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Abstract In this paper we explore how specific aspects of market transparency
and agents’ behavior affect the efficiency of the market outcome. In particular,
we are interested whether learning behavior with and without information
about actions of other participants improves market efficiency. We consider
a simple market for a homogeneous good populated by buyers and sellers.
The valuations of the buyers and the costs of the sellers are given exogenously.
Agents are involved in consecutive trading sessions, which are organized as
a continuous double auction with order book. Using Individual Evolutionary
Learning agents submit price bids and offers, trying to learn the most profitable
strategy by looking at their realized and counterfactual or “foregone” payoffs.
We find that learning outcomes heavily depend on information treatments.
Under full information about actions of others, agents’ orders tend to be
similar, while under limited information agents tend to submit their valua-
tions/costs. This behavioral outcome results in higher price volatility for the
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latter treatment. We also find that learning improves allocative efficiency when
compared to outcomes Zero-Intelligent traders.

Keywords Allocative efficiency · Continuous double auction ·
Individual evolutionary learning

JEL Classification D83 · C63 · D44

1 Introduction

The question “What makes markets allocatively efficient?” has attracted a
lot of attention in recent years. Laboratory experiments with human subjects
starting with Smith (1962) show quick convergence towards competitive equi-
librium, also resulting in high allocative efficiency of the continuous double
auction (CDA). A natural question arises about the significance of rationality
for this outcome. With the assumption of forward-looking, strategic, optimiz-
ing agents, whose beliefs about others’ preferences and behavior are updated
in a Bayesian way, the standard economic approach suggests solving for a ratio-
nal expectations equilibrium under specified market rules. For some examples
in this spirit see Easley and Ledyard (1993), Friedman (1991) and Foucault
et al. (2005). In our opinion, the fully rational approach is not completely
satisfactory for two reasons. First, the rational expectation approach embeds
considerable model simplifications. Rather restrictive assumptions are often
imposed either on information or on strategy space or on traders’ preferences.
Given the complexity of the CDA market and the high dimension of the
strategy space, a full solution is not feasible. Second, and more importantly, the
behavioral and experimental literature shows that people fail to optimize, to
learn in a Bayesian way, and to behave strategically in a sophisticated manner.
In other words, people are only boundedly rational. Recent research suggests
that models with boundedly rational learning behavior fit observed outcomes
better (see, for example, Duffy (2006) for a survey).

To provide an extreme example of bounded rationality, Gode and Sunder
(1993) introduced Zero Intelligent (ZI) agents. ZI traders do not have memory
and do not behave strategically, submitting random orders subject to budget
constraints. The ZI methodology has led to the impression that the rules of the
market and not individual rationality are responsible for market’s allocative
efficiency. In fact, Gode and Sunder (1993) find that market organized as a
continuous double auction (CDA) is highly efficient and in some cases allows
ZI traders to extract around 99% of possible surplus. More careful investiga-
tion in Gode and Sunder (1997) reveals, however, that specific market rules
may significantly affect efficiency in the presence of the ZI agents. LiCalzi
and Pellizzari (2008) have shown that the allocative efficiency of the CDA
would drop substantially if every transaction did not force agents to submit
new orders. Nevertheless, as pointed out in the recent reviews by Duffy (2006)
and Ladley (2012), the ZI methodology is useful in studying market design
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questions, because any effect of design on efficiency under ZI behavior should
be attributed solely to the change of market rules.

This paper focuses on a market design question, the question of mar-
ket transparency. In January 2002 the New York Stock Exchange (NYSE)
introduced OpenBook system which effectively opened the content of the
limit order book to public. Boehmer et al. (2005) show that this increasing
transparency affected investors’ trading strategies and resulted in decreased
price volatility and increased liquidity. Can these changes be explained by a
theoretical model? This question cannot be studied within the ZI methodol-
ogy, since the agents do not condition on any market information and their
behavior is exactly the same under full information and limited information.
For this reason we follow an intermediate approach between zero intelli-
gence and full rationality. More precisely, we analyze allocative efficiency
in the market with boundedly rational agents. While their valuations and
costs are not changing from one trading session to another, the agents’
bidding behavior does. We use the Individual Evolutionary Learning (IEL)
algorithm, introduced in 2003 and published as Arifovic and Ledyard (2011).
This algorithm builds on the framework introduced by Arifovic (1994) who
examined genetic algorithms (GA) as a model of social as well as indi-
vidual learning of economic agents in the context of the cobweb model.1

According to the IEL algorithm agents select their strategies (limit order
prices) not only on the basis of their actual performance, but also of their
counterfactual performance. To take the informational aspect into account, we
distinguish between two scenarios. We compare an outcome of learning based
on the information available in the open order book and an outcome of learn-
ing based only on aggregate market information, i.e., when the order book
is closed. Similar questions were recently analyzed in Arifovic and Ledyard
(2007) for call auction market, while we address them here for the CDA
market.

We analyze what kind of behavior emerges as an outcome of the learning
process under both information scenarios. In relation to that, we look at
whether and how individual learning affects the aggregate properties, such as
allocative efficiency. First of all, we show that learning may result in a sizeable
increase in efficiency with respect to the ZI behavior. Secondly, we find that
the agents learn to behave differently depending on the information available.
In the open order book treatment the agents participating in trade learn to sub-
mit bids and asks that fall within the range of equilibrium prices. On the other
hand, in the closed book treatment the trading agents submit bid/ask prices
which are close to their valuations/costs.2 Consequently, usage of the book

1See closely related research in Fano et al. (2011) for an application of the GA to the CDA and
batch auction market with a large number of traders.
2Alternatively, as pointed out by one of the referees, this finding can be formulated as follows.
The agents participating in trade learn to be approximately “price-makers” when the information
is full and learn to be approximately “price-takers” when the information is limited. Fano et al.
(2011) use this terminology.
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information decreases market volatility, which is consistent with empirical
evidence. Thus, our results provide a behavioral explanation for some of the
observed effects of a change in the market rules.

The rest of the paper is organized as follows. The market environment
is explained in Section 2, where we also recall the definition of allocative
efficiency and derive a benchmark for ZI traders. We describe the individual
evolutionary learning model in Section 3. The resulting market outcomes are
simulated3 and discussed in Section 4. In Section 5 we report the results of a
number of robustness tests that we conducted. Section 6 concludes. For brevity
the paper uses a number of acronyms. The detailed list of acronyms and the
corresponding definitions are given in Appendix.

2 Model

We start with describing environment and defining competitive equilibrium as
a benchmark against which the outcomes under different learning rules will
be compared. We then proceed by explaining the continuous double auction
mechanism. Finally, we study the allocative efficiency under ZI trading.

2.1 Environment

Suppose we have a fixed number B + S of market participants, B buyers and
S sellers. At the beginning of a trading session t ∈ {1, . . . , T}, each seller is
endowed with one unit of commodity and each buyer would like to consume
one unit of commodity. The same agents transact during T trading sessions.
Throughout the paper index b ∈ {1, . . . , B} denotes a buyer and index s ∈
{1, . . . , S} denotes a seller.

We consider a situation in which the valuation of every buyer and the cost
of every seller is fixed over time.4 A buyer’s valuation of a good, Vb , is the
amount, which is received when a unit is bought. A seller’s cost, Cs, is the
amount, which is paid when a unit is sold. It is assumed that each trader knows
his own valuation/cost, but neither the exact valuations and costs of others, nor
the distribution of these values is available. The ability to relax the common
knowledge assumption typical in a standard game theoretic framework is
one of the features of the evolutionary learning approach used here. As
this and many other papers demonstrate, even without common knowledge
assumption, the learning behavior of agents can produce reasonable strategies
and even converge to the equilibrium.

3The matlab codes used to generate the results of this paper are available from http://research.
economics.unsw.edu.au/vpanchenko/software/IELmatlabcodes.zip.
4Such f ixed environment setup is common to the theoretical, simulation and experimental liter-
ature, for corresponding examples see Satterthwaite and Williams (2002), Arifovic and Ledyard
(2007) and Gode and Sunder (1993). Fano et al. (2011) do not make the assumption of a fixed
environment.

http://research.economics.unsw.edu.au/vpanchenko/software/IELmatlabcodes.zip
http://research.economics.unsw.edu.au/vpanchenko/software/IELmatlabcodes.zip
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(a) GS-market with N = 5  
buyers and one seller, from 
Gode and Sunder (1997).

