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Abstract

We consider a general multivariate model where univariate marginal distributions
are known up to a parameter vector and we are interested in estimating that parameter
vector without specifying the joint distribution, except for the marginals. If we assume
independence between the marginals and maximize the resulting quasi-likelihood, we
obtain a consistent but inefficient QMLE estimator. If we assume a parametric copula
(other than independence) we obtain a full MLE, which is efficient but only under a
correct copula specification and may be biased if the copula is misspecified. Instead we
propose a sieve MLE estimator (SMLE) which improves over QMLE but does not have
the drawbacks of full MLE. We model the unknown part of the joint distribution using
the Bernstein-Kantorovich polynomial copula and assess the resulting improvement over
QMLE and over misspecified FMLE in terms of relative efficiency and robustness. We
derive the asymptotic distribution of the new estimator and show that it reaches the
relevant semiparametric efficiency bound. Simulations suggest that the sieve MLE can
be almost as efficient as FMLE relative to QMLE provided there is enough dependence
between the marginals. We demonstrate practical value of the new estimator with
several applications. First, we apply SMLE in an insurance context where we build a
flexible semi-parametric claim loss model for a scenario where one of the variables is
censored. As in simulations, the use of SMLE leads to tighter parameter estimates.
Next, we consider financial risk management examples and show how the use of SMLE
leads to superior Value-at-Risk predictions. The paper comes with an online archive
which contains all codes and datasets.

∗Helpful comments of seminar participants at University of Toronto, University of Pittsburgh, UNSW
Sydney, Concordia University, QMF, International Panel Data and FESAMES are gratefully acknowledged.

†Brock University, St Catharines ON L2S 3A1, Canada; email: imedovikov@brocku.ca
‡Economics, UNSWBusiness School, Sydney NSW 2052, Australia; email: valentyn.panchenko@unsw.edu.au
§University of Sydney Business School & CEBA & CIREQ; Sydney NSW 2006, Australia; email:

artem.prokhorov@sydney.edu.au



1 Introduction

Consider an m-variate random variable Y with joint pdf h(y1, . . . , ym). Let f1(y1; β1), . . . ,

fm(ym; βm) denote the corresponding marginal pdf’s, known up to a parameter vector. The

dependence structure between the marginals is not parameterized. We observe an i.i.d. sample

{yi}Ni=1 = {y1i, . . . , ymi}Ni=1 and we are interested in estimating β efficiently without assuming

anything about the joint distribution except for the marginals.

As an example consider the setting of several cross-sections, each of which represents a

different but not unrelated random variable. A classic copula application is the joint mod-

elling of insurance claim payments and claim-related expenses (see e.g., Frees and Valdez,

1998). There is a well specified marginal for each cross section, e.g., a well justified family of

distributions of historical insurance losses, and we are interested in efficient estimation of the

parameters in the marginal distributions with no apriori knowledge of the form or strength

of dependence between them. This or similar setting is often encountered in microeconomic

and actuarial applications (see, e.g, Winkelmann, 2012; Amsler et al., 2014).

As an alternative empirical setting, consider multivariate financial applications, where

interest is in capturing the temporal dependence between processes (see, e.g., Chen and Fan,

2006a,b; Hafner and Reznikova, 2010). In such a setting, it is of much practical importance

to obtain improved estimates of a feature of an univariate conditional distribution such as

Value-at-Risk, by accounting for dependence of one time series with others (see, e.g., Pitt and

Walker, 2005, for several such applications in state-space modelling).

The literature on semiparametric copula models has focused on the case when the marginals

are specified nonparametrically and the copula function is given a parametric form (see, e.g.,
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Chen et al., 2006; Segers et al., 2008), which is an appropriate setting for some financial

applications where it is important to parameterize dependence. In our setting, dependence

is used solely to provide more precision in estimating marginal parameters, so we study the

converse problem.

Our starting point is the marginals known up to a parameter vector. However this does

not preclude some misspecification in the marginals. In particular, our results still hold in

cases when misspecification does not lead to inconsistency of estimation for the feature of

interest. Because we deal with generic likelihoods, in essence we allow for the marginals to

be incorrect as long as they have zero-mean score functions at the pseudo-true parameter

(White, 1982).

We will use the well known representation of log-joint-density in terms of log-marginal-

densities and the log-copula-density:

lnh(y1, . . . , ym; β) =
m∑
j=1

ln fj(yj; βj) + ln c(F1(y1; β1), . . . , Fm(ym; βm)), (1)

where c(·) is a copula density, Fj(·) denotes the corresponding marginal cdf and where we

collect all parameters of the marginals in one vector β but allow for each marginal to depend

on distinct subvectors of β. This decomposition is due to Sklar’s (1959) theorem which states

that any continuous joint distribution can be represented by a unique copula function of

the marginal cdf’s. This is valid for any m but in simulations and applications we focus on

the values m = {2, 3} to keep the nonparametric task of estimating the copula component

manageable.
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It is well understood that the parameters of the marginals can be consistently estimated

by maximizing the likelihood under the assumption of independence between the marginals –

this is the so called quasi maximum likelihood estimator, or QMLE. The copula term in (1)

is zero in this case because the independence copula density is one. However, QMLE ignores

the dependence information and is not efficient if marginals are not independent. For highly

dependent marginals, the efficiency loss relative to the correctly specified full likelihood is

quite large. Joe (2005), for instance, reports up to 93% improvements in relative efficiency

over QMLE in simulations when the full likelihood is correctly specified. We note that the

marginals do not have to have common parameters for this result to apply.1

There are numerous estimators that improve on QMLE but remain robust to depen-

dence by not specifying it. For example, Prokhorov and Schmidt (2009) propose stacking

the score functions from the marginal distributions and applying the Generalized Method of

Moments (GMM) machinery to achieve the improvements via the use of correlation between

the marginal scores2; Nikoloulopoulos et al. (2011) use a similar approach and construct a

weighted sum of the marginal scores by fitting and discretizing a multivariate normal model

for the scores. These estimators are simple because they are based on linear combinations of

the marginal scores. They are somewhat restrictive in that they cannot attain full efficiency

unless the use of the true copula cannot improve upon the use of a linear combination of

marginal scores. We return to this point later.

1Under dependence, random variables are constrained by an additional functional relationship that
typically helps to identify the parameters of the marginals. Specifically, in the bivariate case,
y1 = F−1

1 (C−1(η|F2(y2;β2));β1), where C−1(η|F2(y2;β2)) is the generalized inverse of conditional copula

C(u1|u2) =
∂C(u1,u2)

∂u2
and η ∈ [0, 1] is a uniform random variable. See some examples with specific marginals

for the simpler cases of extreme dependence in Section 3.
2The GMM is also known as the method of estimating equations (see, e.g., Hansen, 1982; Godambe and

Thompson, 1978)
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The situation when using copula terms in the likelihood does not improve asymptotic

efficiency over QMLE is known as copula redundancy. Prokhorov and Schmidt (2009) derived

a necessary and sufficient condition for copula redundancy and showed that such situations are

very rare. Hao et al. (2018) proposed a test of copula redundancy. Essentially, a parametric

copula is redundant for the estimation of parameters in the marginals if and only if the copula

score with respect to these parameters can be written as a linear combination of the marginal

scores – a condition generally violated for most commonly used parametric copula families and

marginal distributions. As a consequence, significant efficiency gains due to the nonlinearity

of the copula score in terms of the marginal scores remain unexploited.

An alternative that is more efficient asymptotically is a fully parametric estimation of

the entire multivariate distribution by full MLE. This means assuming a parametric copula

specification in addition to the marginal distributions. It is now well understood that, unlike

QMLE, FMLE is generally not robust to copula misspecification. That is, the efficiency gains

will come at the expense of an asymptotic bias if the joint density is misspecified. Prokhorov

and Schmidt (2009) point out that there are robust parametric copulas, for which the pseudo

MLE (PMLE) using an incorrectly specified copula family leads to a consistent estimation.

However, copula robustness is problem specific and some robust copulas are robust because

they are redundant. So finding a general class of robust non-redundant copulas remains an

unresolved problem.

In this paper we address this problem using a semiparametric approach. That is, we

investigate whether we can obtain a consistent estimator of β, which is relatively more efficient

than QMLE, by modelling the copula term nonparametrically. We use sieve MLE (SMLE) to
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do that. The questions we ask are whether a sieve-based copula approximator is the robust

non-redundant alternative to QMLE and PMLE and what is the semiparametric efficiency

bound for the SMLE of β. So our paper relates to the literature on sieve estimation (see, e.g.,

Ai and Chen, 2003; Newey and Powell, 2003; Bierens, 2014) and on semiparametric efficiency

bounds (see, e.g., Severini and Tripathi, 2001; Newey, 1990), including bounds for rank-based

copula estimators (see, e.g., Segers et al., 2014; Hoff et al., 2014). The paper is similar

to Hu et al. (2017) in that they also use a sieve MLE involving the Bernstein polynomial

and discuss convergence and efficiency.3 However, they work with copula functions, not

copula densities, which complicates monotonicity restrictions, and their setup is restricted

to proportional hazard models; they do not discuss relative efficiency of SMLE, do not go

beyond two dimensions or derive the Riesz representer.

The paper is organized as follows. In Section 2 we define our estimator and prove con-

sistency, asymptotic normality and semiparametric efficiency. Section 3 contains simulation

results, confirming the significant efficiency gains permitted by SMLE. Section 4 presents an

actuarial application in two dimensions and a financial application in two and three dimen-

sions. Section 5 contains concluding remarks.

2 Sieve MLE

Denote the true copula density by co(u), u = (u1, . . . , um), and denote the true parameter

vector by βo. Let βo belong to finite dimensional space B ⊂ Rp and co(u) belong to an infinite-

dimensional space Γ = {c(u) : [0, 1]m → [0, 1],
∫
[0,1]m

c(u)du = 1,
∫
[0,1]m−1 c(u)du-ℓ = 1,∀ℓ}, where

3We thank an anonymous referee for pointing out the existence of this paper to us.
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u-ℓ excludes uℓ. These conditions reflect that any copula is a joint probability distribution on

the unit cube [0, 1]m with uniform marginals. Given a finite amount of data, optimization over

the infinite-dimensional space Γ is not feasible. The method of sieves is useful for overcoming

this problem. See Appendix A for the basics of sieve MLE.

