5.472 19
Technology 0.111 20 0.415 20 0.306 20 4.711 20

Table 5
Centrality Measures for the Network of Partial Correlations based on post 2008 sample.

R2 Degree Eigenvector Bonacich

Industrials 0.776 1 1.618 1 1.000 1 40.957 1
Consumer Svs 0.719 2 1.442 2 0.844 2 34.707 2
ANZ 0.714 3 1.092 4 0.801 3 32.294 3
Westpac 0.709 4 1.059 5 0.793 4 31.993 4
NAB 0.702 5 1.126 3 0.790 5 31.947 5
CBA 0.669 8 0.911 7 0.725 6 29.240 6
Basic Materials 0.685 6 0.886 8 0.693 7 28.138 8
Oil & Gas 0.677 7 0.992 6 0.692 8 28.156 7
Asia Market 0.581 9 0.848 11 0.613 9 24.890 9
Insurance 0.548 10 0.882 9 0.587 10 23.976 10
Macquarie 0.542 11 0.748 13 0.571 11 23.117 11
Utilities 0.502 12 0.822 12 0.514 12 21.128 12
Bend.&Ad.Bank 0.488 13 0.855 10 0.508 13 20.748 13
Bank of Qlnd. 0.450 14 0.691 15 0.477 14 19.419 14
Real Estate 0.436 15 0.714 14 0.470 15 19.196 15
Suncorp 0.425 17 0.658 16 0.455 16 18.485 16
Consumer Gds 0.433 16 0.652 17 0.425 17 17.513 17
Health Care 0.344 18 0.602 18 0.354 18 14.632 18
Technology 0.235 19 0.433 19 0.272 19 11.205 19
Telecom 0.198 20 0.421 20 0.235 20 9.764 20
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former matrix, 1=ð1� kÞ is the eigenvalue of the latter matrix.
Since invertible variance–covariance matrices are positive-
definite, all their eigenvalues are positive. It then follows that all
eigenvalues of P are less than 1. h

With this Lemma we see that Assumption 1 is equivalent to the
fact that all the eigenvalues of P are larger than �1, i.e., ki > �1 for
every i. In other words, whenever the smallest eigenvalue of P is
larger than �1, Assumption 1 holds. Moreover, we can also derive
the following result.

Proposition 5. When P is non-negative matrix (i.e., all partial
correlations are non-negative), its spectral radius is less than 1.

Indeed, for the non-negativematrices the Perron–Frobenius the-
ory can be applied. It contains the result (page 670 in Meyer, 2000)
that the spectrum of P is reached on one of the eigenvalues of P.
Therefore, the leading absolute eigenvalue of P is positive.
Appendix B. Industry Classification Benchmark

We adopt the following sectoral classification from Datastream
which is based on the Industry Classification Benchmark:

� Oil & Gas

-Oil and Gas Producers
–Oil Equipment, Services and Distribution
� Basic Materials

–Chemicals
–Basic Resources including Mining and Industries Metals
� Industrials

–Construction and Materials
–Industrial Goods and Services including transportation and
business support



Table 7
Matrix of partial correlations using glasso method.

NAB Westpac ANZ CBA Macquarie Suncorp Bank
of
Qlnd.

Bend&Ad.
Bank

Insurance Real
Estate

Oil
&
Gas

Basic
Materials

Industrials Consumer
Gds

Health
Care

Consumer
Svs

Telecom Utilities Technology Asia
Market

NAB 0 .12 .23 .20 .12 .05 .08 .04 .01 .06 .01 .00 .02 .00 .00 .04 .01 .01 .00 .04
Westpac .12 0 .30 .25 .01 .10 .05 .03 .02 .00 .00 .02 .02 .00 .06 .05 .00 .04 .00 .00
ANZ .23 .30 0 .15 .07 .03 .05 .04 .04 .09 .02 .00 .01 .00 .00 .00 .00 .00 .00 .03
CBA .20 .25 .15 0 .02 .04 .03 .06 .06 .02 .00 .00 .06 .00 .00 .03 .01 .01 .00 .00
Macquarie .12 .01 .07 .02 0 .10 .04 .07 .07 .07 .01 .08 .09 .00 .00 .02 .00 .00 .00 .09
Suncorp .05 .10 .03 .04 .10 0 .02 .07 .11 .01 .03 .00 .06 .02 .01 .03 .00 .00 .00 .02
Bank of Qlnd. .08 .05 .05 .03 .04 .02 0 .15 .04 .08 .01 .02 .05 .00 .00 .04 .00 .02 .03 .01
Bend&Ad.