(b) Symmetric S5-market with 5 
buyers and 5 sellers.

(c) AL-market with 5 buyers 
and 5 sellers, from Arifovic  
and Ledyard (2007).

Fig. 1 Demand/supply diagrams for the market configurations considered in the paper. In all cases
the arrow shows the range of equilibrium prices

Traders care about payoff defined as their surplus obtained from trade, i.e.,

Ub (p) =
{

Vb − p if buyer b traded at price p
0 if buyer b did not trade ,

Us(p) =
{

p − Cs if seller s traded at price p
0 if seller s did not trade .

(2.1)

Given the set of valuations, {Vb }B
b=1, and costs, {Cs}S

s=1, one can build step-
wise aggregate demand and supply curves, whose intersection determines the
competitive equilibrium. This outcome will serve as a theoretical benchmark,
as it maximizes the mutual benefits from trade. More specifically, the intersec-
tion of demand and supply determines a unique5 equilibrium quantity q∗ ≥ 0
and, in general, an interval of the equilibrium prices [p∗

L, p∗
H]. This situation

is illustrated in Fig. 1 for two different market environments. The units, which
would yield a nonnegative payoff if traded at an equilibrium price, are called
intramarginal (in the figure they are to the left of the equilibrium quantity).
The agents who own these units are called intramarginal buyers (IMBs) and
intramaginal sellers (IMSs). The units, which would yield a negative payoff if
traded at an equilibrium price, are called extramarginal (in the figure they are
to the right of the equilibrium quantity), The agents who own these units are
extramarginal buyers and sellers (EMBs and EMSs). The sum of all payoffs
of buyers and sellers gives the allocative value of a trading session. When all
transactions occur at an equilibrium price, this value is maximized and is equal
to the difference between the sum of the valuations of all IBMs and the sum of
the costs of all IMSs. We adopt the following

5This is guaranteed by assuming that in a special case when there exists a buyer whose reservation
value coincides with the cost of a seller, these traders exchange maximum possible quantity.
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Definition 2.1 The allocative ef f iciency of a trading session is the ratio be-
tween realized allocative value during the session and maximum possible allo-
cative value.

In this paper we consider three market environments. We present the
market introduced in Gode and Sunder (1997) (GS, henceforth) in Fig. 1a.
There is one seller offering a unit which costs C1 = 0, and N = 1 + n buyers
who wish to consume one unit, one of which has valuation V1 = 1 and others
have the same valuations equal to 0 ≤ β ≤ 1. The equilibrium price range is
given by (β, 1]. The seller and the first buyer are intramarginal. A transaction
between them results in a competitive outcome with efficiency equal to 1.
The n buyers with valuation β are EMBs and when the seller transacts with
one of them the efficiency is β ≤ 1. This “GS-environment” may seem too
stylized, but it is analytically tractable and provides good intuition. Moreover,
by varying β, we can demonstrate that the allocative efficiency of the CDA
depends on the environment.

While in the first environment the seller has a higher market power than the
buyers, in the second environment this asymmetry is removed and the number
of buyers and sellers is equal to N. For a given N the set of valuations is

{ k
N

}
and the set of costs is

{ k−1
N

}
with integer k ∈ [1, N]. Consequently the demand

and supply schedules are symmetric and the equilibrium quantity is given by⌈ N
2

⌉
.6 We call this symmetric environment with N buyers and N sellers “SN-

environment”. When N is even, there exists a unique equilibrium price 1
2 , and

when N is odd, the equilibrium price range is given by
( N−1

2N , N+1
2N

)
. Figure 1b

shows the “S5-environment” which we study in this paper.
The last environment we consider is depicted in Fig. 1c. There are 5 buyers

and 5 sellers in this market, 4 IMBs and 4 IMSs.7 This example is similar to
the previous environment for N = 5 but less symmetric. Furthermore, it is one
of the configurations for which Arifovic and Ledyard (2007) study the effect
of the transparency in the market organized as a call auction, so that a direct
comparison with the CDA market can be made. We refer to this environment
AL, henceforth.

2.2 Continuous double auction

In our model in every trading session the market is operating as the Continuous
Double Auction (CDA) with an order book.8 This is a market mechanism for
a-synchronous trading, common to the stock exchanges nowadays. If a newly
submitted order finds a “matching order,” it is satisfied at the price of this

6The ceiling function, �x�, gives the smallest integer greater than or equal to x.
7The valuations/costs are V1 = 1, V2 = 0.93, V3 = 0.92, V4 = 0.81, V5 = 0.5, C1 = 0.3, C2 = C3 =
0.39, C4 = 0.55 and C5 = 0.66. First four buyers and sellers are intramarginal. The equilibrium
quantity is 4 and equilibrium price range is [0.55, 0.66).
8Each trading session can be thought as a trading “day”.
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matching order. A matching order is defined as an order stored in the opposite
side of the book at whose price the transaction with a newly arrived order
is possible. If there are many orders which match the incoming order, the
matching order with which the trade occurs is selected according to the price-
time priority. If the submitted order does not find a matching order, it is stored
in the book and deleted only at the end of the session when the book is cleared.

We assume that every agent submits only one order (bid or ask depending
on the agent’s type) during a trading session.9 The agents determine their
orders before the session starts. Consequently, they cannot condition their
order on the state of the book. The sequence of traders’ arrivals to the market
is randomly permuted for every session. At the end of each trading session the
order book is cleared by removing all the unsatisfied orders, so that the next
session starts with an empty book.

For a given set of agents’ orders and their arrival sequence, the CDA mech-
anism described above generates a (possibly empty) sequence of transactions.
The prices at which buyer b and seller s traded during trading session t are de-
noted by pb ,t and ps,t, while their orders are given by b b ,t and as,t, respectively.
In case b traded with s, price pb ,t=ps,t is the price of this transaction. It is equal
to b b ,t if b arrived before s and to as,t, otherwise. According to Eq. 2.1, buyer b
who traded at price pb ,t extracts payoff Vb − pb ,t, while the buyer who did not
trade over the session gets 0. Similarly, seller s who succeeded in selling the
unit at price ps,t receives payoff ps,t − Cs, while the seller who did not trade
gets 0. Note that in the CDA market the payoff a trader attains depends not
only on submitted orders but also on the sequence of their trade.

2.3 Market efficiency with ZI-traders

What is the role of a market mechanism in determining market efficiency? A
benchmark for efficiency of a market mechanism might be given by its per-
formance when the traders are Zero Intelligent (ZI).10 Every trading period
ZI traders submit random orders, drawing them independently from a uniform
distribution. Gode and Sunder (1993) distinguish between constrained and
unconstrained ZI traders. Unconstrained ZI traders can draw orders from a
whole interval [0, 1], while constrained traders are not allowed to bid higher
than their valuation or ask lower than their cost. Gjerstad and Shachat (2007)

9This assumption implies that multiple rounds of bidding are excluded from the analysis in this
paper. Gode and Sunder (1997) show that multiple rounds (until all possible transactions occur)
result in higher efficiency due to the absence of losses caused by an absence of trade. We also do
not clear and “resample” the book after every transaction. Resampling would increase efficiency
of the market, because orders submitted far from the equilibrium range of price would have a
chance to be corrected, see LiCalzi and Pellizzari (2008).
10In using this benchmark we attempt to abstract from agents’ behavioral aspects. One needs to
be careful, however, since ZI in itself is also a very special type of behavior.
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attribute this restriction to individual rationality (IR) in the order submission,
rather than to a market rule. We follow their terminology and distinguish be-
tween agents “with IR” and “without IR”. A buyer with IR will not submit an
order higher than the valuation. A seller with IR will not submit an order lower
than the cost.

2.3.1 GS-environment

We derive an analytic expression for the allocative efficiency of the CDA with
ZI traders for the GS-environment depicted in Fig. 1a, when the number of
extramarginal buyers n → ∞. Note that in our setup a trading session may re-
sult in no transaction, whereas Gode and Sunder (1997) guarantee transaction
by introducing an unlimited number of trading rounds.