Let ΓN denote a sequence of approximating spaces, called sieves, such that
⋃

N ΓN is

dense in Γ. One of the challenges of SMLE in our setting is ensuring that ΓN consists of

proper copula pdfs, that is, non-negative functions that integrate to one and have uniform

marginals. Exponential or quadratic transformations are often used to ensure positivity and

division by a normalizing constant is used to ensure that the sieve integrates to one (see,

e.g., Chen et al., 2006). However, it is difficult to find an appropriate normalisation to

ensure that all marginals are uniform. For example, Anderson et al. (2021) show that very

few of the popular nonparametric copula estimators satisfy this property in finite samples.

Moreover, the properties of the normalised objects, namely, the rates of convergence, may

differ from the original sieve and may not be easy to derive. A sieve which does not require

any transformation to satisfy the proper copula conditions and has meaningful parameters is

the Bernstein-Kantorovich polynomial (see, e.g., Sancetta and Satchell, 2004).
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2.1 Bernstein-Kantorovich Sieve

The Bernstein-Kantorovich sieve is a tensor product sieve which uses β-densities as basis

functions; it can be written as follows:

cJN (u) = (JN)
m

JN−1∑
v1=0

· · ·
JN−1∑
vm=0

ωv

m∏
l=1

 JN − 1

vl

uvl
l (1− ul)

JN−vl−1, (2)

where ωv denotes parameters of the polynomial indexed by multi-index v = (v1, . . . , vm)

such that 0 ≤ ωv ≤ 1 and
∑JN−1

v1=0 · · ·
∑JN−1

vm=0 ωv = 1. These restrictions ensure that the

above equation is a proper density. The interpretation of the coefficients ωv is that they are

probability masses on an JN × · · · × JN grid (see, e.g., Zheng, 2011; Burda and Prokhorov,

2014).4 In order to ensure that cJN (u) is a copula density, i.e. that its marginals are uniform,

we further require that
∑

v-ℓ|vℓ
ωv = 1/JN , where multiple summations are performed over

all elements of v except vℓ, ℓ = 1, . . . ,m for each fixed value of vℓ, where vℓ = 0, . . . JN − 1.

Hence, there are JN ×m of these restrictions in total.

The weights ωv are akin to a multivariate empirical copula density estimator, ωv =

1
N

∑N
i=1 I(ui ∈ Hv), where ui = (ui1, . . . , uim) ∈ [0, 1]m, I(·) is the indicator function and

Hv =

[
v1
JN

,
v1 + 1

JN

]
× · · · ×

[
vm
JN

,
vm + 1

JN

]
. (3)

Then, the Bernstein-Kantorovich polynomial sieve can be viewed as a smoothed copula his-

togram where smoothing is done by the product of beta-densities. Alternatively, it can be

4For simplicity we assume that JN is the same in each dimension ℓ, but this assumption can be easily
relaxed in cases where such asymmetry is required.
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viewed as a mixture of a product of beta-densities in u (see, e.g., Burda and Prokhorov, 2014).

Sancetta (2007) derives the rates of convergence of the Bernstein-Kantorovich copula to

the true copula. Hirukawa et al. (2020) explore weak and strong uniform convergence of beta

kernels on expanding compact sets on (0, 1). Petrone and Wasserman (2002) and Burda and

Prokhorov (2014) establish consistency of the Bernstein-Kantorovich polynomial when used as

a prior on the space of densities on [0, 1]m in a univariate and multivariate Bayesian framework.

Ghosal (2001) and references therein discuss the rate of convergence of the sieve MLE based on

the Bernstein polynomial (only for one-dimensional densities). Uniform approximation results

for the univariate and bivariate Bernstein density estimator can be also found in Vitale (1975)

and Tenbusch (1994). As JN → ∞, cJN (u) is known to converge to the probability limit of

the empirical copula density estimator at every point on [0, 1]m where the limit exists, and if

it is continuous and bounded then the convergence is uniform (see, e.g., Lorentz, 1986).5

This sieve is particularly attractive in our setting because of the uniform rate of con-

vergence results available for cJN and because of the empirical copula density interpretation

of ωv. The former ensures a relatively fast convergence compared to other tensor product

sieves, which we observe in simulations, while the latter permits natural adaptive dimension

reduction based on dropping ωv’s which correspond to sparsely populated grid cells. Other

potential explanations for the good performance in economics, finance, actuarial science and

5In practice, the choice of JN is important to the extent to which it affects the bias-variance trade-off in
finite samples: as shown by Sancetta and Satchell (2004), the Bernstein-Kantorovich sieve has bias of the order

O(J−1
N ), which is the same as for a histogram or kernel-smoothers, but variance of order O(J

m/2
N ) inside the

hypercube, which is a square-root of the rate for a histogram or kernel estimator. The theoretically optimal

order for JN in the MSE sense is O(N
2

m+4 ), which is greater than for standard nonparametric estimators
such a histogram or first-order kernels, implying relatively little smoothing required for this sieve. Suboptimal
growth of JN affects the balance of bias and variance but has no effect on semiparametric efficiency of β̂ as
long as JN → ∞, JN

N → 0 and Assumption A4 holds.
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risk management are that such data have inhomogeneous dependence structures, are not

highly correlated and sparse (see, e.g., Diers et al., 2012).

2.2 Asymptotic Properties

Let the sieve for Θ = B×Γ be denoted by ΘN = B×ΓN , where ΓN contains a generic vector

of copula parameters γ, and let θ = (β′, γ). For the special case of the Bernstein-Kantorovich

copula, γ = ωv.

We now list identification and smoothness assumptions. Versions of these are commonly

used in sieve estimation literature (see, e.g., Shen, 1997; Ai and Chen, 2003; Chen et al., 2006;

Chen, 2007; Bierens, 2014). In the discussion of these assumptions we focus on what is new

to our copula-based settings.

Assumptions

A1 (identification) βo ∈ int(B) ⊂ Rp, B is compact and there exists a unique θo which max-

imizes E[lnh(Yi; θ)] over Θ = B × Γ.

A2 (smoothness) Γ = {c = exp(g) : g ∈ Λr([a, b]m),
∫
c(u)du = 1,

∫
[0,1]m−1 c(u)du-ℓ = 1, ∀ℓ}, where

Λr([a, b]m) denotes the Hölder class of r-smooth functions on [a, b]m, ∀[a, b] ⊂ (0, 1), r > 1/2,

and ln fj(yj; β), j = 1, . . . ,m, are twice continuously differentiable w.r.t. β.

The smoothness condition restricts log-copula-densities to the class of real-valued, contin-

uously differentiable functions whose J-th order derivative satisfies Hölder’s condition inside

the hypercube

|DJg(x)−DJg(y)| ≤ K|x− y|r−J
E , for all x, y ∈ [a, b]m and some r ∈ (J, J + 1]
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where Dα = ∂α

∂x
α1
1 ...∂xαm

m
is the derivative operator, α = α1 + . . . + αm, |x|E = (x′x)1/2 is the

Euclidean norm and K is a positive constant. We exclude the boundaries of the hypercube

which means we exclude from consideration the edges of [0, 1]m where copula densities can be

unbounded.6 Commonly used densities, including copula densities, belong to the Hölder class

on [a, b]m, and various linear sieves, as well as the Bernstein-Kantorovich polynomial sieve,

are known to approximate such functions well. Commonly used copulas satisfy the stronger

property of Lipschitz continuity (see, e.g., Siburg and Stoimenov, 2008) but this property

does not translate to copula densities. Λr([a, b]m) is one of the most popular function classes

in nonparametric estimation literature (see, e.g., Horowitz, 1998; Chen, 2007).

In our semi-parametric settings, the initial parameter vector is infinite dimensional because

it contains the nonparametric part, ln c, along with β. So the asymptotic distribution of β̂ –

the first p elements of θ̂ – depends on the behavior of θ̂ as its dimension grows. By the Gramér-

Wold device, this distribution is normal if, for any λ ∈ Rp, ∥λ∥ ̸= 0, the distribution of the

linear combination λ′β̂ is normal. Note that λ′β is a functional of θ, call it ρ(θ). Given a sieve

estimate θ̂, the asymptotic distribution of ρ(θ̂) depends on smoothness of the functional and

on the convergence rate of the nonparametric part of θ̂ (see, e.g., Shen, 1997). In our setting,

the functional is simple and smooth. But the rate of convergence of the nonparametric part of

θ̂ may be quite slow especially if m is large. It is a well established result in univariate settings

that in such cases the smoothness of ρ(β) compensates for this and a
√
N -convergence can be

achieved for β̂ (see, e.g., Bierens, 2014). We obtain a similar result in multivariate settings.

6An alternative is to employ at the edges an expanding set sequence (see, e.g., Hirukawa et al., 2020) or
a trimming or weighting scheme (see, e.g., Hirukawa et al., 2020; Hill and Prokhorov, 2016). We leave such
approaches for future work.
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Let l̇(θo)[ν] denote the directional derivative, evaluated at θo, of the log-likelihood in

direction ν = (ν ′
β, νγ)

′ ∈ V , where V is the linear span of Θ− {θo}. Then,

l̇(θo)[ν] ≡ limt→0
lnh(y,θ+tν)−lnh(y,θ)

t

∣∣∣
θ=θo

= ∂ lnh(y,θo)
∂θ′

[ν]

=
∑m

j=1

{
∂ ln fj(yj ,βo)

∂β′ +
(

1
c(u)

∂c(u)
∂uj

)∣∣∣
uk=Fk(yk,βo)

∂Fj(yj ,βo)

∂β′

}
νβ

+ 1
c(u)

νγ(u)
∣∣∣
uk=Fk(yk,βo)

,

where the last equation follows from (1). Similarly, define ρ̇(θo)[ν] as follows:

ρ̇(θo)[ν] ≡ limt→0
ρ(θ+tν)−ρ(θ)

t

∣∣∣
θ=θo

= λ′νβ

= ρ(ν)

Let ⟨·, ·⟩ denote the inner product based on the Fisher information metric on V and let

|| · || denote the Fisher information norm on V . Then, ⟨ν1, ν2⟩ = E
[
l̇(θo)[ν1]l̇(θo)[ν2]

]
and

||ν|| =
√

⟨ν, ν⟩, where expectation is with respect to the true density h. The closed linear

span of Θ− {θo} and the Fisher information metric form a Hilbert space, call it (V̄ , || · ||).