Bank
.04 .03 .04 .06 .07 .07 .15 0 .06 .03 .00 .02 .05 .02 .00 .00 .02 .06 .00 .01

Insurance .01 .02 .04 .06 .07 .11 .04 .06 0 .07 .03 .01 .10 .04 .09 .13 .02 .04 .00 .05
Real Estate .06 .00 .09 .02 .07 .01 .08 .03 .07 0 .00 .04 .10 .00 .06 .04 .01 .06 .03 .03
Oil & Gas .01 .00 .02 .00 .01 .03 .01 .00 .03 .00 0 .37 .08 .01 .03 .09 .00 .08 .04 .12
Basic

Materials
.00 .02 .00 .00 .08 .00 .02 .02 .01 .04 .37 0 .15 .02 .00 .04 .00 .08 .08 .18

Industrials .02 .02 .01 .06 .09 .06 .05 .05 .10 .10 .08 .15 0 .09 .09 .14 .01 .10 .06 .06
Consumer

Gds
.00 .00 .00 .00 .00 .02 .00 .02 .04 .00 .01 .02 .09 0 .06 .13 .01 .03 .00 .00

Health Care .00 .06 .00 .00 .00 .01 .00 .00 .09 .06 .03 .00 .09 .06 0 .12 .09 .09 .04 .00
Consumer Svs .04 .05 .00 .03 .02 .03 .04 .00 .13 .04 .09 .04 .14 .13 .12 0 .12 .03 .04 .11
Telecom .01 .00 .00 .01 .00 .00 .00 .02 .02 .01 .00 .00 .01 .01 .09 .12 0 .04 .00 .03
Utilities .01 .04 .00 .01 .00 .00 .02 .06 .04 .06 .08 .08 .10 .03 .09 .03 .04 0 .03 .00
Technology .00 .00 .00 .00 .00 .00 .03 .00 .00 .03 .04 .08 .06 .00 .04 .04 .00 .03 0 .00
Asia Market .04 .00 .03 .00 .09 .02 .01 .01 .05 .03 .12 .18 .06 .00 .00 .11 .03 .00 .00 0

Table 6
Matrix of correlations using glasso method.

NAB Westpac ANZ CBA Macquarie Suncorp Bank
of
Qlnd.

Bend&Ad.
Bank

Insurance Real
Estate

Oil
&
Gas

Basic
Materials

Industrials Consumer
Gds

Health
Care

Consumer
Svs

Telecom Utilities Technology Asia
Market

NAB 1 .54 .59 .56 .45 .37 .38 .36 .39 .38 .34 .35 .43 .19 .28 .40 .17 .29 .16 .35
Westpac .54 1 .62 .58 .39 .39 .36 .35 .39 .34 .33 .34 .42 .19 .31 .40 .16 .30 .15 .32
ANZ .59 .62 1 .56 .42 .37 .37 .36 .40 .39 .34 .35 .42 .19 .28 .39 .16 .29 .16 .34
CBA .56 .58 .56 1 .39 .37 .35 .36 .40 .35 .32 .33 .43 .19 .28 .39 .17 .29 .15 .32
Macquarie .45 .39 .42 .39 1 .37 .32 .34 .39 .35 .35 .39 .44 .19 .26 .37 .15 .27 .16 .37
Suncorp .37 .39 .37 .37 .37 1 .27 .31 .38 .28 .29 .30 .38 .18 .24 .34 .14 .24 .13 .28
Bank of Qlnd. .38 .36 .37 .35 .32 .27 1 .36 .33 .32 .27 .29 .36 .16 .22 .33 .13 .25 .15 .27
Bend&Ad.

Bank
.36 .35 .36 .36 .34 .31 .36 1 .34 .28 .27 .29 .36 .17 .22 .30 .14 .27 .13 .27

Insurance .39 .39 .40 .40 .39 .38 .33 .34 1 .36 .36 .37 .47 .24 .34 .46 .19 .32 .17 .36
Real Estate .38 .34 .39 .35 .35 .28 .32 .28 .36 1 .31 .34 .42 .18 .29 .36 .16 .30 .17 .31
Oil & Gas .34 .33 .34 .32 .35 .29 .27 .27 .36 .31 1 .60 .47 .22 .30 .43 .16 .35 .22 .44
Basic

Materials
.35 .34 .35 .33 .39 .30 .29 .29 .37 .34 .60 1 .51 .22 .29 .43 .17 .36 .24 .47

Industrials .43 .42 .42 .43 .44 .38 .36 .36 .47 .42 .47 .51 1 .30 .38 .52 .20 .40 .24 .43
Consumer

Gds
.19 .19 .19 .19 .19 .18 .16 .17 .24 .18 .22 .22 .30 1 .22 .31 .12 .20 .11 .19

Health Care .28 .31 .28 .28 .26 .24 .22 .22 .34 .29 .30 .29 .38 .22 1 .39 .21 .30 .16 .26
Consumer Svs .40 .40 .39 .39 .37 .34 .33 .30 .46 .36 .43 .43 .52 .31 .39 1 .26 .34 .21 .42
Telecom .17 .16 .16 .17 .15 .14 .13 .14 .19 .16 .16 .17 .20 .12 .21 .26 1 .17 .08 .17
Utilities .29 .30 .29 .29 .27 .24 .25 .27 .32 .30 .35 .36 .40 .20 .30 .34 .17 1 .17 .27
Technology .16 .15 .16 .15 .16 .13 .15 .13 .17 .17 .22 .24 .24 .11 .16 .21 .08 .17 1 .17
Asia Market .35 .32 .34 .32 .37 .28 .27 .27 .36 .31 .44 .47 .43 .19 .26 .42 .17 .27 .17 1
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Table 8
Centrality Measures for the Network of Partial Correlations using glasso method.