Proposition 2.1 Consider the CDA in the GS-environment when n → ∞. The
expected allocative ef f iciency under ZI agents with IR converges to

E = 1
2

(
1 + β3 + β2 − β

)
, (2.2)

the expected allocative ef f iciency under ZI agents without IR converges to

E = β.

Proof See Appendix. 
�

Consider first the IR case. The solid line in Fig. 2a shows the theoretical
efficiency (Eq. 2.2) as a function of β. Its U-shape reflects a trade-off between
the probability of inefficient transaction and the size of inefficiency. The
probability of a transaction with an EMB increases in β, while the losses of
allocative efficiency due to this transaction decrease in β. The probability of no
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(a) Agents with IR. (b) Agents without IR.

Fig. 2 Allocative efficiency in the GS-environment with ZI agents. Theoretical expected effi-
ciency E is compared with average efficiency for finite number of traders. Average is taken over
100 trading periods and 100 random seeds
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trade decreases with β. Comparing Eq. 2.2 with Eq. 6 from Gode and Sunder
(1997) reproduced below

E = 1 − (1 − β)
β + β2

2(1 − β(1 − β))
,

we observe that efficiency in a market with one trading round is lower than in
a market with unlimited number of trading rounds. In our setup efficiency can
be lower than 1 not only due to a transaction with an extramarginal trader but
also due to the absence of trade.

Figure 2a also shows the average allocative efficiency for a finite number
n of EMBs. The average is computed over T = 100 trading sessions and
S = 100 random seeds. We observe that the effect of finite number of agents
is not very strong. As number of agents n increases the average efficiency
over the simulation runs converges to the theoretical efficiency derived in
Proposition 2.1. Figure 2b shows the efficiency without IR. EMB traders
are no longer bounded by their valuation β and are now competing with a
unique IMB who trades with probability of 1/(n + 1), which converges to 0 as
n → ∞. As a result, no transaction outcome is ruled out and non-equilibrium
transactions become the only source of inefficiency. The trade-off between the
probability of an inefficient transaction and the size of the inefficiency (equal
to β) disappears. It explains a linear shape of the efficiency curve. Comparison
with the IR case reveals a surprising conclusion. For high values of β (namely
for β >

√
2 − 1) the absence of the IR in order submission leads to higher

efficiency.

2.3.2 S5- and AL-environments

Next we analyze outcomes under the ZI benchmark in the two other environ-
ments introduced in Section 2.1 and shown in Fig. 1b and c, respectively. An
important difference with respect to the GS-environment is that now more
than one transaction can occur during a single trading session, at different
transaction prices. In this case, we report the average price for all transactions
during a given session.

A well known result of Gode and Sunder (1993), obtained for similar envi-
ronments, is that the allocative efficiency is close to 100%. It is obtained, how-
ever, under assumption that the multiple rounds of bidding are allowed and the
book is cleared after every transaction. We want to verify this claim relaxing
this assumption and allowing only one order per agent in any given trading
session. We simulate the trading under ZI agents with and without IR for 100
trading sessions. Figure 3 shows dynamics of the (average) price, efficiency
and number of transactions in the S5 (top panels) and AL (bottom panels) en-
vironments. On the price panel we show the equilibrium price range with two
horizontal lines. We observe, first, that the average price over the trading ses-
sion is volatile and is often outside of the equilibrium range. Second, when the
IR is imposed, the sessions without transactions occur more frequently than in
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(a) Agents with IR in S5-environment. (b) Agents without IR in S5-environment.

(c) Agents with IR in AL-environment. (d) Agents without IR in AL-environment.

Fig. 3 Efficiency and price in S5- and AL-environment with ZI agents. The horizontal solid
lines indicate the equilibrium price range, equilibrium efficiency and equilibrium number of
transactions

the case without IR. Third, absence of IR can also lead to overtrading, i.e., to
a larger than equilibrium number of transactions.

Table 1 reports the average allocative efficiency, average price, and the
average number of transactions over T = 100 trading sessions, as well as
price volatility (standard deviation) over T periods. All these statistics are
also averaged over S = 100 random seeds. In both environments the average
allocative efficiency with ZI agents is far less than 100%, with a dubious effect
of individual rationality. In the absence of IR, agents transact more often and
the number of transactions is closer to the equilibrium level. On the other

Table 1 Aggregate outcomes in the S5- and AL-environments with ZI agents

S5 environment AL environment
With IR Without IR With IR Without IR

Efficiency 0.4240 0.3474 0.3717 0.5752
Price 0.4985 0.4988 0.6211 0.4989
Price volatility 0.1700 0.1660 0.1226 0.1666
Number of transactions 1.2087 3.1227 1.4787 3.1176
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hand, many transactions lead to negative payoffs for individual traders. As a
result in the S5-environment the efficiency is higher in the case with IR relative
to the case without IR, when the efficiency turns negative in several sessions.
An opposite result holds for the AL-environment, where the individual ratio-
nality constraints lower allocative efficiency.

To summarize, our simulations with ZI agents show that the allocative
efficiency in the market does depend on the market environment (rather than
only on the market rules) and is typically much lower than 100%. Further,
imposing the IR constraints in agents’ order submissions does not necessarily
improve allocative efficiency.

3 Individual evolutionary learning

Our result of low market efficiency under ZI implies that the individual
rationality can have a positive effect on the efficiency and makes an analysis
of the market with intelligent traders meaningful. Furthermore, as we already
mentioned, the market design questions cannot be addressed within the ZI
methodology, when random behavior is invariant to the change in design. In
the rest of the paper we investigate market outcomes under a simple evolu-
tionary mechanism of individual learning, which reinforces successful and dis-
courages unsuccessful strategies.

In our setting, an observed action of every agent during a trading round is
one submitted order. The evolution of the orders is modeled by the Individual
Evolutionary Learning (IEL) algorithm which involves the following steps:

• specification of a space of strategies (or messages);
• limiting this space to a small pool of strategies for every trader;
• choosing one message from the pool on the basis of its performance

measure;
• evolving the pool using experimentation and replication.

IEL is based on an individual (not social) evolutionary process. It is well
suited for applications in environments with large strategy spaces (subsets of
real line) such as our CDA environment. See Arifovic and Ledyard (2004)
for a discussion of the advantages of IEL over other commonly used models
of individual learning, such as reinforcement learning (Erev and Roth 1998)
and Experience-Weighted Attraction learning (Camerer and Ho 1999), in the
environments with large strategy spaces.

Messages We assume that a message, εb ,t(εs,t), represents a potential bid (or
ask) order price from buyer b (or seller s) at trading session t. In our base
treatment we do not allow a violation of the IR constraints, that is, we require
εb ,t ≤ Vb and εs,t ≥ Cs. Under alternative treatments without IR constraints
these restrictions will not be imposed and we will let traders themselves learn
not to submit orders which lead to individual losses. In all specifications we
assume that possible orders belong to the interval [0, 1].
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Individual pool Even if there is a continuum of possible messages, every
agent will be restricted at every time to choose between a limited amount of
them. The pool of messages (bids) available for submission at time t by buyer
b is denoted by Bb ,t. The pool of messages (asks) available for submission
at time t by seller s is denoted by As,t. Every period the pool of each agent
is updated, but the number of messages in the pool is fixed and equals to J.
Some of the messages in the pool might be identical, so that an agent may
be choosing from J or less possible alternatives. Initially, the individual pools
contains J strategies drawn, independently for each agent, from the uniform
distribution on the interval of admissible messages, i.e., [Vb , 1] for buyers and
[0, Cs] for sellers when the IR constraints cannot be violated and [0, 1] for all
traders in the absence of IR. In the benchmark simulations J = 100 and the IR
constraints are imposed.

The pool used at time t is updated before the following trading session
by subsequent application of two procedures: experimentation (or mutation)
and replication. During the experimentation stage, any message from the old
pool can be replaced with a small probability by some new message. In such
a way for every buyer and seller the intermediate pools are formed. More
specifically, each message is removed from the pool with a small probability
of experimentation, ρ, or remains in the old pool with probability 1 − ρ. In
case that a message is removed, it is replaced by a new message drawn from
a distribution, P. In the benchmark simulations ρ = 0.03 and distribution P is
uniform on the interval [Vb , 1] for buyers and [0, Cs] for sellers.