Since ρ(θ) = λ′β is linear on V̄ , in order to show smoothness of ρ(θ), we only need to

establish that it is bounded on V̄ , i.e. that sup0̸=θ−θo∈V̄
|ρ(θ)−ρ(θ0)|

||θ−θo|| < ∞. Also, by the results in

Shen (1997), boundedness of ρ(θ) = λ′β is necessary for ρ(θ) = λ′β to be estimable at the
√
N -

rate. Boundedness of ρ(θ) will imply that ρ(θ) is continuous. Moreover, since ρ̇(θo)[ν] = ρ(ν),

boundedness of the directional derivative of ρ(θ) is equivalent to boundedness of ρ(θ) itself,
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i.e. it is equivalent to sup0̸=ν∈V̄
|ρ̇(θo)[ν]|

||ν|| < ∞. Because ρ(ν) = λ′νβ, this is the case if and only

if supν ̸=0,ν∈V̄
|λ′νβ |2
||ν||2 < ∞. So we now show when this condition holds.

We follow Ai and Chen (2003) and Chen et al. (2006) and look for the minimal compo-

nentwise Fisher information matrix for β. For our specific setting, this minimization problem

can be written as follows:

inf
gq

E

[
m∑
j=1

{
∂ ln fj(yj, βo)

∂βq

+

(
1

c(u)

∂c(u)

∂uj

)∣∣∣∣
uk=Fk(yk,βo)

∂Fj(yj, βo)

∂βq

}
(4)

+

(
1

c(u)
gq(u)

)∣∣∣∣
uk=Fk(yk,βo)

]2
,

where E
[

1
c(u)

gq(u)
]
= 0. Let g∗q denote the solution of (4), q = 1, . . . , p, and let g∗ =

(g∗1, . . . , g
∗
p).

We can now find the sup by writing

supν ̸=0,ν∈V̄
|λ′νβ |2
||ν||2 = supν ̸=0,ν∈V̄

{
|λ′νβ|2

(
E
[
l̇(θo)[ν]

2
])−1

}
= λ′ (ESβS

′
β

)−1
λ,

(5)

where

S ′
β =

∑m
j=1

{
∂ ln fj(yj ,βo)

∂β′ +
(

1
c(u)

∂c(u)
∂uj

)∣∣∣
uk=Fk(yk,βo)

∂Fj(yj ,βo)

∂β′

}
+
(

1
c(u)

g∗(u)
)∣∣∣

uk=Fk(yk,βo)

g∗ = (g∗1, . . . , g
∗
p) and E

[
1

c(u)
g∗q (u)

]
= 0.

(6)

Note that the second equality in (5) is true because g∗ is the minimizer of E
[
l̇(θo)[ν]

2
]
over

νγ at the true β0. So ρ(θ) = λ′β is bounded if and only if ESβS
′
β in (5) is a finite and positive
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definite matrix.

Assumption A3 (nonsingular information) Assume that ESβS
′
β is finite and positive definite.

It is worth returning to the parametric setting to illustrate the intuition behind Assumption

A3. In essence, ESβS
′
β is the marginal Fisher information and Assumption A3 can be viewed

as a non-redundancy condition of the true copula for the estimation of β (see Prokhorov and

Schmidt, 2009, Section 4). Aside from technical failures such as moment non-existence, it

assumes away cases when knowledge of the true copula cannot improve precision in the MLE

of β in principle. Prokhorov and Schmidt (2009) show that these cases are problem specific

and rare – this happens only if the copula score happens to be a linear combination of the

marginal scores of β. For example, for a bivariate normal with a common mean and known

correlation, the copula score for the mean is a linear combination of the marginal scores for

the mean. However, this is not the case if the normal copula is replaced by the FGM copula or

any other commonly used copula function with known dependence parameter (see, Prokhorov

and Schmidt, 2009, Examples 1, 5 and 6).

Having established smoothness of ρ(θ) we can use the Riesz representation theorem (see,

e.g., Kosorok, 2008, p. 328) to derive the asymptotic distribution of λ′β. Basically, the theorem

states that for any continuous linear functional L(ν) on a Hilbert space there exists a vector

ν∗ (the Riesz representer of that functional) such that, for any ν,

L(ν) = ⟨ν, ν∗⟩,
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and the norm of the functional defined as

||L||∗ ≡ sup
||ν||≤1

||L(ν)||

is equal to ||ν∗||. The representer will be used in the derivation of asymptotic normality and

semiparametric efficiency of the sieve MLE.

The Riesz representation theorem, when applied to ρ̇(θo)[ν] = ρ(ν), suggests that there

exists a Riesz representer ν∗ ∈ V̄ of ρ(ν), for which λ′(β̂ − βo) = ⟨θ̂ − θo, ν
∗⟩ and ||ν∗|| =

sup||ν||≤1 ||ρ(ν)||. The first claim implies that the distributions of β̂−βo and of ⟨θ̂− θo, ν
∗⟩ are

identical, which is useful for proving asymptotic normality of
√
N(β̂ − βo). The second claim

is used in the proof of semiparametric efficiency. Both of these claims are useful for deriving

the explicit form of the representer for our settings.

It turns out we have already found ν∗ when we showed smoothness of ρ(θ) by find-

ing supν ̸=0,ν∈V̄
|λ′νβ |2
||ν||2 . Since supν ̸=0,ν∈V̄

|λ′νβ |2
||ν||2 = sup||ν||=1 ||ρ(ν)||2, the representer for our

problem is a vector whose squared Fisher information norm is equal to supν ̸=0,ν∈V̄
|λ′νβ |2
||ν||2 =

λ′ (ESβS
′
β

)−1
λ. It is straightforward to show that this vector can be written as follows

ν∗ =
(
I, g∗

′
)′ (

ESβS
′
β

)−1
λ (7)

As a check we can see that the squared Fisher information norm of ν∗ can be written as
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follows

||ν∗||2 = E
[
l̇(θo)[ν

∗]l̇(θo)[ν
∗]
]

= λ′ (ESβS
′
β

)−1
λ.

The last assumption required for asymptotic normality of
√
N(β̂−βo) is an assumption on

the rate of convergence for the sieve MLE estimator of the unknown copula function. As in

other sieve literature, we allow the sieve estimator to converge arbitrary slowly – smoothness

of ρ(θ) compensates for that and the parametric part of the estimator is still
√
N -estimable.

We also impose a boundedness condition on the second order term in the Taylor expansion

of the sieve log-likelihood function. This technical condition will usually follow from the

smoothness assumption A2 but we state it explicitly to simplify the proof.

Assumption A4 (convergence of sieve MLE and smoothness of higher order term in Tay-

lor expansion) Assume (A) that ||θ̂ − θo|| = OP (δN) for (δN)
w = o(N−1/2), w > 1; (B)

there exists ΠNν
∗ ∈ VN − {θo} such that δN ||ΠNν

∗ − ν∗|| = o(N−1/2) and (C) that, for

any θ : ||θ − θo|| = Op(δN), the additional conditions on the second-order derivatives stated

in the Appendix hold.

A discussion of convergence rates of different sieves is provided by Chen (2007) and in

references therein; general results on convergence rates of sieve MLE can be found in Wong and

Severini (1991); Shen and Wong (1994). Basically, Assumption A4(A) covers all commonly

encountered sieves. For example, for the trigonometric sieve, Shen and Wong (1994) show

that its order of convergence is Op(N
−r/(2r+1)), where r is the Hölder exponent; for Bernstein-
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Kantorovich polynomial sieves, Sancetta and Satchell (2004) show that its rate of convergence

is Op(N
−4/(m+4)) within the hypercube, where m is the dimension; Bouezmarni et al. (2010)

extend the results of Sancetta and Satchell (2004) to α-mixing data. Assumptions A4(B)-(C)

are technical assumptions that control smoothness of the Riesz representer and the second

order term in the expansion of the log-likelihood (see Chen and Fan, 2006b, for details).

We can now state our main consistency and asymptotic efficiency results.

Theorem 1 Under A1-A4,
√
N(β̂ − βo) ⇒ N(0, (E[SβS

′
β])

−1).

Proof. See Appendix B for all proofs.

Theorem 2 Under A1-A4, ||ν∗||2 is the lower bound for semiparametric estimation of λ′β,

i.e. β̂ is semiparametrically efficient.

In practice, one needs to estimate the asymptotic variance in order to conduct inference on

β. The matrix E[SβS
′
β] can be estimated consistently as a sample average of SβS

′
β, once we

obtain β̂, ĉ, ĝ∗q ’s. Parameter estimates β̂ and ĉ are obtained in the sieve MLE but estimation

of g∗q requires a separate sieve minimization problem.7 In our settings, we obtain consistent

estimators g∗q as solutions to the following problem

arg min
gq∈AN

N∑
i=1

[
m∑
j=1

{
∂ ln fj(yji, β̂)

∂βq

+

(
1

ĉ(ûi)

∂ĉ(ûi)

∂uj

)∣∣∣∣
ûki=Fk(yki,β̂)

∂Fj(yji, β̂)

∂βq

}
(8)

+
1

ĉ(ûi)
gq(ûi)

∣∣∣∣
ûki=Fk(yki,β̂)

]2
, q = 1, . . . , p

7An alternative estimator of E[SβS
′
β ]

−1 was proposed by Ackerberg et al. (2012, 2014). It uses the covari-
ance matrix of all p+ Jm

N model parameters (both parameters in the marginal and in the copula). The upper
left p× p block of its inverse is used a variance estimator. However, this method assumes that the likelihood
is separable in β and c, which is not the case in our settings. This causes the estimate to be numerically
unstable.
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Figure 1: Asymptotic relative efficiency of QMLE to FMLE (a) and SMLE (b).

where AN is one of the sieve spaces discussed above and β̂ and ĉ are consistent estimates of

β and c and
∫
gq(u)/ĉ(u) du = 0.