R2 Degree Eigenvector Bonacich Bonacich Bonacich

full full full full pre 2008 post 2008

Industrials 0.496 3 1.322 1 1.000 1 14.478 1 7.953 5 21.904 1
ANZ 0.518 1 1.063 4 0.993 2 13.900 2 8.335 2 17.743 4
Westpac 0.504 2 1.034 6 0.963 3 13.490 3 7.789 7 17.587 5
NAB 0.486 4 1.042 5 0.949 4 13.329 4 7.264 10 17.795 3
CBA 0.476 6 0.966 8 0.922 5 12.907 5 7.878 6 16.549 6
Basic Materials 0.479 5 1.083 3 0.876 6 12.622 6 9.864 1 15.523 7
Consumer Svs 0.434 8 1.191 2 0.868 7 12.617 7 7.746 8 19.306 2
Oil & Gas 0.437 7 0.938 9 0.804 8 11.546 8 7.394 9 15.466 8
Insurance 0.375 9 0.986 7 0.787 9 11.317 9 8.219 3 14.250 10
Macquarie 0.355 10 0.871 10 0.756 10 10.744 10 6.689 11 13.730 11
Asia Market 0.338 11 0.783 11 0.698 11 9.978 11 5.895 13 14.558 9
Real Estate 0.289 12 0.781 12 0.652 12 9.328 12 6.264 12 11.500 15
Suncorp 0.275 13 0.709 17 0.624 13 8.862 13 5.689 14 11.105 16
Bank of Qlnd. 0.264 14 0.714 16 0.601 14 8.563 14 4.434 15 11.677 14
Bend&Ad.Bank 0.262 15 0.740 14 0.595 15 8.509 15 4.174 16 12.449 13
Utilities 0.249 16 0.733 15 0.570 16 8.250 16 4.102 17 12.544 12
Health Care 0.247 17 0.742 13 0.552 17 8.035 17 8.105 4 8.754 18
Consumer Gds 0.135 18 0.440 18 0.371 18 5.357 18 3.762 18 10.414 17
Technology 0.090 20 0.352 20 0.299 19 4.310 19 2.611 20 6.653 19
Telecom 0.094 19 0.380 19 0.295 20 4.283 20 3.232 19 5.582 20
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� Consumer Goods

–Food and Beverages
–Personal and Household Goods including Home Construction
� Health Care

–Health Care Equipment and Services
–Pharmaceuticals and Biotechnology
� Consumer Services

–Retail
–Media
–Travel and Leisure
� Telecommunications
� Utilities

–Electricity
–Gas, Water and Multi-Utilities
� Technology

–Software and Computer Services
� Financials

–Banks
–Insurance
–Real estate including real estate investment and services and
trusts
–Financial services including financial groups

The Financials sector is considered in more details on the net-
work of partial correlations. In particular, we separately consider
Insurance and Real estate sub-sectors. The Banks and Financial ser-
vices are zoomed in even further and are represented by big-four
banks (ANZ, CBA, NAB, Westpac) and two regional banks (Bank of
Queensland, and Bendigo and Adelaide Bank), by two large finan-
cial groups (Suncorp and Macquarie), respectively.

Appendix C. Correlations and partial correlations

Tables 2 and 3 report matrices of correlations and partial corre-
lations, respectively, for the full sample. For better readability, the
matrix is divided into several blocks corresponding to correlations
and cross-correlations between the banks, other sectors of the
Australian economy, and the Asian market.
Appendix D. Centrality measures of pre and post 2008 samples

Tables 4 and 5 show centrality measures of pre and post 2008
samples, respectively. Next to each measure we report the ranking
of the corresponding entity according to this measure.
Appendix E. Glasso-based estimates and centrality measures

As a robustness check we estimated the matrices of correlations
and partial correlations using the glasso method of Peng et al.
(2009). The glasso method exploits the relationship between par-
tial correlations and the system of regression equations in Eq. (1)
shrinking the parameters towards zero. The method relies heavily
on the choice of a regularization parameter. We use rotation infor-
mation criterion to make this choice. The estimation was imple-
mented in R using package ‘huge’.

Tables 6 and 7 report matrices of correlations and partial corre-
lations, respectively, for the full sample. In addition we also report
the centrality measures based on the glasso method in Table 8.
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