At the replication stage two randomly chosen messages from the just-
formed (intermediate) pool are compared with each other, and the best of
them occupies a place in a new pool, Bb ,t+1, for a buyer or As,t+1 for a
seller. For every agent such a process is independently repeated J times (with
replacement), in order to fill all the places in the new pool. The comparison is
made according to a performance measure which is defined below. Therefore,
during replication, we increase an amount of “successful” messages in the pool
at the expense of less successful ones.

Calculating the foregone payof fs How good is a given message? Indeed,
only the message which has actually been used last period delivers a known
payoff given by Eq. 2.1. An agent who is learning would also like to infer
foregone payoffs from alternative strategies. To do this, every agent applies
a counterfactual analysis. Notice that this is a boundedly rational reasoning,
since our agent ignores the analogous learning process of all the other agents.

The calculation of foregone payoff is also made according to Eq. 2.1, but
the price of transaction is notional and depends on the amount of information
which is available to the agent. We distinguish between two treatments which
we call open book (OP) and closed book (CL) information treatment. Under
the OP treatment each agent uses the full information about all bids, offers and
prices from the previous period. Only the identities of bidders are not known
preventing direct access to the behavioral strategies used by others. Under the
CL treatment the agents are informed only about some price aggregate, say
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average price, from the previous session, Pav
t . If no transaction occurred during

this session, Pav
t is set to an average price of the most recent past session for

which at least one transaction had occurred. Note that the availability and use
of the information from the book may be attributed either to market design,
e.g., openness of the market or costs of the access to the book, or to individual
behavior, e.g., willingness to buy information or possibility to process it, or
both.

Let It denote the largest possible information set after the trading session
t. It includes the orders of all buyers and sellers as well as sequence in which
they arrive at the market. Under the CL treatment this whole set is not known
to traders: they know only their own bids and asks as well as an average price.
Thus, under the CL treatment the information sets of buyers and sellers at the
end of session t are given as

ICL
b ,t = {

b b ,t, Pav
t

} ∪ ICL
b ,t−1 , ICL

s,t = {
as,t, Pav

t

} ∪ ICL
s,t−1 .

The order book of the past period cannot be reconstructed with this informa-
tion. Hence, agent can only use average price of the previous session as an in-
dication for possible realized price given alternative message submitted.11 We
assume that under the CL treatment, agents’ foregone payoffs are computed as

Ub ,t
(
εb |ICL

b ,t

) =
{

Vb − Pav
t if εb ≥ Pav

t

0 otherwise
,

Us,t
(
εs|ICL

s,t

) =
{

Pav
t − Cs if εs ≤ Pav

t

0 otherwise
.

(3.1)

Note that the specification of the foregone payoffs is a strong assumption about
the individual behavior which may affect results of the IEL. There are other
possible mechanisms to compute the foregone payoffs under the closed book.
We choose this specific mechanism because of its close resemblance to the
mechanism used in Arifovic and Ledyard (2007).

Under the OP treatment, an agent knows the state of the order book at
every moment of the previous trading session. Assuming that his arrival time
does not change, the agent can find a price of a (notional) transaction, p∗·,t(ε·),
for any alternative message ε· and compute his own payoff using Eq. 2.1. Thus,
the foregone payoffs under OP treatment are given by

Ub ,t
(
εb |IOP

b ,t

) =
{

Vb − p∗
b ,t(εb ) if order εb of buyer b transacts

0 otherwise
,

Us,t
(
εs|IOP

s,t

) =
{

p∗
s,t(εs) − Cs if order εs of seller s transacts

0 otherwise
,

with corresponding information sets IOP
b ,t , IOP

s,t ⊂ It.

11Another plausible possibility is to consider the closing price of the day. This modification does
not influence our qualitative results.
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Selection of a message from the pool When the new pool is formed, one of the
messages is drawn randomly with a selection probability and the corresponding
order is submitted for trading session t + 1. The selection probability is also
based upon foregone payoffs from the previous period. For example, for buyer
b the selection probability of each particular message εb ,t+1 from pool Bb ,t+1
is computed as

πb ,t+1
(
εb ,t+1

) = Ub ,t
(
εb ,t+1|It

)
∑

ε∈Bb ,t+1
Ub ,t (ε|It)

, (3.2)

where It is an information set, which varies depending on the type of market.
Under IR all messages have non-negative performances. This guarantees that
Eq. 3.2 gives a number between 0 and 1.12

Other specifications for selection probabilities are also possible. Popular
choices in the literature are discrete choice models (probit or logit type). The
logit probability model is popular, for example, in modeling the individual
learning in the literature on financial markets with heterogeneous agents
(Brock and Hommes 1998; Goldbaum and Panchenko 2010) and has been
recently used to explain the results of laboratory experiments (Anufriev and
Hommes 2012). We simulated our model with these alternative specifications
in order to address the robustness issue of the IEL. The results reported below
are affected neither by the functional form of selection probability nor by the
value of the intensity of choice parameter of the logit model. This is mostly
due to the replication stage which in several rounds replaces most of the
strategies in the pool with similar relatively well performing strategies. It is
worth pointing out that with our specification of the selection probability, we
have one less free parameter, namely, the intensity of choice.

4 Market efficiency under IEL

To study the effects of market transparency on allocative efficiency, we com-
pare the market outcome in two information treatments, closed book and open
book. In our simulations performed with learning agents we concentrate on
four different aggregate variables: allocative efficiency, session-average price,
its volatility and number of transactions. As before we compute the average
values of these variables over T = 100 consecutive trading periods after
T = 100 transitory periods. To eliminate a dependence on a realization of a

12This does not necessarily hold without IR. In simulations of Section 5.1 we add a constant equal
to 1 to the performance of every message to ensure that Eq. 3.2 generates a number between 0
and 1.
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Table 2 Parameter values
used in baseline simulations

Parameter Symbol Value (range)

Number of strategies in a pool J 100
Probability of experimentation ρ 0.03
Distribution of experimentation

For buyers P U([0, Vb ])
For sellers P U([Cs, 1])

Individual rationality constraint IR enforced
Transitory period T 100
Number of trading periods T 100
Number of random seeds S 100

particular random sequence we average the above numbers over S = 100
random seeds.

Table 2 summarizes the parameters of the IEL model which we use in the
baseline simulation throughout this Section. Notice that the IR is enforced in
the baseline treatment.

4.1 GS-environment

Figure 4 shows allocative efficiency under the IEL with CL and OP, respec-
tively, for the GS-environment simulated with n = 3 and n = 10 EMBs. We
observe a significant increase in allocative efficiency over the ZI-benchmark
shown by dotted line. The solid line indicates the theoretical expected
efficiency for n → ∞ derived below. The allocative efficiency under the IEL
practically does not depend on n, the number of EMBs. Notice the striking
difference caused by transparency of the book. The allocative efficiency is
higher under the OP treatment, actually very close to 100% for any β,
while under the CL treatment there is a positive linear dependence between
the efficiency and β for β > 0.
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Fig. 4 Efficiency in the GS-environment under IEL as compared to ZI-benchmark
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Figures 5 and 6 show the evolution of the market during the first 100 trading
sessions for β = 0.1 and β = 0.5, respectively. Upper panels show the evolution
of market price and efficiency under CL (left panel) and OP (right panel)

(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.

(c) Individual bids (left) and asks (right) under CL.

(d) Individual bids (left) and asks (right) under OP.

Fig. 5 Dynamics in the GS-environment with 3 EMBs with β = 0.1. The horizontal lines indicate
β on the panel for price and 100% efficiency on the panel for efficiency. In the right part of panels
(c) and (d) the stars denote valuations/costs of agents and the vertical line shows the equilibrium
price range
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.

(c) Individual bids (left) and asks (right) under CL.

(d) Individual bids (left )and asks (right) under OP.