Specific aspects of our implementation of the sieve estimator are discussed in Appendix C.

3 Simulations

We focus on the two-dimensional distributions first and then extend the simulations to a

three-dimensional case.8 Our simulation study is inspired by Joe (2005) who studies the

8A Matlab code implementing the Bernstein-Kantorovich sieve and other codes used in this and the next
sections are available at http://research.economics.unsw.edu.au/vpanchenko/software/scopula.zip.
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asymptotic relative efficiency (ARE) of copula based MLE, i.e. the ratio of the asymptotic

variance of FMLE to that of QMLE. He shows that ARE depends on the specification of

marginals and copula as well as on the strength of dependence. Moreover, for asymmetric

marginal distributions, e.g., exponential, he finds that ARE for strongly negatively dependent

data is much larger than for strongly positively dependent data holding the same absolute

dependence strength.9 We start our simulations from the bivariate DGPs with exponential

marginals with distinct means µ1 = 0.5, µ2 = 1;10 the dependence is modeled with various

commonly used bi-variate copulae, i.e., Gaussian, Clayton, Plackett, and Frank. Figure 1

reports AREs – panel (a) QMLE/FMLE and panel (b) QMLE/SMLE – as a function of

dependence strength measured by Spearman’s ρ for the various copulae we use. Spearman’s

ρ varies in the range from -0.8 to 0.8. Note that we use the Clayton copula only for positive

dependence.11 The SMLE asymptotic variance is estimated using (8) for a sample of 1,000,000

observations, where we use the tensor product sieve with cosine basis functions without the

constant term to approximate gq. The number of sieve elements is 10× 10 = 100.

Figure 1 confirms that there is a scope for improvement over the QMLE and that the largest

gains are in the case of strong negative dependence. Naturally, the efficiency gains reported

in Figure 1 using FMLE (panel a) are higher than those obtained using SMLE (panel b). As

expected the AREs of both FMLE and SMLE are near one (subject to some estimation noise)

9Introducing a negative dependence in the DGP with two exponential marginals makes them skewed in
the opposite directions. Accounting for the dependence in this case substantially helps with estimating the
parameters of the marginals. We illustrate this later using the Fréchet bounds.

10Note that it is easy to show analytically that for a multivariate distribution with exponential marginals
and an arbitrary copula function, ARE of QMLE relative to FMLE does not depend on the parameters in the
marginals. Our simulations suggest that the same holds for the SMLE. For generic marginals, ARE depends
on both parameters in the marginals and the dependence parameter.

11The Clayton copula can be extended to incorporate negative dependence, but certain regions would have
zero density (Joe, 1997, p. 158).
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in the case of independence, when we expect no gains over QMLE. We observe the lowest ARE,

that is the biggest efficiency gains, when Spearman’s ρ approaches −1. This corresponds to

extreme negative dependence and agrees with observations made by Joe (2005). In fact, SMLE

asymptotic variance bounds with copula parameters corresponding to Spearman’s ρ = −0.8

suggest improvements of 31-54% over QMLE asymptotic variance depending on the copula.

In the case of strong positive dependence FMLE does not show much efficiency gain over

QMLE, which also agrees with Joe (2005). The simulations summarized in Figure 1 panel

(b) show that similar patterns hold for SMLE. Joe (2005, Section 3) provides a detailed,

identification-based, explanation for the asymmetry in ARE of FMLE with respect to the

sign of ρ by considering limiting dependence cases known as upper and lower Fréchet bounds.

At a bound, there is an exact functional relation (different for the upper and lower bound)

between the two dependent variables, y1 = h(y2; β1, β2). If parameters of the marginals β1

and β2 can be identified from this functional relationship, efficiency gains can be expected

and this happens for some asymmetric distribution families in the Fréchet lower bound, and

not for others.

If any of the marginals is symmetric, the shape of the Fréchet upper and lower bounds

will be the same (reflected around the point of symmetry) and there will no difference in

efficiency for the negative and positive dependencies of the same scale. We illustrate this by

simulations with the bivariate DGP that has an exponential and Gaussian marginal. Figure 2,

panel (a), shows the Fréchet upper and lower bounds for the bivariate distribution that has the

exponential marginal with mean 1 and the Gaussian marginal with mean 0 and variance 1.

Panel (b) shows the AREs of QMLE to FMLE and QMLE to SMLE for this DGP. For
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Figure 2: Fréchet bounds (a) and ARE of QMLE to FMLE and SMLE (b), symmetric case.

simplicity, the variance parameter is assumed to be known for the Gaussian marginal.

We ran a similar analysis for other marginal distributions, such as Gaussian with both

mean and variance as unknown parameters, skew-Gaussian, Pareto, logistic, gamma and some

of their combinations (not reported for brevity). The general patters of the efficiency gains

are similar to those reported earlier.

Next we investigate in detail the performance of SMLE, FMLE and QMLE for a fixed

value of Spearman’s ρ. We use the exponential marginals and the Plackett copula as the

DGP and set the true parameter values in the marginals at µ1 = 0.5 and µ2 = 1 and in
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µ1 = 0.5 µ2 = 1
FMLE SMLE QMLE FMLE SMLE QMLE

Mean 0.5004 0.4987 0.5001 0.9992 0.9952 0.9991
Var ×N 0.1724 0.1917 0.2635 0.6956 0.7506 1.0346
MSE ×N 0.1725 0.1935 0.2635 0.6962 0.7735 1.0354
AVar ×N 0.1582 0.1797 0.2500 0.6329 0.7193 1.0000

Table 1: Simulated mean and variance for Plackett copula based FMLE, SMLE, and QMLE.

the copula at γ = 0.05. This illustrates the case when marginals are not restricted to have

identical parameters and implies moderate negative dependence with Spearman’s ρ of −0.77.

The sample size is N = 1, 000 and the number of simulations is 1, 000.

Table 1 contains the simulation results. We report the mean value of the estimates for

each marginal as well as various versions of the variance estimator and the MSE, scaled by

N . Under Var, we report sample variance estimates while under AVar, we report estimates

of the asymptotic variance obtained using a solution to (8). The number of elements in the

Bernstein-Kantorovich sieve in one dimension is JN = 10 and in total 10 × 10 = 100. This

number minimizes the sum of mean-squared errors for both estimates (see Table 2). A key

feature of the table is that SMLE shows substantial improvement over QMLE. The sample

variance is close to the asymptotic variance bound.

One of the practical problems we face in implementing SMLE is the choice of the degree of

polynomial JN . While some asymptotic results on the rate of convergence and its dependence

on JN are available, they are not informative in the finite sample situation. The literature

on sieves suggests using typical model selection techniques, such as AIC and BIC, and we

compare these criteria.

In particular, we investigate how the SMLE estimates change with the number of sieve

22



JN Mean1 Mean2 Var1 Var2 MSE1 MSE2 sumMSE LogL AIC BIC run-time

2 0.4906 0.9798 0.2334 0.9179 0.3209 1.3245 1.6454 -1106.44 2218.87 2233.60 0.008
3 0.4916 0.9817 0.2213 0.8729 0.2925 1.2092 1.5017 -1007.75 2027.51 2056.95 0.007
4 0.4938 0.9861 0.2116 0.8548 0.2499 1.0482 1.2981 -948.42 1918.84 1972.83 0.013
5 0.4956 0.9896 0.2062 0.8338 0.2251 0.9417 1.1667 -909.34 1854.67 1943.01 0.030
6 0.4968 0.9915 0.2012 0.8229 0.2115 0.8946 1.1062 -881.48 1816.96 1949.47 0.078
7 0.4976 0.9931 0.1944 0.8020 0.2000 0.8502 1.0501 -860.89 1797.78 1984.27 0.202
8 0.4982 0.9940 0.1919 0.7775 0.1953 0.8134 1.0087 -845.31 1792.62 2042.92 0.453
9 0.4985 0.9947 0.1901 0.7593 0.1924 0.7871 0.9795 -828.05 1788.09 2112.01 0.752
10 0.4987 0.9952 0.1917 0.7506 0.1935 0.7735 0.9669 -818.75 1803.49 2210.84 1.301
11 0.4989 0.9953 0.1914 0.7596 0.1927 0.7812 0.9739 -811.50 1827.00 2327.59 2.079
12 0.4989 0.9952 0.1899 0.7631 0.1911 0.7857 0.9768 -805.62 1857.23 2460.88 3.230
13 0.4985 0.9954 0.1945 0.7704 0.1968 0.7918 0.9886 -800.59 1893.18 2609.72 5.088
14 0.4985 0.9950 0.1979 0.7842 0.2002 0.8088 1.0089 -796.33 1934.66 2773.89 7.238
15 0.4983 0.9948 0.2014 0.8009 0.2044 0.8281 1.0326 -792.57 1981.14 2952.87 11.630

Table 2: Optimal number of sieve elements in SMLE

elements. Table 2 reports means, variances and MSEs, scaled by N , for the two estimates as

well as the value of log-likelihood and popular model selection criteria, AIC and BIC. We also

report average run-time in seconds for a specific JN per one sample of 1,000 observations.12

The value of log-likelihood, LogL, increases as sieve complexity grows, as expected. On aver-

age, BIC selects an under-parameterized model (JN = 5), whereas AIC selects JN = 9, which

is close to JN = 10 under which the smallest sum of MSEs is reached in the simulations. We

also investigated K-fold cross-validation, but it was computationally expensive (45 minutes

for K = 10) and did not provide any extra insights in addition to AIC. We also note a degree

of stability of SMLE regardless of the tuning parameter, also noted by Sancetta and Satchell

(2004, Table 2).

It is well known that nonparametric and semiparametric models are subject to the so-

called “curse of dimensionality”. The semiparametric copula sieve models are also affected

by this issue. This also manifests in the non-linear relation between the run-time and the

12The simulations were performed on the UNSW computational cluster using one 16 CPU-cores node and
Matlab parallel computing.
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Figure 3: ARE of SMLE for three dimensional copula.

number of sieve elements JN (see the last column of Table 2). Nonetheless, we demonstrate

that there are SMLE efficiency gains possible in three dimensions with simulations below and

illustrate this point further with an application at the end of Section 4.

For easier comparison with the bivariate case we continue working with the exponential

marginals labeled as 1, 2, 3 with parameters µ1 = 0.1, µ2 = 0.5, and µ3 = 1, respectively. The

dependence is specified with the Gaussian copula with three parameters, ρ12, ρ13, ρ23, that

reflect the dependence between the pairs of the marginals indicated by the subscripts. We

vary ρ12 and ρ13 keeping them equal to each other and taking values from strong negative
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dependence to strong positive dependence on the scale analogous to Figures 1 and 2, for

comparison; the value of ρ23 is fixed. Figure 3 compares ARE of SMLE relative to QMLE

for two scenarios: panel (a) ρ23 = 0.5 and panel (b) ρ23 = 0.7.13 We observe that substantial

efficiency gains can be realised in the trivariate case. AREs for the µ1 on both panels are

similar because these are mainly driven by ρ12 = ρ13. AREs for µ2 and µ3 are essentially

the same because of the assumed dependence structure. Higher ρ23 (panel b vs panel a)

leads to higher efficiency gains (lower AREs) for the mid-range of ρ12 = ρ13 but not on the

extremes. As expected, FMLE reaches a somewhat higher efficiency in comparison to SMLE

(not reported for brevity).

4 Empirical Examples

4.1 A Model For Insurance Claims

First, we demonstrate the use of SMLE with an insurance application. We have data on

1,500 insurance claims. For each claim, we have the amount of claim payment, or loss, (Y1)

and the amount of claim-related expenses (Y2). The claim-related expenses known as ALAE

(allocated loss adjustment expense) include the insurance company expenses attributable to

an individual claim, e.g. the lawyers’ fees and claim investigation expenses. The claim amount

variable is censored – there is a dummy variable, d, which is 1 if a given claim has surpassed

the policy limit and 0 if not. For details of this classic data set, see Frees and Valdez (1998).

13There is a restriction on (negative) dependence range in the trivariate case, i.e., positive-definiteness of
the corresponding correlation matrix. This motivates our choice for ρ23 given the full range we consider for
ρ12 = ρ13. Since the marginals are exponential, as in the bivariate case, AREs do not depend on the parameter
of the marginals.

25



The claim amount and ALAE are assumed to be distributed according to the Pareto

distribution with parameters (λ1, θ1) and (λ2, θ2), respectively:

Fj(Yj) = 1−
(
λj + Yj

λj

)−θj

, j = 1, 2. (9)

Interest lies in efficient estimation of the marginal distribution parameters (λ1, θ1, λ2, θ2),

making efficient use of the strong dependence between the claim amount and ALAE. Addi-

tional complications arise due to censoring of Y1. The likelihood contributions for censored

observations will not be the same as for the uncensored ones and we need to account for that.

Define the marginal pdfs fj(yj), j = 1, 2. The QMLE log-likelihood contribution of an

uncensored observation is ln fj(yj), j = 1, 2. For a censored observation, the contribution is

ln(1 − F1(y1)) = θ1(ln(λ1) − ln(λ1 + y1)). So for QMLE, the log-likelihood contribution of

claim i is

lQi = (1− di) ln f1(y1i) + di ln(1− F1(y1i)) + ln f2(y2i).

Now consider the joint likelihood. Define the joint cdf H(y1, y2) and joint pdf h(y1, y2).

The FMLE contribution of an uncensored observation is lnh(y1, y2) = ln f1(y1) + ln f2(y2) +

ln c(F1(y1), F2(y2)). To derive the contribution of a censored observation note that Prob(Y1 ≥

y1, Y2 ≤ y2) = F2(y2)−H(y1, y2). So the log-likelihood contribution of a censored observation

is f2(y2) − H2(y1, y2), where H2(y1, y2) = ∂H(y1,y2)
∂y2

. But H(y1, y2) = C(F1(y1), F2(y2)) so

H2(y1, y2) = C2(F1(y1), F2(y2)) f2(y2), where C2(u1, u2) = ∂C(u1,u2)
∂u2

. Therefore the full log-
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likelihood contribution for observation i can be written as

lFi = (1− di)[ln f1(y1) + ln f2(y2) + ln c(F1(y1), F2(y2))]

+di[ln f2(y2) + ln(1− C2(F1(y1), F2(y2)))].

The main difficulty imposed by censoring is that we need to evaluate an additional term

involving a copula derivative. For the SMLE, the term is approximated along with ln c.

For the FMLE, the term can be derived analytically for a given copula family or evaluated

numerically.

The extra term will carry over to the variance problem (4) and a consistent estimate of

the SMLE variance, V̂ , will now be

arg min
gq∈AN

[
N∑
i=1

(1− di)

{
2∑

j=1

(
∂ ln fj(yji, β̂)

∂βq

+
1

ĉ(ûi)

∂ĉ(ûi)

∂uj

∂Fj(yji, β̂)

∂βq

)
+

1

ĉ(ûi)
gq(ûi)

}

+
N∑
i=1

di

{
∂ ln f2(y2i, β̂)

∂βq

− 1

1− Ĉ2(û1i, û2i)

(
2∑

j=1

∂Ĉ2(ûi)

∂uj

∂Fj(yji, β̂)

∂βq

+

∫ 1

0

gq(s, û2i) ds

)}]2
, (10)

where β = (λ1, θ1, λ2, θ2)
′, ûki = Fk(yki, β̂) and q = 1, . . . , 4. We will evaluate both gq and its

integral over u1.

The estimates based on QMLE, FMLE with different copulas and SMLE, and their stan-

dard errors are given in Table 3. The FMLE estimator is based on a fully specified parametric

joint likelihood including a copula. We estimate and compare the one-parameter Frank and

Gumbel-Hougaard (G-H) copulas with dependence parameter γ as in Frees and Valdez (1998).

Hua (2017) proposed a new two-parameter bivariate copula, called GGEE, which has both

upper and lower tail dependence and showed that it was one of the best-performing copu-
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QML Frank FML G-H FML Galambos FML GGEE FML SML

λ1 14,443.05 14,562.05 14,040.84 14,227.91 14,653.92 14,367.29
(1,515.08) (1,498.47) (1,351.17) (1,372.70) (1,504.56) (1,480.17)

θ1 1.135 1.115 1.122 1.131 1.152 1.117
(0.076) (0.073) (0.067) (0.068) (0.075) (0.072)

λ2 15,133.34 16,708.36 14,223.69 13,973.37 15,250.40 15,444.65
(1,744.97) (1,900.45) (1,405.77) (1,359.51) (1,697.91) (1,726.95)

θ2 2.223 2.312 2.119 2.094 2.226 2.240
(0.183) (0.190) (0.143) (0.138) (0.176) (0.177)

γ 3.158 1.453 0.727 1.848
(0.171) (0.035) (0.036) (0.398)

δ 0.807
(0.068)

LogL -31,951 -31,778 -31,749 -31,749 -31,750 -31,749

Table 3: QMLE, FMLE, and SMLE for insurance claims and related expenses. Standard
errors are reported in parentheses.

las in a comprehensive comparison of various copulas for the same dataset. We include the

GGEE copula along with the one-parameter Galambos copula which also exhibited a good fit

for these data. The QMLE and FMLE standard errors are estimated using analytical scores

except for the GGEE copula for which the scores are estimated numerically. To obtain the

SMLE, we use the Bernstein-Kantorovich sieve with JN = 6 selected by AIC and to obtain

the SMLE standard errors we use (10) modeling g using the cosine tensor product sieve with

9 parameters.

Consistency of the FMLE estimator relies on correctness of the assumed copula family. If

an incorrect copula family is used in the FMLE, it may be biased (see Prokhorov and Schmidt,

2009). The SMLE estimator is robust in the sense that it does not rely on a correctly specified

parametric copula family. But it is not as efficient as a correct fully parametric model. So we

may expect SMLE to be close to QMLE in terms of the estimates and to be between FMLE
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and QMLE in terms of standard errors.

Estimation results support the above intuition. As expected the FMLE standard errors are

mostly smaller than those of QMLE. However, this higher efficiency comes with the potential

lack of robustness. The point we wish to stress is that the SMLE standard errors are smaller

than those of QMLE and this gain comes at no robustness cost (but at some computational

cost).14

4.2 Portfolio Value-at-Risk

Next, we consider an application involving the management of an investment portfolio and

show how the use of SMLE can lead to superior estimates of the level of market risk associated

with an investment in a portfolio security such as a stock or bond.

Let Pt denote the market price of a security at time t, and let Rt be the associated

holding period return between times t and t + 1. In addition to the rate of expected return

µRt = E[Rt] over the holding period, of key interest to an investor in this security are measures

that gauge the riskiness of their investment such as variance of the investment return σ2
Rt

=

E[(Rt − E[Rt])
2] and the “Value-at-Risk” (VaR), which given some confidence level α is

defined as V1−α(Rt) = inf{Rt : F (Rt; θ) > 1 − α} = F−1(1 − α; θ), for α ∈ [0, 1], where F

is the c.d.f. of Rt with parameter vector θ. The 5% VaR, or V0.05(Rt), for example, shows a

14Most of the computations for the application were performed using Matlab R2022b on the desktop PC
with 6-core Intel(R) i7-8700 CPU @ 3.20GHz and 16GB RAM. QMLE was the fastest and took less than 1
second, FMLEs with analytically defined copulas and densities are also very fast in estimation, less than 1
second, however, deriving analytical expressions for the score required additional time (some were performed
in Mathematica). SMLE was more computationally demanding than the analytically-derived FMLEs with 13
seconds to run the estimation and 6 minutes to select the number of sieve elements. The FMLE estimation
with the GGEE copula was performed in R 4.2.2 using CopulaOne package by Hua. The procedure took one
hour as it heavily relies on numerical methods for integration and differentiation.
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level of loss that is only 5% likely to be exceeded between times t and t+1, and this measure

is widely used in the financial industry to characterize “worst-case” scenarios associated with

an investment.