Fig. 6 Dynamics in the GS-environment with 3 EMBs with β = 0.5. The horizontal lines indicate
β on the panel for price and 100% efficiency on the panel for efficiency. In the right part of panels
(c) and (d) the stars denote valuations/costs of agents and the vertical line shows the equilibrium
price range

treatment. Horizontal lines indicate β on the price panel and 100% efficiency
on the efficiency panel. Consistently with the long-run results of Fig. 4 the price
is much more volatile under the CL and is stable and close to β under the OP.
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The efficiency is permanently changing between β and 1 under CL for both
values of β. On the contrary, under OP the efficiency is only initially changing
between β and 1, but then converges to 1. An outlier in period 91 for β = 0.5
on Fig. 6b is the result of agents’ experimentation, as discussed below.

In order to explain these results for the aggregate market outcomes we
look at the individual strategies of agents and their evolution. An important
question is whether and where the IEL-driven individual strategies converge
under different treatments. In panels (c) and (d) of Figs. 5 and 6, we show
the evolution of individual bids and asks for both buyers and sellers. Agents’
valuations/costs are denoted by stars in the right part of the plots; the range of
equilibrium prices is indicated by a vertical line.

Closed book treatment Consider the CL treatment shown in Figs. 5c
and 6c. The orders submitted by the intramarginal traders converge to their
valuations/costs. All other traders (i.e., extramarginal buyers) exhibit some-
what erratic behavior often changing their submitted orders but now and then
submitting orders very close to their valuation β. Analysis of the evolution of
the individual pools reveals that after a short transitory period the pools of
all traders become almost homogeneous (except for deviations due to experi-
mentation) and consist of messages that are close to their own valuations/costs.
In the following result we state that the profile with pools consisting of such
messages is “attractive”. The word “attractive” is used not in the strict sense
of convergence of the dynamical system to some state. In fact, the IEL never
converges because of the non-vanishing noise of the experimentation stage.
We refer to the strategy profile as “attractive”, if any single mutant message
added to this profile at the experimentation stage will not increase its presence
in the pool, but will be replaced in the long run by a message, which is arbitrary
close to the message from the initial profile.

Result 1 The strategy prof ile under which the pool of every trader consists of
messages equal to his own valuation/cost is attractive under the CL treatment in
the GS-environment.

We explain this result as follows. Consider the rule for the foregone
payoffs (Eq. 3.1), which agents use in their learning procedure. Under the
GS-environment there is only one price during the trading session, pt = Pav

t .
After this price is realized each buyer (seller) receives the same nonnegative
payoff for any allowed message above (below) pt and zero payoff for all
other messages. Suppose now that the pool of every agent consists only of his
valuations/costs, and that one of the agents, say an EMB, has a mutant strategy,
ε′

b < β, in his pool. Observe, that for any transaction price p the foregone
payoff of the mutant is no larger than the foregone payoff of the incumbent
message, β. Indeed, when p ∈ (ε′

b , β), the payoff of the mutant is 0, and the
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payoff of the incumbent is β − p > 0. For every other price the payoffs are the
same, 0 for p ≥ β and β for p ≤ ε′

b . Hence, the mutant cannot increase the
probability of its presence in the pool in the subsequent periods. For instance,
until no new mutations to the initial profile occur, the transaction price can
be13 1, β, ε′

b , or 0. In all these cases all the messages in the EMB’s pool (i.e., β

and ε′
b ) receive the same payoffs and the mutant is expected to occupy exactly

one place in the pool after the replication.
Furthermore, the mutant must eventually leave the pool after a mutated

message ε′′ ∈ (ε′
b , β) enters the pool of the same or other trader. At a period,

when this message determines the transaction price (such period comes about
with probability 1, since every sequence of traders’ arrival has equal, non-zero
probability), the incumbent message β of our EMB receives higher payoff
than the mutant message ε′

b . The mutant does not survive the replication
stage. In case if the message ε′′ belongs to the pool of the same trader, this
new mutant may “replace” the old mutant in the pool. The same reasoning
implies, however, that the new mutant will also be replaced in the long-run
either by the incumbent message β or by other mutant from the interval (ε′′, β).
Only mutations towards the initial configuration will survive in the long run,
explaining the “attractiveness” of the initial profile.

The same reasoning holds for other types of traders.
Result 1 has the following consequence for the efficiency.

Corollary 1 Under the conf iguration in Result 1 the price oscillates in the range
[0, 1], and the expected ef f iciency is given by

ECL = 4 + (
3 + n2

)
(1 + β)

2(n + 1)(n + 2)
. (4.1)

Proof See Appendix. 
�

When number of agents n → ∞ the expression 4.1 converges to (1 + β)/2,
shown by a solid line in Fig. 4a. Notice that the evolution of submitted orders in
the CL treatment (see Figs. 5c and 6c) is not fully consistent with Result 1 due
to persistent experimentations. A noise due to experimentation is especially
strong for the EMBs because the mutants in their pools will be wiped out by
the counterfactual analysis only after periods with sufficiently low transacted
price, which are relatively rare.

Open book treatment Let us turn now to the OP treatment, where the
evolution of individual strategies is remarkably different. In Figs. 5d and 6d we

13Recall that given the submitted orders, the price of transaction depends on the sequence of
traders’ arrival.
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observe that intramarginal traders are able to coordinate on one price which
remains unchanged for a long period and submit the orders predominantly at
this price. In the following result we show that the profile with pools consisting
of messages equal to any given equilibrium price can, with a large probability,
be “sustained” in the sense that any single mutant message added to this
profile will be replaced by the message from the initial profile. There is a small
probability, however, that a chain of mutations will force agents to jump out of
this profile and coordinate on a similar homogeneous profile but with another
price from the equilibrium range.14

Result 2 For any price p from the range (β, 1) the strategy prof ile under which
the pools of the IMB and the IMS consist of messages equal to this price
can be sustained with a high probability under the OP treatment in the GS-
environment.

To explain this result, let us suppose that both intramarginal traders have
homogeneous pools with messages equal to p ∈ (β, 1) . Given these pools, the
realized price is p. Assume that during the experimentation stage a mutant
message is introduced in the pool of the IMB and/or the IMS. Consider
the replication stage immediately after the experimentation. For any mutant
message of the IMS, ε′

s, such that ε′
s > p, no counterfactual transaction is

possible implying 0 foregone payoff for the mutant. Similarly, any mutant
message of the IMB, ε′

b , such that ε′
b < p, will have 0 foregone payoff. Hence,

these mutants will not survive the replication stage, and will not be present in
the pools during the subsequent session. In case, when ε′

s < p or ε′
b > p, the

sequence of traders’ arrival in the previous (pre-mutation) session becomes
important. With probability 1/2 the IMB arrived before the IMS. In this case
the counterfactual order of the IMB determines the counterfactual transaction
price. Hence, the mutant of the IMB, ε′

b , will yield a smaller foregone payoff
than the original message, p, and will be eliminated at the replication stage.
The mutant of the IMS, ε′

s, attains the same level of the foregone payoff as
the original message. The analysis of the case when the IMS arrived before the
IMB is analogous.

We have shown that every mutation can, on average, occupy less than one
place in the pools of the next session. Furthermore, only the IMS’s mutations
towards the lower price and the IMB’s mutations towards the higher price

14Comparing with Result 1 for the CL treatment, notice that, on the one hand, there is a continuum
of “equilibrium” profiles under OP, leading to a possibility of abandoning any given profile. On
the other hand, when the profile is not abandoned, the mutations are replaced by the messages
from the original profile, not by the messages close to the original messages. This explains why we
use a notion stronger than “attractiveness”.
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have a chance to be present in the new pool. Under our rule for the foregone
payoff, these mutations either bring strictly smaller payoff than the incumbent
message, p, or the same payoff (when they do not determine the transaction
price). Hence, in the long run the mutants are likely to be replaced by the
original messages, given that the original messages are still present in the pools
of every intramarginal trader.