Given a parametric specification for F , a VaR estimate can be easily obtained as V̂1−α(Rt) =

F−1(1− α; θ̂), where θ̂ is the estimate of the parameter vector θ. The VaR estimate is there-

fore a functional of θ̂, and the properties of the estimator for the marginal parameters in θ̂

directly affect the accuracy of the density estimate F̂ (Rt; θ̂), and in turn the accuracy of the

VaR measure. But this represents an interesting new avenue in VaR analysis since efficiency

gains offered by SMLE with respect to the estimation of the marginal parameters in θ may

translate into superior estimates of the VaR, without the need to specify the full joint dis-

tribution. That is, by using another variable associated with Rt SMLE may lead to a more

efficient estimate of θ, and hence a better estimate of the VaR for Rt, while avoiding the risk of

biasing V̂1−α due to incorrect choice of a dependence structure which arises in a fully-specified

multivariate setting. In the remainder of this section we put this notion to the test.

4.2.1 Estimating 5% VaR for Bank of America Stock

We begin by using SMLE to estimate weekly 5% VaR for a potential investment in the Bank

of America (NYSE: BAC) stock. To explore improvements in the BAC VaR estimates arising

from SMLE we need to find other variables that are associated with the BAC stock return

and therefore contain additional information about BAC returns. To this end, we select BAC

trading volume and realized volatility of BAC returns as two such “dependence instruments”.

The return-volatility and return-volume relationships are both well-documented in the lit-
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erature (see, for example, Gervais et al. (2001) and Ang et al. (2006), among others), and

we therefore expect that both measures may contain relevant information which we aim to

extract using SMLE.

Our sample consists of daily adjusted closing prices for BAC beginning in August of 1999

and ending in December of 2020, and we use Friday closing price Pt to calculate weekly holding

period returns as Rt = ln(Pt/Pt−1). For each of the weeks we also calculate the change in

dollar trading volume during the week as Mt = ln(mt/mt−1), where mt =
∑

j sjPj, with sj

representing the number of shares traded during the j-th day, with the summation being over

all trading days of the week. We further estimate the weekly realized volatility Vt of the BAC

stock price as the standard deviation of daily returns during the week, and begin by building

the marginal models for Rt, Mt and Vt. We select t-Location-Scale distribution to model

weekly returns, with the density given by:

fr(Rt; νr, σr, µr) =
Γ
(
νr+1
2

)
Γ
(
νr
2

)√
πνrσr

(
1 +

1

νr

(
Rt − µr

σr

)2
)− νr+1

2

, (11)

where Γ(·) is the Gamma function, µr and σr are the location and scale parameters, and νr

is the tail parameter which allows for excess kurtosis often present in financial returns. We

adopt the same specification, with distinct parameters, for the marginal model of Mt and

denote the density of Mt by fm(Mt; νm, σm, µm), but chose the Beta distribution to model

volatility so that to capture non-negativity and skewness in Vt, with the density given by:

g(Vt;α, β) =
V α−1
t (1− Vt)

β−1

B(α, β)
, (12)
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where B = Γ(α)Γ(β)
Γ(α+β)

.

Note that in principle the setup of Section 2 is general enough to accommodate any di-

mension of the data, meaning that we can use SMLE to augment estimation of the marginal

parameters µr, σr, and νr using any number of available “dependence instruments”. To avoid

the curse of dimensionality, here we restrict ourselves to two. To better understand the rel-

ative improvements from the addition of our volatility and volume measures with respect to

estimation of the BAC weekly VAR, we first add Vt and Mt separately. We build individual

bivariate models for (Rt,Mt) and (Rt, Vt) in Section 4.2.2 and study the behaviour of the

resulting VaR estimate before considering the case where we add both “instruments” simulta-

neously and estimate a trivariate model for (Rt,Mt, Vt) in Section 4.2.3. In all three cases, to

establish a benchmark we first obtain parameter estimates using QMLE under the assump-

tion of independence between these variables, but then re-estimate the marginal parameters

in (11) using FMLE, with a bi-variate t-copula. In addition to correlation, the t-copula cap-

tures dependence in the tails of the joint distribution and is a common choice in the financial

industry today. Lastly, we obtain a third set of parameter estimates using SMLE. To compare

the resulting sets of VaR measures we use likelihood-based scoring rules for comparing density

forecasts proposed by Diks et al. (2011).

4.2.2 The case of two dimensions: adding trading volume and return volatility

individually

We start by leveraging only the information contained in trading volume and build a bivariate

model for (Rt,Mt). First, to establish a benchmark we estimate the marginal parameters in
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Fr(Rt; νr, σr, µr) using QMLE under the assumption of independence between BAC returns

and trading volume, which amounts to maximizing log-density given by:

lnh(Rt,Mt; θ) = ln fr(Rt; νr, σr, µr) + ln fm(Mt; νm, σm, µm) (13)

with respect to vector θ containing all parameters in h, or effectively by estimating the

marginal parameters (νr, σr, µr) and (νm, σm, µm) using univariate MLE. We then re-estimate

the parameter vector using FMLE, where we allow for a degree of correlation as well as

tail dependence between BAC returns and changes in the trading volume by selecting the

bi-variate t-copula in place of independence. We therefore maximize

lnh(Rt,Mt; θ) = ln fr(Rt; νr, σr, µr) + ln fm(Mt; νm, σm, µm) (14)

+ ct(Fr(Rt;µr, σr, νr), Fm(Mt;µm, σm, νm); ρ, τ),

where ct is the bivariate t-copula log-density parametrized by the correlation coefficient ρ

and tail thickness parameter ρ. Lastly, in constructing the copula term in (14) we use the

Bernstein-Kantorovich sieve from (2) with JN = 5 and estimate the marginal parameters in

(11) one final time, now using SMLE.

To construct the bivariate model for the case where returns are paired with volatility

instead of trading volume we repeat these steps but replace the volume density fm in (14)

with g from (12).

We use a historical three-year rolling window to obtain all estimates and calculate cor-

responding weekly 5% VaR figures for BAC for each of the trading weeks in the sample as

33



V̂t,0.05(Rt) = F̂−1
t (0.05; ν̂r, σ̂r, µ̂r), with the marginal parameters (ν̂r, σ̂r, µ̂r) obtained using

QMLE, FMLE, and SMLE applied to the same sample. To compare the behavior of these

VaR measures and to gauge economic significance of the differences between QMLE, FMLE,

and SMLE-based VaR we focus on two criteria: the number of times actual losses exceed the

corresponding VaR estimate (which we refer to as exceedances), and the relative accuracy of

the VaR, which we assess using the likelihood-based scoring rule of Diks et al. (2011).

VaR exceedances that occur more frequently than (1 − α)% of the time may suggest a

biased VaR, and avoiding this bias is particularly important for institutional investors such

as banks. Many larger banks are subject to capital adequacy requirements that are part of

regulatory frameworks, for example the Bank of International Settlements Basel III Accord.

Through their compliance process banks must maintain a portion of capital invested in risk-

free assets as security against possible trading losses. Such “regulatory capital” acts as a

cushion against default in times of extreme market volatility and its size generally depends

on the aggregate level of risk associated with the bank’s balance sheet. VaR is often used as

part of this risk calculation, and banks face financial penalties when the rate of exceedances

is too high, and consequently the level of regulatory capital is too low.

We find the rate of exceedances for SMLE VaRs to be virtually the same as that for QMLE

and FMLE, suggesting that any differences in the behavior of SMLE VaR are not due to the

presence of bias in the VaR measure, and will not come at a negative economic cost to a

would-be user relative to QMLE or FMLE.

The accuracy of our VaR forecasts largely depends on the accuracy of underlying density

estimates F̂ (Rt; ν̂r, σ̂r, µ̂r) obtained using QMLE, FMLE and SMLE. We follow Diks et al.
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(2011) and adopt a censored likelihood-based scoring rule for assessing the accuracy of com-

peting density forecasts in the specified region of interest, which in our case is the left tail

of the BAC return distribution. For each of the trading weeks in the sample we calculate

censored scores for QMLE, FMLE and SMLE-based density estimates as

S(Rt+1; f̂r) = wt(Rt+1) log f̂r(Rt+1; µ̂
t
r, σ̂

t
r, ν̂

t
r) (15)

+ (1− wt(Rt+1)) log

(
1−

∫
wt(s)f̂

t
r(s; µ̂

t
r, σ̂

t
r, ν̂

t
r)ds

)
, (16)

where µ̂t
r, σ̂

t
r, and ν̂t

r are the marginal parameters of the return distribution which we estimate

using a rolling window ending in period t. The function w(s) weighs observations proportional

to their distance from the left tail. In the extreme case w(s) can be defined as an indicator,

discarding all returns that fall above a certain threshold. We adopt a specification where

w(s) = 1/(1 + exp(a(y − s)), therefore letting all observations along the return spectrum

influence the score, while enabling us to assign higher weights to observations belonging to

the left tail. For the purpose of weighting we set the return threshold y to negative 8%, which

is the fifth percentile of Rt in the whole sample. The parameter a in w(s) determines the rate

with which weights diminish with distance from our threshold. We set a = 30, and also note

that our results do not appear to be sensitive to alternative choices of these parameters, or

the weighting function itself.

Figure 4 shows smoothed differences in weekly values of S(Rt+1; f̂r) for SMLE relative to

QMLE and FMLE, for the case where returns are paired with volatility. Positive differences

indicate higher SMLE scores, and for most of the trading weeks SMLE appears to produce
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Figure 4: Differences in tail forecast accuracy between SMLE and QMLE, and SMLE and
FMLE. Twelve week moving average of score difference, January 2002 - December 2020.

significantly higher scores, meaning more accurate tail forecasts and hence VaR estimates

than both QMLE and FMLE. Interestingly, this appears to be the case particularly in times

of market turbulence, such as during the sub-prime crisis of 2007-2008 and the European debt

crisis of 2011-2012. We also find this to be the case when returns are paired with trading

volume Mt instead of volatility in this way.

Trading volume Realized volatility
SMLE - QMLE SMLE - FMLE SMLE - QMLE SMLE - FMLE

Mean difference 0.0016 0.0029 0.0072 0.0128
t-Ratio 2.2348 4.0483 3.1500 5.6225

Table 4: Differences in mean tail forecast accuracy scores between SMLE and QMLE, SMLE
and FMLE.

To formally test for the presence of positive difference between SMLE, QMLE and FMLE

tail forecast scores we calculate differences in average scores in the sample and estimate the
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standard deviations of the differences using delete-d jack-knife, with d = 10. Table 4 shows

differences between mean SMLE, QMLE and FMLE scores when returns are paired with

realized volatility, and separately with trading volume. As before, a positive score difference

indicates greater mean score for SMLE. In all cases, we find that we can reject the null

hypothesis of equal mean scores in favour of the alternative of greater SMLE mean score at

the 5% significance level.

Superior performance of SMLE-based VaR estimates is potentially significant from a prac-

tical risk management standpoint. We speculate that such improvement may be due to better

ability of the Sieve copula to capture temporal shifts in market dependence as well as possible

asymmetries, but we leave these questions for future work.

4.2.3 The case of three dimensions: combining trading volume with volatility

Our setup allows for simultaneous addition of volatility and trading volume. QMLE in such

three-dimensional case amounts to operating on the sum of marginal log-densities, now given

by

lnh(Rt,Mt, Vt; θ) = ln fr(Rt; νr, σr, µr) + ln fm(Mt; νm, σm, µm) + ln g(Vt;α, β). (17)

Selecting a trivariate t copula ct(fr, fm, g; Ω, τ), which is now parametrized by a correlation

matrix Ω in addition to the tail thickness parameter τ to model dependence between Rt, Vt
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and Mt yields log-density for FMLE:

lnh(Rt,Mt; θ) = ln fr(Rt; νr, σr, µr) + ln fm(Mt; νm, σm, µm) + ln g(Vt;α, β) (18)

+ ln ct(Fr(Rt;µr, σr, νr), Fm(Mt;µm, σm, νm), G(Vt;α, β); Ω, τ),

where G(Vt;α, β) is the cdf corresponding to the pdf g(Vt;α, β). As before, we maximize

the log-likelihood based on (18) with respect to parameter vector θ to estimate the model

parameters using SMLE, but construct the copula term using the Bernstein-Kantorovich sieve

from (2), now with m = 3, but keeping JN = 5.

We repeat all steps from the previous section and again follow Diks et al. (2011) in obtain-

ing forecast accuracy scores for SMLE, QMLE and FMLE using the same parameters, but

shortening our sample to 2012-2020 period to focus on more recent data and to accommodate

increased computational complexity in higher dimensions. Similar to bi-variate setup involv-

ing only volatility or trading volume, we find significant improvements in forecast accuracy in

the tails arising from the use of SMLE, with the differences in mean scores being positive and

statistically significant at the 5% significance level. We summarize these results in Table 5.

Trading volume and realized volatility
Relative to QMLE Relative to FMLE

SMLE score difference 0.0022 0.0074
t-Ratio 2.3001 5.2096

Table 5: Differences in mean tail forecast accuracy scores between SMLE and QMLE, SMLE
and FMLE.
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5 Concluding Remarks

We have proposed an efficient semiparametric estimator of marginal distribution parameters.

This is a sieve maximum likelihood estimator based on a finite-dimensional approximation of

the unspecified part of the joint distribution. As such, the estimator inherits the costs and

benefits of the multivariate sieve MLE. A major benefit is the increased precision compared

to quasi-MLE, permitted by the use of dependence information. Simulations show that po-

tential efficiency gains are substantial. The efficiency bound is determined by the dependence

strength and we show that our estimator reaches that bound. We illustrate the usability of

SMLE with two empirical applications in insurance and financial risk management. The de-

pendence structure itself is not modeled directly which can be viewed as a drawback in some

cases. However, the procedure has clear advantages when the core interest is in estimating

features of the marginals whereas dependence is viewed as nuisance parameters.

The gains come at an increased computational expense. The convergence is slow for the

traditional sieves we considered. We found that the Bernstein-Kantorovich polynomial is

preferred to other sieves. The running times are greater than the full MLE assuming an

“off-the-shelf” parametric copula family but far from being prohibitive (at least for the two

and three-dimensional problems we consider).

In higher dimensions, the application of our approach is limited but a productive way to

think about applying it is in the settings where one uses low dimensional copulas to arrive at

a high-dimensional likelihood such as vine-copulas, factor copulas or composite densities (see,

e.g., Scheffer and Weiss, 2017; Krupskii and Joe, 2013; Anatolyev et al., 2018). For example,

Scheffer and Weiss (2017) claim they were able to reach d = 15 using vines of bivariate
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Bernstein copulas. We leave these approaches for future work.

Simple alternatives to the proposed method include a fully parametric ML estimation

problem and various weighting schemes of the QMLE moment conditions (see, e.g., Prokhorov

and Schmidt, 2009; Nikoloulopoulos et al., 2011). Although simpler computationally, the

weighting schemes usually do not use information beyond correlation of the marginal scores

while the full MLE imposes an assumption on the dependence structure, which, if violated,

renders the ML estimator inconsistent. Moreover, robust parametric copulas are often robust

because they are redundant. So the proposed estimator seems to offer a natural way of

constructing a copula that is robust and generally non-redundant.

Methods to improve computational efficiency of SMLE focus on reducing the effective

number of sieve parameters. Such methods involve penalized and restricted estimation and

are particularly appealing for the Bernstein-Kantorovich polynomial where the sparse portions

of the sieve parameter space correspond to histogram cells with little or no mass. We leave

the development of such methods for future work.

6 Supplemental Material

Supplemental materials for this article are available online at

http://research.economics.unsw.edu.au/vpanchenko/software/scopula.zip.

They include Matlab codes implementing the Bernstein-Kantorovich sieve and other codes

used in simulations and applications, as well as relevant data.
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Appendix

Appendix A. Basics of sieve MLE: Compared to other nonparametric methods such as kernels, local

linear estimators, etc., the method of linear sieves is quite simple – the infinite dimensional optimization is

reduced to a regular parametric MLE.

Given a sequence of approximating spaces ΓN (sieves), such that
⋃

N ΓN is dense in Γ, the optimization

is done over the finite dimensional sieve space. Grenander (1981) is credited for observing that the MLE

optimization, which is infeasible over an infinite dimensional space, is remedied if we optimize over a subset of

the parameter space, known as the sieve space, and then allow the subset to grow with the sample size (see,

e.g., Chen, 2007, for a survey of sieve methods).

There is a large number of convenient finite dimensional linear sieves known to work well for approximating

univariate functions on [0, 1]. To generalize them to a multivariate copula setting, we can write them in a

tensor product form as follows:

ΓN =

cJN
(u) =

J
(1)
N∑

k1=1

· · ·
J

(m)
N∑

km=1

ak1,...,km
Ak1

(u1)× . . .×Akm
(um) ,

u ∈ [0, 1]m,

∫
[0,1]m

cJN
(u)du = 1,

∫
[0,1]m−1

cJN
(u)du-ℓ = 1, ∀ℓ

}
,

J
(ℓ)
N → ∞,

J
(ℓ)
N

N
→ 0, ℓ = 1, . . . ,m

where {Akℓ
} are known univariate basis functions, {J (ℓ)

N } is the number of basis elements in each direction ℓ and

{ak1,...,km
} are unknown sieve coefficients. Commonly used examples of basis functions Ak(u) include power

series, trigonometric polynomials, Fourier series, Chebyshev polynomials, splines, wavelets, neural networks

and many others. The number of sieve elements in the tensor product sieve J
(1)
N × · · · × J

(m)
N can be viewed

as the smoothing parameter analogous to the bandwidth in a kernel estimation.

If we write, as in the main text, the sieve for Θ = B × Γ as ΘN = B × ΓN , where ΓN contains a generic
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vector of copula parameters γ, and let θ = (β′, γ), then the sieve MLE (SMLE) can be written as follows

θ̂ = arg max
θ∈ΘN

N∑
i=1

lnh(yi; θ) (19)

In essence, an infinite-dimensional problem over a space of functions is reduced to a finite-dimensional problem

over a sieve of that space. As mentioned above this estimator is very easy to implement in practice – it is a

standard finite dimensional parametric MLE once we decide on the number of sieve copula coefficients, and,

as we discuss in the main text, a consistent estimator of the SMLE asymptotic covariance matrix can be

obtained in some cases using standard MLE.

In establishing consistency and asymptotic normality we follow the standard route (see, e.g., Ai and Chen,

2003; Chen et al., 2006; Chen and Pouzo, 2009). First, we show smoothness of λ′β and then employ the Riesz

representation theorem to show normality of
√
Nλ′(β̂ − β). In showing semiparametric efficiency of β̂ we

follow the standard method of looking for the least favorable parametric submodel. A simplified version of

this approach can be found in Severini and Tripathi (2001). (In the proof of semiparametric efficiency below

we provide reference to that approach for readers more familiar with it.)

Assumption A4(C): Denote li(θ) = lnh(yi; θ), l(θ) =
1
N

∑N
i=1 li(θ) and 0 < εN = o(N−1/2). Further

let µN (g) = 1
N

∑N
i=1[g(yi)− Eg(yi)] for some function g(·) as in Chen et al. (2006).

Assume that, for any θ̃ : ||θ̃ − θo|| = Op(δN ) and v : ||v|| = O(δ), we have

E

[
d l̇i(θ̃)[ν]

dθ′
[ν]− d l̇i(θ0)[ν]

dθ′
[ν]

]
= o(N−1) (20)

and

µN

(
d li(θ̃)

dθ′
[ΠNν∗]− d li(θ0)

dθ′
[ΠNν∗]

)
= op(N

−1/2). (21)

For lower level assumptions on individual derivatives, see Assumptions 5 and 6 in Chen et al. (2006). As

mentioned there, these assumptions are easily satisfied when marginal densities are twice continuously differ-
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entiable around true β and the unknown copula density is in some smooth function class, e.g., Hölder, and is

bounded away from zero.