There is a chance that the original pool will be completely abandoned
through a chain of mutations, so that the return to the original profile becomes
impossible. However, this chance is very small. Through the analysis of all
possible outcomes, one can find the most probable scenario for such profile
jump. Let us assume that the original mutant of the seller, ε′

s < p, that survived
the replication stage, was selected as an order for one of the subsequent
sessions and determined the transaction price of this session. Under these
circumstances, the IMB can generate a mutant ε′′

b ∈ (ε′
s, p) surviving the repli-

cation stage. If in the next period this mutant is submitted as an order of the
IMB along with the incumbent message p of the IMS, there will be no trade.
Now all the messages and mutations, which can facilitate counterfactual trade,
e.g. increasing bid and decreasing ask, will receive relatively high foregone
payoff and will have a high chance to be selected in the subsequent round.
It means that after the following replication messages equal to p or larger will
increase their presence in the pool of the IMB, while messages equal to ε′

s or
smaller will increase their presence in the pool of the IMS. In this way, the IMS
may abandon its initial profile. The probability of such chain of events is of the
order ρ2/J2, since two mutations and their choice from the profiles are needed.

According to Result 2 the IEL can converge to any price within the
equilibrium range. The jumps within the equilibrium range may occur with
a small probability, but all such “multiple equilibria” are equivalent from the
efficiency point of view.

Corollary 2 Under the conf iguration in Result 2 the price is constant and the
expected ef f iciency is given by

EOP = 1

Proof Since the strategy profiles of the IMB and the IMS are constant, the
price is also constant. Given the price in the competitive equilibrium range the
IMB trades with the IMS and the maximum expected efficiency, EOP = 1, is
obtained for any β. 
�

This result is consistent with our simulations. For example, in Fig. 6d the
strategies of the IMB and IMS converged to the same submitted orders
approximately equal to 0.53. Notice that the EMBs never trade in such a
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market and all their strategies in the pools have equal probabilities which leads
to random bids fluctuations in [0, β] region, see the lower panel of Fig. 6d.

Even if Result 2 implies the 100% allocative efficiency, due to experimenta-
tion the efficiency may drop in some periods. This happens around the period
91 in Fig. 6d. After previous trading round the seller’s pool was dominated by
the orders equal to 0.53, which is the price at period 90. An experimentation
adds a strategy 0.06 to the seller’s pool, which survives replication stage. In fact,
the price p90 was determined by the buyer’s order (the seller at t = 90 arrived
after the buyer) and so all the strategies below p90 have the same hypothetical
payoffs. Even if the strategy 0.06 belongs to the seller’s pool at time 91, a
probability to use this strategy as an order is only 1/J = 1/100. Whenever such
order is submitted, the price will be lower than previously observed 0.53. In this
particular case, p91 = 0.28 equal to the order of one of the EMB. Notice that
after this trading round, the seller will re-evaluates his strategies, and strategy
0.53 will have higher hypothetical payoff than 0.06.

To summarize, the information used by the agents under the IEL shapes
their strategy pool in the long-run. This pool affects the aggregate dynamics,
which feeds back by providing a ground for selection of active strategies
within the pool. When the book is closed (CL treatment), agents react on
commonly available signal (price of the transaction) and learn to submit their
own valuations/costs. This leads to higher opportunity of trade, but also to
larger price volatility, as we observed in Figs. 5a and 6a. When the book is
open (OP treatment), active agents can adapt to the stable strategies, always
submitting their previous orders. Such individual behavior results in a stable
price behavior at the aggregate level.

Figure 7 shows the average price and price volatility under CL and OP
treatments and also compares them with ZI outcomes. In accordance with
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Fig. 7 Average price and price volatility under IEL in the GS-environment as compared to the
ZI-benchmark
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Result 2 under OP treatment the price belong to the competitive price range
(denoted by shaded area) for any β. This is not the case for the CL and ZI
treatments. When the book is closed and equilibrium combination described
in Result 1 is reached, the price jumps between 0, 1 and β and its average falls
into the competitive range (β, 1] only when β is small. If the traders are ZI and
β is small the price will most certainly be determined by the best among the
bids of the IMS and IMB, which is around 1/2. When β is higher, the best bid
of the EMBs available to the IMS will determine price more often, resulting in
larger average price. However, this bid is smaller than β for finite n, explaining
why the price is not in the equilibrium range. The realized volatility will be
almost zero under the OP treatment, as implied by Corollary 2. It is the largest
in the CL treatment, when its jumps have the largest amplitude.

4.2 S5- and AL-environments

Do the results about aggregate dynamics and individual behavior observed
in the stylized GS-environment also hold under alternative environments?
Figure 8 shows market aggregates (price, efficiency and number of transac-
tions), as well as evolution of the individual trading orders (bids/asks) over
time for the S5-environment, and Fig. 9 gives the same information for the AL-
environment. Two horizontal lines on the panels for price indicate equilibrium
price range, while the line on the panel for transactions shows the equilibrium
number of transactions equal to 4.

Notice that the qualitative results are very similar for S5 and AL envi-
ronments. Similarly to the GS-environment, the price is less volatile under
the OP treatment and lies within the equilibrium range, while in case of the
CL treatment the price is often outside the equilibrium range. The efficiency
under the CL treatment is systematically below 1, while under OP treatment
it is virtually 1 most of the time. Interestingly, a loss of efficiency under
the CL is attributed to overtrading, i.e., larger than equilibrium number of
transactions. This is simply a consequence of larger than equilibrium range
of price fluctuations, which contains the valuations/costs of the extramarginal
traders making their trading possible. Under the OP treatment the loss of
efficiency occurs due to smaller than equilibrium number of transactions. The
EMB and the EMS do not trade under the OP, but occasional experimentation
by the intramarginal traders may prevent them from transacting.

As for the individual strategies, under the OP (Figs. 8d and 9d) the
intramarginal traders coordinate on one price as we have already seen in
the GS-environment. Result 2 still holds. However, under the CL (Figs. 8c
and 9c) traders’ orders converge to their valuations/costs only if the latter fall
within the range of price fluctuations. It follows from Eq. 3.1 that the IEL
process creates an upward pressure only on those buy orders which lie below
average price of the last trading session, Pav

t , and downward pressure only on
those sell orders which lie above Pav

t . Whereas in the GS-environment only
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.

(c) Individual bids (left) and asks (right) under CL.  

(d) Individual bids (left) and asks (right) under OP.

Fig. 8 Dynamics in the S5-environment. Horizontal lines indicate equilibrium price range on the
panel for price, equilibrium efficiency on the panel for efficiency and equilibrium number of
transactions on the panel for transactions. In the right part of the plots for individual strategies
stars denote valuations/costs of agents and vertical line shows equilibrium price range

one transaction per session is possible and the “average” price reflecting this
transaction fluctuates within the whole range of [0, 1], in the AL-environment
the price Pav

t averages out the individual orders. It leads to smaller range of
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.

(c) Individual bids (left) and asks (right) under CL.

(d) Individual bids (left) and asks (right) under OP.

Fig. 9 Dynamics in the AL-environment. Horizontal lines indicate equilibrium price range on
the panel for price, equilibrium efficiency on the panel for efficiency and equilibrium number of
transactions on the panel for transactions. In the right part of the plots for individual strategies
stars denote valuations/costs of agents and vertical line shows equilibrium price range

fluctuation and does not allow traders with extreme valuations/costs to learn.
A similar feature is observed in other learning models which do not rely on the
common knowledge assumption (see, e.g., Fano et al. 2011).
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Fig. 10 Efficiency in the GS-environment populated by agents without IR. The thick line shows
the benchmark level of expected efficiency in the attracting configurations. The dotted line shows
the efficiency with ZI agents without IR, which equals to β (and is not shown for β < 0.4)

5 Robustness

5.1 Role of individual rationality

Gjerstad and Shachat (2007) argue that one of the key conditions for high
allocative efficiency under the ZI traders in Gode and Sunder (1993) are the
constraints on individual rationality.15 In this section we investigate whether
the assumption of Individual Rationality plays an important role under the
IEL learning. It turns out that, in general, our findings of the long run outcome
of the IEL learning mechanism are robust towards a violation of the IR
constraints by agents. In fact, the behavior violating the IR constraints will
often lead to messages with negative foregone payoff. Under the IEL the
agents have enough intelligence to discard these messages on the replication
or selection stage. Nevertheless, occasionally the messages violating IR will be
submitted16 obviously leading to higher price volatility. We are interested also
in the effect of these messages on efficiency.

Figure 10 shows the results of simulation of the GS-environment with n = 3
and n = 10 EMBs populated by agents relying on the IEL but without IR. For
every β both in the CL treatment (left panel) and in the OP treatment (right
panel) the resulting efficiency is very close to the theoretical level found in
Corollaries 1 and 2. Comparison with Fig. 4 shows that for the IEL learning
the IR constraints in the message generating process are almost irrelevant.

Comparison of Fig. 11 with Fig. 8 for the S5-environment and Fig. 12 with
Fig. 9 for the AL-environment reveals an interesting effect of the removal

15Recall that we confirm this claim in the GS-environment only for the case when the EMBs’
valuation β <

√
2 − 1, see Fig. 2b.

16There is an experimental evidence that profit-motivating subjects do violate the IR constraints,
even if rarely. See, for example, Lei et al. (2001).
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.

(c) Individual bids (left) and asks (right) under CL.

(d) Individual bids (left) and asks (right) under OP.

Fig. 11 Dynamics in the S5-environment without IR. The horizontal lines indicate the equilibrium
price range on the panel for price, the equilibrium efficiency on the panel for efficiency and the
equilibrium number of transactions on the panel for transactions. In the right part of the plots for
the individual strategies the stars denote the valuations/costs of agents and the vertical line shows
the equilibrium price range

of individual rationality constraints. First of all, we observe higher volatility
of submitted orders and, therefore, in price, in both treatments, CL and
OP. Under the CL this higher volatility slightly promotes learning of agents’



566 M. Anufriev et al.

(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.

(c) Individual bids (left) and asks (right) under CL.

(d) Individual bids (left) and asks (right) under OP.

Fig. 12 Dynamics in the AL-environment without IR. The horizontal lines indicate the equilib-
rium price range on the panel for price, the equilibrium efficiency on the panel for efficiency and
the equilibrium number of transactions on the panel for transactions. In the right part of the plots
for the individual strategies the stars denote the valuations/costs of agents and the vertical line
shows the equilibrium price range

valuations/costs. As a result more often we observe the sessions with overtrad-
ing. Under the OP, absence of the IR impairs the coordination to one price,
often leading to undertrading. Both scenarios result in lower efficiency than in
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simulations with IR. It is important to stress that the resulting loss of allocative
efficiency is moderate: it is much lower than the loss observed in simulations
with the ZI traders.

5.2 The role of IEL parameters

The IEL algorithm has two important parameters, the size of the pool of
strategies, J, and the probability of experimentation, ρ. Since the values of
these parameters are chosen in an ad hoc way, it is important to investigate the
robustness of the results to these parameters. For the S5- and AL-environment,
respectively, Tables 3 and 4 summarize the efficiency, price, price volatility
and number of transactions for different combinations of the probability of
experimentation, ρ, and the size of the strategy pool, J.

Our finding that the price volatility and trading volume depend on the
information treatment turn out to be robust to parameter variation. In par-
ticular, the price is less volatile under the OP treatment than under the
CL treatment for any combination of ρ and J in both environments. Also
independent on the values of parameters, we observe overtrading in the CL
treatment and undertrading in the OP treatment. These are the consequences
of the different evolutions of strategy profiles under different treatment and
can be best understood with the help of Results 1 and 2, obtained for a
simpler GS-environment. But what can be said about the allocative efficiency?
Both overtrading and undertrading lower efficiency but for different reasons

Table 3 Aggregate outcomes of the open and close book CDA in the S5-environment for varying
ρ and J averaged over 100 random seeds, 100 trading sessions after 100 transient trading sessions

CL: closed book OP: open book
J = 10 J = 50 J = 100 J = 200 J = 10 J = 50 J = 100 J = 200

ρ = 0.01
Efficiency 0.895 0.882 0.881 0.877 0.871 0.928 0.935 0.941
Price 0.497 0.501 0.499 0.501 0.501 0.501 0.496 0.505
Price Volat 0.123 0.128 0.134 0.137 0.053 0.025 0.024 0.023
Num transact 3.249 3.610 3.628 3.635 2.583 2.752 2.780 2.788

ρ = 0.03
Efficiency 0.889 0.883 0.879 0.879 0.898 0.947 0.953 0.961
Price 0.498 0.502 0.500 0.501 0.502 0.503 0.498 0.500
Price Volat 0.130 0.133 0.136 0.137 0.047 0.026 0.024 0.022
Num transact 3.379 3.553 3.592 3.589 2.677 2.807 2.836 2.868

ρ = 0.10
Efficiency 0.891 0.886 0.884 0.881 0.908 0.947 0.954 0.960
Price 0.502 0.499 0.499 0.498 0.504 0.499 0.508 0.504
Price Volat 0.133 0.136 0.137 0.139 0.058 0.039 0.036 0.033
Num transact 3.234 3.371 3.396 3.415 2.706 2.840 2.864 2.878

ρ = 0.30
Efficiency 0.875 0.882 0.879 0.884 0.834 0.845 0.841 0.844
Price 0.502 0.504 0.502 0.500 0.502 0.499 0.501 0.499
Price Volat 0.131 0.132 0.132 0.132 0.099 0.092 0.091 0.092
Num transact 2.942 3.048 3.063 3.067 2.510 2.551 2.546 2.544
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Table 4 Aggregate outcomes of the open and close book CDA in the AL-environment for varying
ρ and J averaged over 100 random seeds, 100 trading sessions after 100 transient trading sessions

CL: closed book OP: open book
J = 10 J = 50 J = 100 J = 200 J = 10 J = 50 J = 100 J = 200

ρ = 0.01
Efficiency 0.935 0.931 0.931 0.931 0.867 0.912 0.919 0.925
Price 0.627 0.634 0.641 0.642 0.648 0.633 0.641 0.640
Price Volat 0.111 0.123 0.125 0.124 0.040 0.021 0.018 0.018
Num transact 4.180 4.601 4.725 4.759 3.571 3.736 3.780 3.784

ρ = 0.03
Efficiency 0.932 0.931 0.930 0.930 0.887 0.915 0.925 0.929
Price 0.634 0.638 0.640 0.642 0.643 0.640 0.636 0.633
Price Volat 0.120 0.124 0.126 0.127 0.035 0.023 0.022 0.021
Num transact 4.226 4.579 4.643 4.675 3.652 3.774 3.801 3.810

ρ = 0.10
Efficiency 0.932 0.930 0.929 0.929 0.896 0.926 0.935 0.936
Price 0.636 0.638 0.637 0.638 0.642 0.642 0.636 0.638
Price Volat 0.121 0.130 0.129 0.131 0.042 0.028 0.027 0.025
Num transact 4.135 4.290 4.325 4.355 3.686 3.802 3.788 3.811

ρ = 0.30
Efficiency 0.922 0.926 0.927 0.927 0.845 0.850 0.851 0.852
Price 0.643 0.642 0.640 0.641 0.648 0.645 0.642 0.642
Price Volat 0.110 0.112 0.112 0.112 0.070 0.064 0.062 0.062
Num transact 3.963 4.048 4.058 4.074 3.498 3.520 3.514 3.532

and the precise consequence for allocative efficiency depend mostly on the
configuration of demand and supply but also on the parameters. Overtrading
is more detrimental for the S5-environment because of the larger number
of the extramarginal traders and the higher potential efficiency loss. In the
S5-environment for ρ ≤ 0.1 the efficiency in the OP treatment is larger than
the efficiency in the CL treatment (the only exception is ρ = 0.01, J = 10).
For large probability of experimentation the efficiency in the OP drops sig-
nificantly and becomes lower than the efficiency in the CL. On the contrary,
in the AL-environment the CL market has a higher efficiency than the OP
market for most of the parameter values (two exceptions are obtained when
ρ = 0.1 and J = 100 or J = 200).

6 Conclusion

This paper contributes to the issue of market design by analyzing the role
of transparency. We focus on the market organized as a continuous double
auction with an order book, and study the consequences of the use of full or
limited information derived from the order book of a previous period. A fully
rational behavior is extremely difficult to model in such a market, while the
opposite extreme of Zero-Intelligent behavior cannot capture informational
differences in market architecture. We choose an intermediate approach and
model our traders as boundedly rational learning agents, whose strategies
evolve over time. The learning is modeled through the Individual Evolutionary
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Learning algorithm of Arifovic and Ledyard (2004, 2011), which incorporates
two Darwinian ideas. First is experimentation, which means that agents are
allowed to use, in principle, any strategy at some period of time. Second is
selection with reinforcement, so that strategies with higher past payoffs have
higher probability to be used in the future. An important aspect of the IEL is
that every agent evaluates the strategies not only on the basis of the actual, but
also counterfactual (foregone) payoff.