Appendix B. Proofs of Theorems

Proof of Theorem 1: Let ri(θ) = li(θ)− li(θ0)− dli(θ)
dθ′ [θ − θ0]. By the definition of θ̂ in (19),

0 ≤ l(θ̂)− l(θ̂ ± εNΠNν∗) = µN (li(θ̂)− li(θ̂ ± εNΠNν∗)) + E(li(θ̂)− li(θ̂ ± εNΠNν∗))

= ±εN
1
N

∑N
i=1

dli(θ̂)
dθ′ [ΠNν∗] + µN (ri(θ̂)− ri(θ̂ ± εNΠNν∗)) + E(ri(θ̂)− ri(θ̂ ± εNΠNν∗))

We follow Chen et al. (2006) and show that

1

N

N∑
i=1

dli(θo)

dθ′
[ΠNν∗ − ν∗] = op(N

−1/2) (22)

E(ri(θ̂)− ri(θ̂ ± εNΠNν∗)) = ±εN ⟨θ̂ − θo, ν
∗⟩ ± εN op(N

−1/2) (23)

µN (ri(θ̂)− ri(θ̂ ± εNΠNν∗)) = εN op(N
−1/2) (24)

It will then follow that

0 ≤ l(θ̂)− l(θ̂ ± εNΠNν∗) = ±εN
1
N

∑N
i=1

dli(θo)
dθ′ [ν∗]± εN ⟨θ̂ − θo, ν

∗⟩ ± εN op(N
−1/2),

and, since εN = o(N−1/2) > 0, we have

√
N⟨θ̂ − θo, ν

∗⟩ = 1√
N

(∑N
i=1

dli(θo)
dθ′ [ν∗]− E dli(θo)

dθ′ [ν∗]
)
+ oP (1)

⇒ N(0, ||ν∗||2),

where E
(

dli(θo)
dθ′ [ν∗]

)
= 0 and ||ν∗||2 = V ar

(
dli(θo)
dθ′ [ν∗]

)
. Now, since λ′(β̂− βo) = ⟨θ̂− θo, ν

∗⟩, the conclusion

of the theorem follows by the Cramér-Wold device. What remains is to show (22)-(24).

Equation (22) holds by Assumption A4(B), since ||ΠNν∗ − ν∗|| = o(1). To show (23), note that, under

48



Assumption A4(C) Eq.(20),

Eri(θ) = E

(
li(θ)− li(θ0)−

dli(θ)

dθ′
[θ − θ0]

)
=

1

2
E

[
d l̇i(θ̃)[θ − θ0]

dθ′
[θ − θ0]−

d l̇i(θ0)[θ − θ0]

dθ′
[θ − θ0]

]
+

1

2
E

(
d l̇i(θ0)[θ − θ0]

dθ′
[θ − θ0]

)
+ εNop(N

−1/2)

=
1

2
E

(
d l̇i(θ0)[θ − θ0]

dθ′
[θ − θ0]

)
+ εNop(N

−1/2) + op(N
−1),

where θ̃ is between θ̂ and θ̂ ± εNΠNν∗. Therefore, as shown by Chen et al. (2006, proof of Theorem 1),

E(ri(θ̂)− ri(θ̂ ± εNΠNν∗)) = −||θ̂ − θ0||2 − ||θ̂ ± εNΠNν∗ − θ0||2

2
+ op(N

−1/2) + op(N
−1)

= ±εN ⟨θ̂ − θo, ν
∗⟩+ εNop(N

−1/2) + op(N
−1).

To show (24), we note, that under Assumption A4(C) Eq.(21), we have

µN (ri(θ̂)− ri(θ̂ ± εNΠNν∗)) = µN

(
li(θ̂)− li(θ̂ ± εNΠNν∗)± εN

dli(θ0)

θ′
[ΠNν∗]

)
= ±εNµN

(
dli(θ̃)

θ′
[ΠNν∗]− dli(θ0)

θ′
[ΠNν∗]

)
= εNop(N

−1/2),

where θ̃ is between θ̂ and θ̂ ± εNΠNν∗. This completes the proof.

Proof of Theorem 2: We apply the method of Severini and Tripathi (2001). To make it easier to follow

for those who know their method, we use their notation and also specify our equivalents of their objects.

For some to > 0 let θ(t) denote a curve from [0, to] into Θ such that θ(0) = θo. The curve we consider is

θ(t) = θo + tν, for any ν ∈ V . Let θ̇ denote the slope of θ(t) at t = 0, i.e. θ̇ is tangent to the set Θ at θo. For

our case, θ̇ = ν. Let T (Θ, θo) denote the collection of all such tangents θ̇′s and let T̄ (Θ, θo) denote the linear

closure of T (Θ, θo), i.e. the tangent space. In our case, T̄ (Θ, θo) = V̄ .

The objective is to obtain the efficiency bound for estimating ρ(θo) = λ′βo. Stein (1956) is often credited

for being first to suggest that the efficiency bound can be viewed as the upper bound on the asymptotic variance

for estimating any one-dimensional subproblem of the original problem. Our one-dimensional subproblem is
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estimation of t, whose true value is zero. The score for estimating t = 0 is si =
dli(θt)

dt

∣∣∣
t=0

= d lnh(yi;θt)
dt

∣∣∣
t=0

=

d lnh(yi;θo)
dθ [θ̇]. In our notation, this is just the directional derivative l̇(θo)[ν] for obsevation i, call it l̇i(θo)[ν].

Then, the Fisher information for estimating t = 0 is given by ||ν||2 = Es2i .

We now look at those one-parameter subproblems that are informative about the feature of interest

ρ(θo), specifically, we focus on those curves θ(t) that satisfy the restriction ρ(θ(t)) = t. This means choosing

among only those θ̇′s that satisfy dρ(θ(t))
dt

∣∣∣
t=0

= 1, or equivalently, only those ν′s for which ρ̇(θo)[ν] = 1. A

simplification that applies in our case is that ρ̇(θo)[ν] = ρ(ν) = λ′νβ . Then, for any consistent estimator t̂,

AV
{√

N
[
ρ(θ(t̂))− ρ(θo)

]}
= AV (

√
Nt̂) ≥ ||ν||−2. Now to obtain the semiparametric lower bound (SPLB)

for estimating ρ(θo), we look for a ν that maximizes ||ν||−2. As discussed in Severini and Tripathi (2001,

p. 28), the maximization problem can be equivalently written as

SPLB = sup
ν∈V̄ :ν ̸=0,λ′νβ=1

||ν||−2 = sup
ν∈V̄ :ν ̸=0

∣∣∣∣∣∣∣∣ ν

λ′νβ

∣∣∣∣∣∣∣∣−2

= sup
0̸=ν∈V̄

|λ′νβ |2

||ν||2
= sup

||ν||=1

|λ′νβ |2 = ||ρ̇(θo)[ν]||2∗,

where ||L(ν)||∗ is the norm of a continuous linear functional L(ν) on the tangent space.

Calculating the norm is usually easier by appealing to the Riesz representation theorem as done in the

main text. Basically, instead we look for the representer of the functional. The Riesz representation theorem

says that ||ρ̇(θo)[ν]||∗ = ||ν∗||, where ν∗ as defined in (7). Thus, SPLB = ||ν∗||2.

Appendix C. Implementation algorithm for SMLE using Bernstein-Kantorovich sieve.

We observe an i.i.d. sample {yi}Ni=1 = {y1i, . . . , ymi}Ni=1. Assume that the corresponding marginal dis-

tributions F1(y1;β1), . . . , Fm(ym;βm) are known up to their parameters βjs. The dependence is modeled

non-parametrically using the Bernstein-Kantorovich sieve (see Section 2.1, which provides definitions and

formulas) as follows:

1. Initialization. Use QMLE estimates as initial values, β̂init. Compute m marginal CDF transforms of

each variable, uji = Fj(yji; β̂j,init), j = 1, . . . ,m. For a given JN , which determines the number of sieve

parameters (we discuss the selection later), use ujis, to compute empirical m-dimensional histogram of

ujis on [0, 1]m with the grid JN × · · · × JN , by counting the number of ujis falling in (3) and dividing
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it by the number of observations. Use the computed values as the initial values for ωv, the parameters

of the Bernstein-Kantorovich sieve given in (2).

2. Estimation. The parameters of the marginals, βjs, and the sieve, ωvs, are jointly estimated by maxi-

mizing the log-likelihood lnL(β, ωv) =
∑N

i=1[
∑m

j=1 ln fj(yji;βi) + ln cJN
(F1(y1i) . . . Fm(ymi);ωv)] with

the initial values given in steps 1. When estimating ωv it is important to impose the uniform marginals

restriction, given after (2). In the bi-variate case, the parameters of the sieve can be represented as a

JN × JN matrix of non-negative elements, each of whose rows and columns sums to 1/JN . In practice,

these restrictions are imposed either by using constrained optimization (this works well for relatively

small JN ) or by using transformations to ensure that all sieve parameters are positive and sum to 1 and

subtracting the quadratic penalty P
∑

ℓ

∑
vℓ
(
∑

v-ℓ|vℓ ωv−1/JN )2 from the log-likelihood. P determines

the tightness of the constraints at the optimum and should be sufficiently high relative to the typical

value of the log-likelihood.

3. Selection of JN . We use AIC = 2k − ln L̂, where k is the number of free parameters including the

sieve parameters and L̂ is the value of likelihood at the maximum. Other selections criteria: likelihood

cross-validation gave similar results but was too computationally demanding, BIC selected a higher JN

than optimal (based on simulations).

4. Post-estimation. Asymptotic variance is computed by inverting the Fisher information matrix consis-

tently estimated by a sample average of SβS
′
β at the value of the parameter estimates, where Sβ is

defined in (6). The terms g∗q are estimated by solving (8) and are approximated with the tensor product

cosine sieve g∗q (u)/c(u) =
∑JN

k1=1 · · ·
∑JN

km=1 ak1,...,km
cos(k1πu1)× . . .× cos(kmπum). Note that we use

the cosine basis with no constant, which ensures that
∫
gq(u)/ĉ(u) du = 0 holds.

51


	Introduction
	Sieve MLE
	Bernstein-Kantorovich Sieve
	Asymptotic Properties

	Simulations
	Empirical Examples
	A Model For Insurance Claims
	Portfolio Value-at-Risk
	Estimating 5% VaR for Bank of America Stock
	The case of two dimensions: adding trading volume and return volatility individually
	The case of three dimensions: combining trading volume with volatility


	Concluding Remarks
	Supplemental Material