We derive allocative efficiency for the benchmark case with the ZI traders
and show through simulations that IEL leads to a substantially higher
efficiency. As for the transparency issue we show that strategies learned by
traders are remarkably different in the treatments with fully available (“open”)
order book and unavailable (“closed”) order book. Traders, who systemati-
cally participate in the trade, learn to submit their own valuations/costs under
the closed book treatment, and the previously observed trading price under
the open book treatment. These individual differences result in differences at
the aggregate level: higher price volatility and overtrading under the closed
book relative to the open book treatment. Allocative efficiency is comparable
in both cases, however the sources of the inefficiencies are different.

We show that our results are robust with respect to the market environments
that we consider. In addition, the results are robust with respect to changes
in the values of the parameters of the learning model, such as the rate of
experimentation and the size of the pool of strategies. We also find that
the IEL algorithm is effective in wiping out the strategies which contradict
individual rationality constraint and which would result in a strictly negative
payoff. This is an important property of the algorithm, suggesting that it can be
successfully applied in more sophisticated environments, where strategies with
negative performance cannot be easily identified and ruled out at the outset.
Indeed, as experiments in Kagel et al. (1987) and Lei et al. (2001) show, in
reality participants occasionally violate the individual rationality requirement
and trade with clear losses. The learning model applied in this paper does not
contradict such experimental evidence.

In modeling agents’ behavior our approach is relatively simple in com-
parison to some micro-structure studies attempting to model fully rational
behavior. However, our behavioral assumptions fit better to the experimental
evidence of human behavior in complex environment that demonstrates that
human subjects often use simple behavioral rules (Hommes et al. 2005). Based
on such assumptions our model predicts that volatility in the market should
decrease as a result of higher transparency. This is consistent with the study of
Boehmer et al. (2005) for the NYSE. Some of their finding (e.g., higher order
splitting as a result of increasing market transparency) cannot be replicated in
this paper, because we do not allow individual traders to buy or sell multiple
units. Several other assumptions of this paper could also be relaxed. Allowing
for cancelation of some orders would bring us to a more realistic setting,
which lies in between of the two extremes: no-cancelation as in this paper
and cancelation of all remaining orders after every transaction as in Gode and
Sunder (1993). Submission of multiple orders would allow us to model a more
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realistic intermediate situation between the two extremes: one-order per agent
in one trading session as here and unbounded amount of multiple orders as
in Gode and Sunder (1997). Finally, it would be also interesting to consider
endogenous dynamics for valuations and costs, explored in heterogeneous
agent models literature, see, e.g., Brock and Hommes (1998) and Anufriev
and Panchenko (2009).
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Appendix

Def inition of the frequently used acronyms

Acronym Definition Explained in

CDA Continuous double auction Section 2.2
ZI Zero intelligent (agent) Section 2.3.1
IR Individual rationality Section 2.3.1
IEL Individual evolutionary learning Section 3
AL Environment from Arifovic and Ledyard (2007) Section 2.1
GS Environment from Gode and Sunder (1997) Section 2.1
S5 Symmetric environment with 5 buyers and 5 sellers Section 2.1
OP Open book (treatment) Section 3
CL Closed book (treatment) Section 3
IMB Intramarginal buyer Section 2.1
IMS Intramarginal seller Section 2.1
EMB Extramarginal buyer Section 2.1
EMS Extramarginal seller Section 2.1

Proof of Proposition 2.1 First, let us consider ZI agents with IR. We have
three types of traders:

• one intramarginal buyer (IMB) whose valuation is 1 and whose bid price
is drawn from the uniform distribution on [0, 1];
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• one intramarginal seller (IMS) whose valuation is 0 and whose ask price is
drawn from the uniform distribution on [0, 1];

• an infinite number of extramarginal buyers (EMBs) whose valuations are
β and whose bid prices are drawn from the uniform distribution on [0, β].

In the proof we rely on the following arguments. Because the order of arrival
of all traders is random, when number of the EMBs n → ∞, the number of
the EMBs arriving before the IMS becomes sufficiently large with probability
1. Since the number of the EMBs arriving prior to the IMS is sufficiently
large, the best (highest) bid price among these EMBs converges to β with
probability 1. This bid is the best available order of the opposite side for the
IMS, unless the IMB arrives prior to the IMS and outbids the highest EMBs’
bid by submitting bid b > β. The same line of reasoning is used in the proof of
a similar proposition in Gode and Sunder (1997).

We consider, in turn, all possible outcomes of a trading session, evaluating
probability of each outcome and its allocative efficiency. Below we distinguish
between two equiprobable outcomes (the IMB arrives before the IMS and vice
versa) and then compute the (conditional) probabilities of every single event.

1. the IMB arrives before the IMS. This event occur with probability 1
2 . The

further development depends on whether the IMB outbids the EMB with
the highest bid β:

(a) the IMB bids b < β. Since the IMB is ZI, this event occurs with
probability β. But the highest EMBs’ bid is β, hence the IMB fails
to outbid the EMB with the highest bid. Two possibilities arise:

i. the IMS asks a < β with P = β - the IMS trades with the EMB;
efficiency is β, or

ii. the IMS asks a > β, P = (1 − β) - no transaction occurs; efficiency
is 0.

(b) the IMB bids b > β with P = (1 − β) - the IMB outbids the EMB,
and

i. the IMS asks a < β with P = β - then the IMB trades with the
IMS; efficiency is 1, or

ii. the IMS asks a > β and a < IMB b with P = (1 − β)/2 - then the
IMB trades with the IMS; efficiency is 1, or

iii. the IMS asks a > β and a > IMB b with P = (1 − β)/2 - the IMS
asks is too high, no trade occurs; efficiency is 0.

2. the IMB arrives after the IMS with P = 0.5,

(a) the IMS asks a < β with P = β - the EMB trades because the IMB
did not have a chance to outbid it; efficiency is β, or

(b) the IMS asks a > β with P = 1 − β - none of the EMBs can trade and

i. the IMB bids b < β with P = β - the IMB bids too low, no
transaction occurs, efficiency is 0, or
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ii. the IMB bids b > β and b < IMS a with P = (1 − β)/2 - the IMB
bids too low, no transaction occurs, efficiency is 0, or

iii. the IMB bids b > β and b > IMS a with P = (1 − β)/2 - the IMB
trades with the IMS; efficiency is 1.

Expected efficiency is given by the following expression

E= 1
2

(
β3 + (1 − β)2

2
+ β(1 − β)

)
+ 1

2

(
β2 + (1 − β)2

2

)
= 1

2
(1 + β3 + β2 − β)

Second, we consider the case of ZI agents without IR. In this case there is
no difference in bidding behavior between the IMB and EMB traders. Thus,
when the number of the EMB traders converges to infinity with probability 1,
one EMB will trade. Such trade delivers efficiency β. 
�

Proof of Corollary 1 A transaction price in the CDA is determined using
price/time priority and highly depends on the order of the agents’ arrival.
Given that agents bid/ask their valuations/costs and the fact the order of their
arrival is randomly permuted, price vary for different trading sessions and,
hence, is volatile over time.

To derive Eq. 4.1 we consider the following situations:

1. The IMS arrives first, probability P = 1/(n + 2), and

(a) the IMB arrives next, probability P = 1/(n + 1), and efficiency is 1,
or,

(b) the EMB arrives next, probability P = n/(n + 1), and efficiency is β

In this situation the price is 0.
2. The IMB arrives first, probability P = 1/(n + 2), and efficiency is 1. In

this situation the price is 1.
3. An EMB arrives first, probability P = n/(n + 2), and

(a) the IMS arrives before the IMB, probability P = 1/2, and efficiency
is β, in this situation the price is β, or,

(b) the IMS arrives after the IMB, probability P = 1/2, and efficiency
is 1, in this situation the price is 1.

Summing the terms we obtain Eq. 4.1 for the efficiency. 
�
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